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Abstract: Presently, autonomous vehicles are on the rise and are expected to be on the roads in the
coming years. In this sense, it becomes necessary to have adequate knowledge about its states to
design controllers capable of providing adequate performance in all driving scenarios. Sideslip and
roll angles are critical parameters in vehicular lateral stability. The later has a high impact on vehicles
with an elevated center of gravity, such as trucks, buses, and industrial vehicles, among others, as they
are prone to rollover. Due to the high cost of the current sensors used to measure these angles directly,
much of the research is focused on estimating them. One of the drawbacks is that vehicles are strong
non-linear systems that require specific methods able to tackle this feature. The evolution in Artificial
Intelligence models, such as the complex Artificial Neural Network architectures that compose the
Deep Learning paradigm, has shown to provide excellent performance for complex and non-linear
control problems. In this paper, the authors propose an inexpensive but powerful model based on
Deep Learning to estimate the roll and sideslip angles simultaneously in mass production vehicles.
The model uses input signals which can be obtained directly from onboard vehicle sensors such as the
longitudinal and lateral accelerations, steering angle and roll and yaw rates. The model was trained
using hundreds of thousands of data provided by Trucksim R© and validated using data captured
from real driving maneuvers using a calibrated ground truth device such as VBOX3i dual-antenna
GPS from Racelogic R©. The use of both Trucksim R© software and the VBOX measuring equipment is
recognized and widely used in the automotive sector, providing robust data for the research shown
in this article.

Keywords: sensor fusion; deep Learning based estimator; vehicle dynamics; roll angle; sideslip angle

1. Introduction

Road vehicles are the most prevalent transportation system. Current estimations set the mortality
due to traffic accidents and collisions in around 1.35 million people per year [1]. Over the last several
decades, vehicles have been equipped with active systems such as ABS (Anti-Blocking System), ESC
(Electronic Stability Controllers), and active suspensions, which improve their comfort, efficiency,
and safety. These systems gain greater interest in autonomous vehicles. The primary cause of
accidents is related to loss of lateral stability control [2]. In this regard, sideslip and roll angles are
critical parameters in vehicular lateral stability. It has become necessary to know about them to
design controllers capable of providing adequate performance in all driving scenarios. Specifically,
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the roll angle has a high impact on vehicles with an elevated center of gravity, such as trucks, buses,
and industrial vehicles, among others, as they are prone to rollover. Presently, there exist devices
that allow the direct measurement of both angles, such as a dual antenna GPS (Global Positioning
System) or a Kistler S-Motion device [3]. This type of advanced GPS equipment cannot be included in
mass production vehicles due to high-cost issues [4]. Because of that, many of the researchers focus
on estimating these angles based on available measurements from on-board embedded sensors but
independently [5,6]. On the other hand, in works such as [7], both roll and sideslip angles are estimated
by using additional external sensors that need to be integrated into the vehicle instead of using the
own on-board systems. In general, these approaches are based on vehicle model-based estimation and
data-driven-based estimation [8]. The former group includes approaches such as Kalman-filter-based
method [9–11], nonlinear-observer-based method [11–13], and robust observers [14–16]. The latter
includes Neural Networks, and ANFIS, among others [4,17,18], whose main advantage is that they
do not depend on the reference vehicle models. Additionally, vehicles are strong non-linear systems
that require specific methods able to tackle this feature. Presently, Machine Learning technologies are
gaining attention in the field of improved vehicle driving, providing a diverse application set, ranging
from computer vision for the identification of static or dynamic obstacles or the detection of fatigue
situations in drivers to vehicle trajectory prediction [19–22]. Deep learning can be defined as a set of
machine learning algorithms that implement large neural networks, including many hidden layers
(also referred to as Deep Neural Networks—DNNs) for feature generation, learning, classification,
and prediction [23]. There are several model architectures and transfer learning techniques that can be
applied to solve different problems in the automotive domain. Nevertheless, more research is needed:

(a) to design distributed deep learning systems to improve training times for more complex networks
and massive data sets;

(b) to determine how to apply deep learning in other areas of automobile control such as lateral
stability [24]; and

(c) it is necessary to assess that the fusion of data coming from low-cost devices and estimations
provided by deep machine learning algorithms can fulfill the reliability and appropriateness
requirements for using these technologies to improve overall vehicular safety.

The novelty of this work consists of the design and implementation of an efficient and precise
Deep Neural Network to simultaneously estimate roll and sideslip angles by using only information
provisioned by on-board sensors such as the IMU (Inertial Measurement Unit) and the steering angle
sensor. The designed DNN can tackle strong non-linear vehicle behavior. Besides, the proposed DNN
does not use previous information from the sensors. Just the one provided at that time, so there are no
stability problems associated with an accumulated error.

This article is organized as follows. Section 2 presents the steps taken to define the Deep Learning
model for this research work, and the designed Deep Neural Network that solves the problem. Section 3
shows the results as far as predicted precision is concerned. Finally, a discussion related to the results,
a set of conclusions, and the next steps to be taken by our research team are introduced in Section 4.

2. Methodology

This section describes the experimental approach adopted to achieve the goals stated for this
research work. Showing up next is an overview of the different steps and required aspects before
defining a proper Deep Neural Network. Then, different subsections detail each of the main aspects
considered in the model creation.

The main components that define our solutions are presented in Figure 1. They can be summarized as:

• Data set with repeatable simulated maneuvers with a complex vehicular model (van).
• Data set with information logged from real driving scenarios.
• Deep Learning predictor model, tested against the first data set.
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• Validation of the Deep Learning Network using the second data set.
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Figure 1. Training and validation scheme.

2.1. General Scheme

2.1.1. Deep Learning Model to Accurately Predict Roll and Sideslip Angles

Presently, there exist a wide variety of deep neural networks (DNNs) and related architectures.
For instance, recurrent neural networks (RNNs) [25] can be used in tasks as natural language
processing (NLP), connected handwriting, speech recognition, or the generation of new sentences
and document summaries [26]. Alternatively, long short-term memory (LSTM), initially designed to
model temporal sequences considering their respective long-range dependencies with higher accuracy
than conventional RNNs. LSTMs allow solving problems such as the creation of outstanding acoustic
models for complex languages, and the tagging of parts of the speech with high precision [27–30],
among others. Given the nature of the problem, a multilayer perceptron (MLP) has been used in this
work. A beneficial feature in the MLP model used, compared to other ANN architectures such as the
RNN and LSTM, is that there is no accumulated error derived from the estimation because MLP does
not use the outcome predictions to feed the ANN. For a long time and until now, MLPs have been used
effectively in several works to perform accurate predictions [31–33]. A multilayer perceptron contains
three or more layers that use a nonlinear activation function (usually hyperbolic tangent or logistic
function), which allow classifying data that is not linearly separable. Each node in a layer is connected
to every node in the following layer, making this kind of ANNs to be fully connected. According to
[23], the practical design process should be structured as follows:

• Determine the goals, including what error metric to use, and the expected value for this metric.
The problem should drive these goals and error metrics that the application has to solve.

• Establish an end-to-end working pipeline as soon as possible, including the estimation of the
appropriate performance metrics.

• Instrument the system adequately to track bottlenecks or issues in the model, such as overfitting,
underfitting, or defective data.

• Perform repeatedly incremental changes such as increasing the data set entries, adjusting
hyperparameters, or changing algorithms, based on specific findings from the previous
instrumentation.
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Since the purpose of the work is to create an estimator for roll and sideslip angles in mass
production vehicles, the priority is to provide the best forecasts as possible in the least amount of time.
As the system is embedded in real vehicles through specific computing units endowed with limited
computing capabilities, there must be a balance between the ANN complexity and the prediction
accuracy. As error metrics, there has been considered the RMSE (Root-Mean-Square Error) since they
allow considering the magnitude of the error to assign a higher loss to larger errors than other metrics
(as Mean Absolute Error) do. A large prediction error could result in a dangerous situation, so they
need to be minimized.

The inputs handled to predict the roll (φm) and sideslip (Ψm) angles (model outcome) are:
longitudinal acceleration (axm), lateral acceleration (aym), roll rate (φ̇m), yaw rate (Ψ̇m), steering angle
(δv), and longitudinal speed (Vx). These are the typical variables that affect the lateral vehicle dynamics.
Notation used in this paper in relation to the DNN model can be seen in Figure 2.

Symbol Meaning
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ො𝑦 = 𝐴[𝐿] Predicted output vector. Also denoted as activation vector for the output layer, ∈ ℝ𝑛𝑦

𝐴[𝑙] Activation vector for layer "𝑙"

J Cross-entropy cost

Figure 2. Notation.

Different factors affect the goodness of a DNN model [23]. The number of data for training
and testing the model, the hyperparameters (i.e., learning rate or the number of training iterations)
configuration, the number of hidden layers, and the number of units per layer. The original DNN was
coded from scratch in Python 3.7 [34] due to the robust set of existing libraries oriented towards matrix
processing (NumPy [35]), data processing (pandas [36]) and resulted plotting (matplotlib [37]), plus
the ability to run the code in different platforms (from development desktop computers to production
embedded devices). The “from scratch” approach was taken to optimize and instrument the code as
much as needed. However, to train and test the designed DNN architecture efficiently, the experimental
version that led to a proper set of hyperparameters and neuron weights was implemented using Keras
[38]. This framework was developed with a focus on enabling fast experimentation (transform the
idea into a result with the least possible delay).

Several set-ups related to both parameters and hyperparameters were defined and tested. The best
configuration found is represented in Figure 3. This DNN is composed of five hidden layers, six inputs,
and two outputs. The network presents thirty units in the first layer, sixty in the second layer,
ninety in the third layer, one hundred and eighty in the fourth layer, and finally ninety in the fifth
layer. This network configuration was the result of using the conventional method of trial and error.
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The network was trained using different hyperparameters. Some techniques, as “early stopping”
by using a relatively small number of iterations to prevent overfitting, were tested until getting
a proper set of hyperparameters. First layer and subsequent ones calculate a vectorized linear function
(see Equation (1)) followed by a vectorized activation. The activation function, π(·), for these layers is
a RELU (Rectified Linear Unit—see Equation (2)), and the output layer outcome (see Equation (3)) is the
result of the linear function, providing a linear regression, suitable for predicting the expected values.

A[l] = π(Z[l]) = π(W [l]A[l−1] + b[l]) (1)

RELU(Z[l]) = max(0, Z[l]) (2)

ŷ = A[L] = Z[L] = W [L]A[L−1] + b[L] (3)
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ሶɸm
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𝒏[𝟓] = 𝟗𝟎 [𝒂𝒄𝒕 = 𝑹𝑬𝑳𝑼]
𝒏[𝟔] = 𝟐 [𝒂𝒄𝒕 = 𝑳𝒊𝒏𝒆𝒂𝒓](𝒐𝒖𝒕𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓)

Figure 3. Deep Neural Network configuration used.

Once all the layers perform their computations, it is necessary to compute the cost in order to
check if the model is learning correctly. The cross-entropy cost J (see Equation (4)) was used for this
purpose in order to compare the predicted vs. the expected values:

J = − 1
m

m

∑
i=1

(y(i) log
(

a[L](i)
)
+ (1− y(i)) log

(
1− a[L](i)

)
) (4)

After computing the cost, a linear backward (backpropagation) has to be carried in order to
update network parameters. To do so, it is required to calculate the gradients: dW [l] (Equation (5)),
db[l] (Equation (6)) and dA[l−1] (Equation (7)), respectively:

dW [l] =
∂J

∂W [l]
=

1
m

dZ[l]A[l−1]T (5)

db[l] =
∂J
∂b[l]

=
1
m

m

∑
i=1

dZ[l](i) (6)
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dA[l−1] =
∂J

∂A[l−1]
= W [l]TdZ[l] (7)

The linear-activation backward function will be then computed by using the next Equation (8),
being π(·) the activation function for RELU and π′(·) its derivative:

dZ[l] = dA[l] ∗ π′(Z[l]) (8)

For the last layer, the MSE derivative between predicted and expected normalized values is
computed and backpropagated as the first gradient in such a process.

In the last step, when reaching the input layer of the model, it is necessary to update the parameters
using gradient descent on every W [l] and b[l] for l = 1, 2, . . . , L. The equations to do so are:

W [l] = W [l] − α dW [l] (9)

b[l] = b[l] − α db[l] (10)

where α is the learning rate hyperparameter. The whole process is repeated for the specific number of
iterations defined as a hyperparameter. A graphical description of this process can be seen in Figure 4.
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Reescalation of X and Y (input/output) vectors. Hyperparameter tuning.
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Figure 4. DNN configuration and training procedure followed.

A general overview of the approach followed to train and validate the network is presented
in Figure 5. The training process is fulfilled with a significant subset of entries from Trucksim R©

outcome data. Then the testing process is checked against the remaining subset of entries. All the
input data are normalized per component. After testing the trained model, it is required to check
the predicted error rates, and in case they are not appropriate, new training has to be done after
adjusting the hyperparameters (i.e., to prevent overfitting). Once the predicted error rates are adequate,
the validation with data acquired from real driving maneuvers can be performed.
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Figure 5. Deep learning approach followed.

2.1.2. Model Dissemination and Extension

The proposed model has been designed as a portable predictor, so the DNN has been implemented
in a modular way and using a Python virtual environment, which allows executing the utility function
(“predict”) from any computer sharing the same architecture. By trying to minimize the number
of external dependencies, and by creating the model from scratch, it is possible to run it from any
device supporting a Python interpreter. Besides, the creation of a Docker [39] image is in progress.
This image can be deployed in any computing device supporting Docker, and it can also be used not
just to provide predictions, but also to continue the extension of the model in the same environment
as the one used for its creation. Besides, the simplicity of the communication interface provides
easy integration with other systems that may benefit from sideslip and roll angle predictions, as the
perception-based knowledge model proposed in [40]. The synergy with those kinds of systems may
lead to a complex representation and prediction model for vehicular dynamics at different scales,
being suitable to enhance vehicular autonomy, by providing more complex and accurate predictions
by fusing multiple sensors and information sources.

3. Datasets

The training dataset has to be adequately chosen to take into account all driving situations
and conditions. The training dataset has been obtained from a previous experimentally validated
Trucksim R© van model employing the real Mercedes Sprinter depicted in Figure 6 [41]. The model
parameters were adjusted by trial and error according to the differences between the experimental
and simulation data. Trucksim R© is a software widely recognized and validated for application in
vehicle dynamics. The effectiveness of this software allows us to simulate risky maneuvers that
would not be possible, for security reasons, to recreate them in reality. Besides, the convenience of
the software allows us to modify the road conditions quickly, allowing a much more comprehensive
range of tests when obtaining valid information. Finally, the use of simulation software guarantees the
reproducibility of the tests. Trucksim R© requires to model the vehicle dynamics before simulating it.

In this work, authors considered employing a van, as this type of vehicle has, on average, a higher
center of gravity, which makes them more prone to loose lateral stability. The maneuvers simulated in
the software are common ones in the experimentation of vehicle dynamics. Double lane change (DLC),
Figure 7, JTurn (JT), both dextro-rotatory and levorotatory, Figure 8, and sine steering maneuvers
have been used for the training of the proposed learning-based DNN. Each of the maneuvers has
been performed in a range from 20 km/h to 120 km/h. Those tests in which the van virtually did
not maintain stability have been discarded since the data is no longer valid for network training.
Table 1 shows a summary of the data set used for the training and test of the DNN. More than
400,000 entries were used considering a training-testing ratio of 70:30.
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Figure 6. Real Mercedes Sprinter van and instruments setup.

Figure 7. Simulated scenario for a Double Lane Change (DLC) maneuver in Trucksim R©.

Figure 8. Simulated scenario por a Left J-turn maneuver in Trucksim R©.



Sensors 2020, 20, 3679 9 of 18

Table 1. Training DNN data sets (Trucksim R©).

Road Friction
Coefficient Maneuver Speed (km/h) Steering Angle (deg)

0.3 Left DLC 20, 30, 40, 50, 60, 70 -

0.5 Left DLC 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 -

1 Left DLC 20, 30, 50, 60, 70, 80, 90, 100, 110, 120 -

0.3 Right DLC 20, 30, 40, 50, 60, 70

0.5 Right DLC 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 -

1 Right DLC 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 -

0.3 Left J-Turn
20, 30, 40, 50, 60, 70, 80, 90, 100, 110 40, 60, 90, 100, 1200.5 and

1 Right J-turn

0.5, 0.85 Sine steering 30 to 60 km/h in 30 s ±60 (0.2 Hz, 0.5 Hz)

0.5, 0.85 Sine steering 30 to 60 km/h in 30 s ±90 (0.2 Hz, 0.5 Hz)

The data from Trucksim R© van physic model simulated driving maneuvers are stored in a CSV
file (Comma Separated Values) format. Working directly with a CSV file in Python is not as efficient
as using other formats such as Pandas DataFrames [36] or NumPy matrices [35], which also support
vectorized operations and broadcasting.

A remarkable characteristic of Deep Neural Networks is that given enough data corresponding to
training examples—the structured set of inputs and expected outputs; they are accurate at figuring
out the functions that accurately map from inputs to expected results. In the specific case of this
work, the training examples contained more than 400,000 entries, which led to an efficient and
accurate predictor.

The first step taken was to convert the heterogeneous data sets from CSV into a combined and
structured data set. HDF5 [42] format was used, as it is high-performance data management and
storage suite that can be applied to manage, process, and store heterogeneous data. HDF5 also allows
a fast I/O processing that provides fast access times and storage space optimizations, and portable
storage within a self-describing file format. Besides, all data and metadata can be passed along in one
file (a useful feature to preserve the data set headers, in the same way as in CSV) and without a limit
on the number or size of data objects in the collection, giving great flexibility for big data. Even more,
it comes as a multi-platform software library that implements a high-level API with interfaces in
multiple programming languages such as Python. Before converting CSV files into HDF5 collections,
they had to be parsed by a Python script explicitly made for this task. This script is not just cleaning
the files discarding not used variables, but also is in charge of shuffling and splitting the Trucksim R©

data set into training and testing subsets.
There are as many rows as variables to learn from, and as many columns as training examples.

Analogously, as many rows as expected values (two, sideslip and roll angles), and as many columns as
input training examples. The testing and validation phases use the corresponding data sets stored
as collections in the aforementioned HDF5 file. Finally, the trained DNN weights are also stored in
a specific HDF5 file produced by Keras, which later can be loaded to perform further predictions.

4. Results and Discussion

In this section, simulation results from the learned DNN estimator using the training dataset
depicted in Table 1, are firstly presented. Secondly, the proposed estimator is experimentally validated
using a real van. Figure 9 shows the comparison between the roll and sideslip angles obtained by
Trucksim R©with those estimated by the proposed DNN for all maneuvers used during the training.
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The regression plots’ examination reveals that the proposed DNN learns reasonably good for all data
sets, with R values close to 0.999.
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Figure 9. Comparison between measured data from the TruckSim R© van model and the estimated data
from DNN.

In addition to the graphical evidence of the effectiveness of the proposed DNN, a quantitative
study bears in mind the RMS (Root Mean Square), maximum, and norm errors that have been
calculated (Table 2). The norm error is obtained from the following equation [41]:

Et =
εt

σt
(11)

where

ε2
t =

∫ T

0
(λmeasured − λestimated)

2dt

σ2
t =

∫ T

0
(λmeasured − µmeasured)

2dt

λmeasured and λestimated are the measured and estimated roll and sideslip angles, respectively,
and µmeasured is the mean value of the roll and sideslip angles obtained from trucksim R© during
the period T.

Table 2. Error measurements for the training and test dataset.

Trucksim R© van Model

Roll Angle Slip Angle

RMSE [◦] 0.018 0.033

Emax [◦] 1.05 1.39

Et [-] 8.11 × 10−5 3.83 × 10−4

To corroborate the proposed estimator’s good performance, a new dataset has been selected
for validation. This dataset consists of a handling sine sweep maneuver with a steering wheel
angle ranging from ±90◦ to ±10◦ and a frequency from 0.5 to 0.2 Hz with a friction coefficient of
0.85. The vehicle moves at a velocity of 40 km/h. The simulation results are depicted in Figure 10.
Table 3 shows the RMS, maximum and norm errors. Results show that the proposed DNN model
performs quite well.
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Figure 10. Simulation results for the validation test.
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Table 3. Error measurements for validation datasets.

Trucksim R© van Model Real van

Roll Angle Slip Angle Roll Angle Slip Angle

RMSE [◦] 0.018 0.024 1.19 1.40

Emax [◦] 0.11 0.094 3.5 6.36

Et [-] 0.017 0.040 1.14 0.48

Once the proposed estimator has been trained and validated from Trucksim R© van model, the real
Mercedes Sprinter van (see Figure 6) has been used for its experimental validation. The studied
test-bed van is composed of different experimental kits:

1. Vbox 3i dual antenna data logger from Racelogic.
2. An IMU (Inertial Measurement Unit) sensor from Racelogic mounted near the center of gravity

(COG) of the vehicle to provide measurements of the roll and yaw rates and longitudinal and
lateral accelerations.

3. Two GPS antennas from Racelogic to provide measurements of the roll and sideslip angles
(Ground Truth). The dual antennas must be positioned transverse to the direction of movement
to precisely determine the roll angle.

4. Steering angle sensor MSW 250 Nm from Kistler.

The experimental scenario and the real maneuvers performed by the van are depicted in Figure 11.
The van’s sequence of maneuvers is a straight line during the first 20 s, J-Turn maneuvers in the
roundabouts and slalom maneuvers on the straight sections of the road. The van speed profile is
shown in Figure 12.

Figure 11. Experimental scenario for the validation test.

The results are depicted in Figure 12. Table 3 shows RMS, maximum, and norm errors for both roll
and sideslip angle predictors using the validation data set from real maneuvers logged with a Racelogic
VBOX IMU. As can be seen, the trained DNN behaves slightly better, estimating the roll angles than
the sideslip angles. For a better estimation, different filters such as Kalman filter [17,41] and H∞ [18]
can be used as it has been done in previous works, to filter noise and minimize the errors’ estimation.
One of the primary sources of error in the proposed DNN is that road irregularities and road banks
have not been considered. Although these disturbances have not been taken into account, the obtained
errors in the estimation of the roll and sideslip angles are deemed acceptable. These disruptions could
be estimated by designing more complex observers [43,44]. Nevertheless, this involves installing more
sensors on the vehicle, increasing its cost, and the overall computing time.
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Figure 12. Experimental results for the validation test.
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Finally, a comparison with other methods previously proposed for the estimation of roll and
sideslip angles has been made (see Table 4). These methods do not estimate both angles jointly in
contrast to the proposed method. Considering the roll angle estimation, the van used was the same
as in Boada et al. [18]. As is depicted in Table 4, the proposed method achieves better results both in
maximum and norm errors. On the other hand, if the sideslip angle is taking into account, the method
proposed shows better simulation results than the method proposed by Kim et al. [27] as is reported
in Table 3. Regarding experimental results, although the RMS and maximum errors obtained in [27]
are smaller, it should be noted that the type of vehicle used to carry out the essays is different. The van
used in this work is characterized by a high CoG (Center of Gravity), and it is equipped with a soft
suspension which involves a more significant chassis movement, thereby affecting the longitudinal
and lateral load transfer and the vehicle’s dynamic.

Table 4. Comparison with other methods for roll and sideslip angles estimation.

Roll Angle Sideslip Angle

Boada et al. [18] Kim et al. [27]

Type of Test Experimental Simulation Experimental

Errors
RMSE [◦] - 0.14–0.96 0.12–0.19

Emax [◦] 5.5 0.92–3.84 0.75–1.92

Et [-] 1.95 - -

Type of vehicle van sedan

Type of NN MLP LSTM + deep ensemble

Considering the size of training data (more than 400 K elements), and the DNN width and depth,
each training block took initially around 40 min. After including Keras in the training code, this time
was reduced to one fourth. The implemented DNN uses vectorization and efficient matrix handling
libraries, such as NumPy, which made this process faster. With other configurations, including
more profound and broader networks, the times varied, requiring initial and sometimes more than
seven hours per training process. Regarding the predictions, in the same type of computer, processing
70 K elements take around 3 s. This model has to be tested in small embedded systems, such as
the Raspberry Pi 4 Model B+ prototyping boards, to assess that predictions are provided at least at
a sustained rate of 50 Hz (20 ms). This real-time constraint must be satisfied with safety systems.
The performance results from different studies, where the authors used the previous Raspberry Pi
3 Model B+ to run deep learning models [45–47] in Keras and TensorFlow, and all of them heavier
than the one presented in this work, show that the average time for evaluating an input is ranged
from 0.001 s to 0.12 s. Given that the projected hardware to be used is the Raspberry Pi 4 Model B+,
which has been proved to perform more than four times better than the former model [48], it seems
feasible that the system will satisfy the real-time constraint mentioned before.

5. Conclusions

The main objective behind this work was to define a proper Deep Learning approach to
simultaneously estimate sideslip and roll angles in commercial vehicles by capturing the required
input values via a set of sensors such as IMU and steering angle sensor. Specifically: longitudinal
acceleration, lateral acceleration, roll rate, yaw rate, and the steering angle. The DNN configuration was
designed trying to minimize the impact in processing the outcomes; this is, looking for a compromise
between width, depth, and prediction quality after considering the hardware restrictions and limited
performance of vehicular embedded systems. Besides, the proposed DNN does not use previous
information from the sensors but only the one that is provided at that step of time, so that there are
no stability problems associated with an accumulated error. Several configurations were trained and



Sensors 2020, 20, 3679 15 of 18

tested, altering both the network shape and the hyperparameters set. The validation was conducted in
two phases, the first one, using a subset of the outcome data from Trucksim R©, a well known vehicular
simulator, that was used to model the physics of a real vehicle (van), and to use that van in a series
of simulations consisting of performing different driving maneuvers. In the second validation phase,
and after passing the quality check by analyzing the predictor errors against the test data subset,
the model was assessed against the data captured by a ground truth device, specifically a Racelogic
VBOX IMU, used in real driving maneuvers with a similar van such as the one modeled in Trucksim R©.
Finally, errors against this real data were also analyzed to check if the predictor is suitable for being
used in real vehicles, which seems to be the case.

Future Work

Considering the outstanding predictions returned by the implemented DNN model, it is planned
to integrate it into an enhanced version of the IoT architecture proposed in previous works. It is
composed of a Raspberry Pi 4 Model B+ (4 GB), a BNO55 IMU Shield, the Racelogic VBOX used in
this study, a laptop, and a 4G mobile hotspot device to provide connectivity among the prototyping
board (RPi4) device and the laptop. At the same time, this IoT ecosystem will be integrated into
two different testing vehicles (the Mercedes Sprinter van used to capture the validation data in this
work, and a buggy). The objective of this new experiment is to validate both the roll and sideslip angles
predicted in real-time, comparing the results with the ground truth device (Racelogic VBOX). On the
other hand, there are also research efforts put on improving the values of the hyperparameters, and the
DNN structure/combination of activation functions in the inner hidden layers, trying to increase even
more the outcome precision and reducing the computational cost to make it perfectly suitable for its
integration into ultra-low-cost embedded systems.

Author Contributions: Conceptualization, L.P.G., S.S.S., J.G.-G., M.J.L.B. and B.L.B.; Data curation, S.S.S.; Funding
acquisition, M.J.L.B. and B.L.B.; Investigation, L.P.G., S.S.S. and M.J.L.B.; Methodology, L.P.G., S.S.S., J.G.-G.,
M.J.L.B. and B.L.B.; Software, L.P.G. and M.J.L.B.; Supervision, M.J.L.B.; Validation, L.P.G., J.G.-G., M.J.L.B. and
B.L.B.; Writing—original draft, L.P.G., S.S.S. and J.G.-G.; Writing—review and editing, L.P.G., S.S.S., M.J.L.B. and
B.L.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Agencia Estatal de Investigacion (EAI) of the Ministry of Science and
Innovation of the Government of Spain through the project RTI2018-095143-B-C21.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ABS Anti-Blocking System
ANN Artificial Neural Network
CoG Center of Gravity
DNN Deep Neural Network
ESC Electronic Stability Controllers
GPS Global Positioning System
IMU Inertial Measurement Unit
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
MSE Mean Squared Error
NLP Natural Language Processing
RMSE Root-Mean-Square Error
RNN Recurrent Neural Networks



Sensors 2020, 20, 3679 16 of 18

References

1. World Health Organization. Global Status Report on Road Safety 2018: Summary. Technical Documents; WHO:
Geneva, Switzerland, 2018. Available online: https://apps.who.int/iris/handle/10665/277370 (accessed on
29 June 2020).

2. Saleh, L.; Chevrel, P.; Claveau, F.; Lafay, J.; Mars, F. Shared Steering Control Between a Driver and
an Automation: Stability in the Presence of Driver Behavior Uncertainty. IEEE Trans. Intell. Transp. Syst.
2013 14, 974–983. [CrossRef]

3. Xiong, L.; Xia, X.; Lu, Y.; Liu, W.; Gao, L.; Song, S.; Han, Y.; Yu, Z. IMU-Based Automated Vehicle Slip Angle
and Attitude Estimation Aided by Vehicle Dynamics. Sensors 2019, 19, 1930. [CrossRef] [PubMed]

4. Guzman, J.G.; Gonzalez, L.P.; Redondo, J.P.; Sanchez, S.S.; Boada, B.L. Design of Low-Cost Vehicle Roll Angle
Estimator Based on Kalman Filters and an IoT Architecture. Sensors 2018, 18, 1800. [CrossRef] [PubMed]

5. Chindamo, D.; Lenzo, B.; Gadola, M. On the vehicle sideslip angle estimation: A literature review of
methods, models, and innovations. Appl. Sci. 2018, 8, 355. [CrossRef]

6. Guo, H.; Cao, D.; Chen, H.; Lv, C.; Wang, H.; Yang, S. Vehicle dynamic state estimation: State of the art
schemes and perspectives. IEEE/CAA J. Autom. Sin. 2018, 5, 418–431. [CrossRef]

7. Nam, K.; Oh, S.; Fujimoto, H.; Hori, Y. Estimation of sideslip and roll angles of electric vehicles using lateral
tire force sensors through RLS and Kalman filter approaches. IEEE Trans. Ind. Electron. 2012, 60, 988–1000.
[CrossRef]

8. Jin, X.; Yin, G.; Chen, N. Advanced Estimation Techniques for Vehicle System Dynamic State: A Survey.
Sensors 2019, 19, 4289. [CrossRef]

9. Chen, B.C.; Hsieh, F.C. Sideslip angle estimation using extended Kalman filter. Veh. Syst. Dyn. 2008,
46, 353–364. [CrossRef]

10. Li, L.; Jia, G.; Ran, X.; Song, J.; Wu, K. A variable structure extended Kalman filter for vehicle sideslip angle
estimation on a low friction road. Veh. Syst. Dyn. 2014, 52, 280–308. [CrossRef]

11. Liu, Y.H.; Li, T.; Yang, Y.Y.; Ji, X.W.; Wu, J. Estimation of tire-road friction coefficient based on combined
APF-IEKF and iteration algorithm. Mech. Syst. Sig. Process. 2017, 88, 25–35. [CrossRef]

12. Rath, J.J.; Veluvolu, K.C.; Defoort, M.; Soh, Y.C. Higher-order sliding mode observer for estimation of tyre
friction in ground vehicles. IET Control Theory Appl. 2014, 8, 399–408. [CrossRef]

13. Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E. Design and testing of an innovative
measurement device for tyre–road contact forces. Mech. Syst. Sig. Process. 2011, 25, 1956–1972. [CrossRef]

14. Zhang, C.; Chen, Q.; Qiu, J. Robust H∞ filtering for vehicle sideslip angle estimation with sampled-data
measurements. Trans. Inst. Meas. Control 2019, 39, 1059–1070. [CrossRef]

15. Zhang, H.; Huang, X.; Wang, J.; Karimi, H.R. Robust energy-to-peak sideslip angle estimation with
applications to ground vehicles. Mechatronics 2015, 30, 338–347. [CrossRef]

16. Zhao, L.; Liu, Z. Vehicle Velocity and Roll Angle Estimation with Road and Friction Adaptation for
Four-Wheel Independent Drive Electric Vehicle. Math. Prob. Eng. 2014. [CrossRef]

17. Boada, B.; Boada, M.; Diaz, V. Vehicle sideslip angle measurement based on sensor data fusion using an
integrated ANFIS and an Unscented Kalman Filter algorithm. Mech. Syst. Sig. Process. 2016, 72–73, 832–845.
[CrossRef]

18. Boada, B.; Boada, M.; Vargas-Melendez, L.; Diaz, V. A robust observer based onH∞ filtering with parameter
uncertainties combined with Neural Networks for estimation of vehicle roll angle. Mech. Syst. Sig. Process.
2018, 99, 611–623. [CrossRef]

19. Kuutti, S.; Bowden, R.; Jin, Y.; Barber, P.; Fallah, S. A Survey of Deep Learning Applications to Autonomous
Vehicle Control. IEEE Trans. Intell. Transp. Syst. 2020, 1–22. [CrossRef]

20. Park, S.H.; Kim, B.; Kang, C.M.; Chung, C.C.; Choi, J.W. Sequence-to-sequence prediction of vehicle trajectory
via LSTM encoder-decoder architecture. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium
(IV), Changshu, China, 26–30 June 2018; pp. 1672–1678.

21. Moujahid, A.; Tantaoui, M.E.; Hina, M.D.; Soukane, A.; Ortalda, A.; ElKhadimi, A.; Ramdane-Cherif, A.
Machine Learning Techniques in ADAS: A Review. In Proceedings of the 2018 International Conference on
Advances in Computing and Communication Engineering (ICACCE), Paris, France, 22–23 June 2018.

https://apps.who.int/iris/handle/10665/277370
http://dx.doi.org/10.1109/TITS.2013.2248363
http://dx.doi.org/10.3390/s19081930
http://www.ncbi.nlm.nih.gov/pubmed/31022929
http://dx.doi.org/10.3390/s18061800
http://www.ncbi.nlm.nih.gov/pubmed/29865271
http://dx.doi.org/10.3390/app8030355
http://dx.doi.org/10.1109/JAS.2017.7510811
http://dx.doi.org/10.1109/TIE.2012.2188874
http://dx.doi.org/10.3390/s19194289
http://dx.doi.org/10.1080/00423110801958550
http://dx.doi.org/10.1080/00423114.2013.877148
http://dx.doi.org/10.1016/j.ymssp.2016.07.024
http://dx.doi.org/10.1049/iet-cta.2013.0593
http://dx.doi.org/10.1016/j.ymssp.2011.02.021
http://dx.doi.org/10.1177/0142331215627001
http://dx.doi.org/10.1016/j.mechatronics.2014.08.003
http://dx.doi.org/10.1155/2014/801628
http://dx.doi.org/10.1016/j.ymssp.2015.11.003
http://dx.doi.org/10.1016/j.ymssp.2017.06.044
http://dx.doi.org/10.1109/TITS.2019.2962338


Sensors 2020, 20, 3679 17 of 18

22. Huval, B.; Wang, T.; Tandon, S.; Kiske, J.; Song, W.; Pazhayampallil, J.; Andriluka, M.; Rajpurkar, P.;
Migimatsu, T.; Cheng-Yue, R.; et al. An Empirical Evaluation of Deep Learning on Highway Driving. arXiv
2015, arXiv:1504.01716.

23. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: London, UK, 2017; Available online:
http://www.deeplearningbook.org (accessed on 29 June 2020).

24. Marina, L.A.; Trasnea, B.; Grigorescu, S.M. A Multi-Platform Framework for Artificial Intelligence Engines in
Automotive Systems. In Proceedings of the 2018 22nd International Conference on System Theory, Control
and Computing (ICSTCC), Sinaia, Romania, 10–12 October 2018.

25. Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series
with missing values. Sci. Rep. 2018, 8, 6085. [CrossRef]

26. Singh, J. Real world applications of neural networks in natural language processing. Int. J. Recent Trends
Eng. Res. 2018, 4, 61–63.

27. Kim, D.; Min, K.; Kim, H.; Huh, K. Vehicle sideslip angle estimation using deep ensemble-based adaptive
Kalman filter. Mech. Syst. Sig. Process. 2020, 144, 106862. [CrossRef]

28. Zia, T.; Zahid, U. Long short-term memory recurrent neural network architectures for Urdu acoustic
modeling. Int. J. Speech Technol. 2019, 22, 21–30. [CrossRef]

29. Wang, P.; Qian, Y.; Soong, F.K.; He, L.; Zhao, H. Part-of-speech tagging with bidirectional long short-term
memory recurrent neural network. arXiv 2015, arXiv:1510.06168.

30. Sak, H.; Senior, A.; Beaufays, F. Long short-term memory recurrent neural network architectures for large
scale acoustic modeling. In Proceedings of the Fifteenth Annual Conference of the International Speech
Communication Association, Singapore, 14–18 September 2014.

31. Hendry and Chen, R.C.; Using Deep Learning to Predict User Rating on Imbalance Classification Data.
IAENG Int. J. Comput. Sci. 2019, 46, 109–117.

32. Fooshee, D.; Mood, A.; Gutman, E.; Tavakoli, M.; Urban, G.; Liu, F.; Huynh, N.; Van Vranken, D.; Baldi, P.
Deep learning for chemical reaction prediction. Mol. Syst. Des. Eng. 2018, 3, 442–452. [CrossRef]

33. Frank, L.R.; Ferreira, Y.M.; Julio, E.P.; Ferreira, F.H.C.; Dembogurski, B.J.; Silva, E.F. Multilayer Perceptron
and Particle Swarm Optimization Applied to Traffic Flow Prediction on Smart Cities. In Proceedings of the
International Conference on Computational Science and Its Applications, Saint Petersburg, Russia, 1–4 July
2019; pp. 35–47.

34. Python Software Foundation. Python Language Reference. Version 3.7.4. Available online: https://docs.
python.org/3/reference/ (accessed on 29 June 2020).

35. Oliphant, T.E. A Guide to NumPy; Trelgol Publishing: North Charleston, SC, USA, 2006, Volume 1.
36. McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in

Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56.
37. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90. [CrossRef]
38. Keras. Available online: https://keras.io (accessed on 21 June 2020.)
39. Merkel, D. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux

J. 2014. Available online: https://www.linuxjournal.com/content/docker-lightweight-linux-containers-
consistent-development-and-deployment (accessed on 29 June 2020.)

40. González, L.P. Hacia una Representación del Conocimiento Basada en la Percepción. Ph.D. Thesis, Computer
Science and Technology Department, Universidad Carlos III de Madrid, Madrid, Spain, 2017. Available
online: https://e-archivo.uc3m.es/handle/10016/24810 (accessed on 29 June 2020.)

41. Vargas-Meléndez, L.; Boada, B.L.; Boada, M.J.L.; Gauchía, A.; Díaz, V. A Sensor Fusion Method Based on
an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation. Sensors 2016, 16, 1400.
[CrossRef]

42. The HDF Group. Hierarchical Data Format Version 5. Available online: http://www.hdfgroup.org/HDF5
(accessed on 21 June 2020).

43. Boada, B.L.; Garcia-Pozuelo, D.; Boada, M.J.L.; Diaz, V. A Constrained Dual Kalman Filter Based on
pdf Truncation for Estimation of Vehicle Parameters and Road Bank Angle: Analysis and Experimental
Validation. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1006–1016. [CrossRef]

44. Boada, B.L.; Boada, M.J.L.; Zhang, H. Sensor Fusion Based on a Dual Kalman Filter for Estimation of Road
Irregularities and Vehicle Mass Under Static and Dynamic Conditions. IEEE/ASME Trans. Mechatron. 2019,
24, 1075–1086. [CrossRef]

http://www.deeplearningbook.org
http://dx.doi.org/10.1038/s41598-018-24271-9
http://dx.doi.org/10.1016/j.ymssp.2020.106862
http://dx.doi.org/10.1007/s10772-018-09573-7
http://dx.doi.org/10.1039/C7ME00107J
https://docs.python.org/3/reference/
https://docs.python.org/3/reference/
http://dx.doi.org/10.1109/MCSE.2007.55
https://keras.io
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://e-archivo.uc3m.es/handle/10016/24810
http://dx.doi.org/10.3390/s16091400
http://www.hdfgroup.org/HDF5
http://dx.doi.org/10.1109/TITS.2016.2594217
http://dx.doi.org/10.1109/TMECH.2019.2909977


Sensors 2020, 20, 3679 18 of 18

45. Shiddieqy, H.A.; Hariadi, F.I.; Adiono, T. Implementation of deep-learning based image classification on
single board computer. In Proceedings of the 2017 International Symposium on Electronics and Smart
Devices (ISESD), Yogyakarta, Indonesia, 17–19 October 2017; pp. 133–137.

46. Morehead, A.; Ogden, L.; Magee, G.; Hosler, R.; White, B.; Mohler, G. Low Cost Gunshot Detection using
Deep Learning on the Raspberry Pi. In Proceedings of the 2019 IEEE International Conference on Big Data
(Big Data), Los Angeles, CA, USA, 12–19 December 2019; pp. 3038–3044.

47. Curtin, B.H.; Matthews, S.J. Deep Learning for Inexpensive Image Classification of Wildlife on the
Raspberry Pi. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), Vancouver, BC, Canada, 17–19 October 2019; pp. 82–87.

48. Larabel, M. Initial Raspberry Pi 4 Performance Benchmarks—Phoronix, 2019. Available online: https:
//www.phoronix.com/scan.php?page=article&item=raspberry-pi4-benchmarks&num=5 (accessed on 29
June 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.phoronix.com/scan.php?page=article&item=raspberry-pi4-benchmarks&num=5
https://www.phoronix.com/scan.php?page=article&item=raspberry-pi4-benchmarks&num=5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	General Scheme
	Deep Learning Model to Accurately Predict Roll and Sideslip Angles
	Model Dissemination and Extension


	Datasets
	Results and Discussion
	Conclusions
	References

