

Sensors 2020, 20, 3627; doi:10.3390/s20133627 www.mdpi.com/journal/sensors

Article

JLVEA: Lightweight Real-Time Video Stream
Encryption Algorithm for Internet of Things
Junhyeok Yun and Mihui Kim *

School of Computer Engineering & Applied Mathematics, Computer System Institute, Hankyong National
University, Jungang-ro, Anseong-si, Gyeonggi-do 17579, Korea; junhyeok2723@hknu.ac.kr
* Correspondence: mhkim@hknu.ac.kr; Tel.: +82-31-670-5167

Received: 30 May 2020; Accepted: 26 June 2020; Published: 28 June 2020

Abstract: Along with the recent growth of Internet of Things (IoT) security camera market, there
have been a number of personal information leakage incidents from security attacks targeting such
cameras. Therefore, a permutation-based video encryption algorithm was proposed to secure video
streams in low-performance processors such as IoT security cameras. However, existing
permutation-based video encryption algorithms are vulnerable to known-plaintext attacks since
they use the same permutation list for every frame. Moreover, situation deduction based on the
color composition is possible. In this paper, we propose a new permutation-based video encryption
algorithm that updates the permutation list for every frame using a crypto secure pseudo-random
number generator without significantly increasing memory usage. By doing so, the algorithm
becomes robust to known-plaintext attacks, which has been a common problem with existing
permutation-based video encryption algorithms. In addition, color channel separation can prevent
attackers from deducing situations through color composition. Pre-compression encryption is
applied to make the algorithm robust to data loss because of packet loss. We implement the
proposed algorithm and conduct an experiment to show its performance in terms of probability of
data loss because of packet loss, encryption speed, and memory usage.

Keywords: security; privacy; IoT; video encryption; lightweight encryption

1. Introduction

Internet of Things (IoT) security camera is a type of IoT sensor device that captures video from a
place in need of surveillance and streams it to outside users in real time [1]. Since an IoT security
camera always captures video, the risk of personal information leakage is high [2]. Recently, the
number of personal information leakage incidents from security attacks to IoT security cameras has
increased. Thus, IoT security cameras should include a security mechanism to block access from
unauthorized entities. Access control mechanisms [3,4] and video stream encryption algorithms [5,6]
have been proposed to keep the video stream safe from an attack. Access control mechanisms can
block an attack with a small processing overhead [7]. However, it requires continuous management
by users, such as a changing password or access control list management. Additionally, it is
vulnerable to sniffing attacks [8]. Therefore, a video stream protection mechanism through video
stream encryption has been proposed [9]. The video stream encryption algorithms for an IoT
security camera should satisfy its real-time requirements.

IoT security cameras use a low-power processor because they should always be activated [10].
The low-power processor generally has a lower performance than standard computer processors [11].
Existing block cipher algorithms (e.g., advanced encryption standard (AES) [12] and SEED [13]) are
designed for text data encryption. However, video stream data is generally larger in size than text
data. Video stream encryption using block cipher algorithms cause high processing overhead. Thus,

Sensors 2020, 20, 3627 2 of 14

block-structured encryption algorithms are not appropriate for encrypting video streams on an IoT
security camera that includes a low-power processor. High processing overhead causes delays in the
video stream, and repetitive delays prevent a user from accessing the video stream in real-time.

To solve the massive processing overhead problem of video stream encryption using a block
cipher algorithm, Liu and Koenig [14] proposed a permutation-based video encryption algorithm.
This algorithm encrypts a video frame by permutating one specific part with another specific part in
the frame. This algorithm can encrypt a video stream with 93.75% lesser processing overhead than
AES. Thus, the permutation-based video encryption algorithm is appropriate for encrypting the
video stream from IoT security cameras. However, this algorithm is vulnerable to known-plaintext
attacks since it uses the same permutation list for every frame of the video stream, and attackers can
partly recover original frame data using file structures such as a header marker or end-of-file (EOF)
marker, as the algorithm encrypts the video stream after compression. Moreover, if the critical file
structure such as a header marker or EOF marker is lost because of packet loss while real-time
streaming, the user cannot receive the complete frame data. Sultana and Shubhangi [15] proposed a
permutation-based video encryption algorithm based on the faro shuffle algorithm. This algorithm
is robust to a file structure inference attack since it encrypts the video stream before compression.
However, it is also vulnerable to known-plaintext attacks since it uses the same permutation list for
every frame. Moreover, it is vulnerable to brute-force attacks since the complexity of the faro shuffle
algorithm is low.

In this paper, we propose an improved permutation-based video encryption algorithm that has
low processing overhead and high security. To avoid a known-plaintext attack, which is a common
problem with permutation-based video encryption algorithms, the proposed algorithm updates the
permutation list for each frame using crypto secure pseudo-random number generator (CSPRNG).
In addition, the proposed algorithm improves security through separate color channels.

2. Related Work

2.1. Block Cipher-based Video Encryption

Block cipher-based video encryption algorithms that work on lightweight protocols (i.e., user
datagram protocol (UDP) and constrained application protocol (CoAP) [16]) have been suggested
for real-time video stream encryption on low-performance devices. The datagram transport layer
security (DTLS) algorithm is an UDP-based lightweight video stream encryption algorithm (see
Figure 1) [17]. On server, the encoder compresses the video stream with the H.264-based real-time
messaging protocol (RTMP) [18] and sends it to the DTLS feeder. The DTLS feeder then encrypts the
video stream with an AES256 encryption algorithm and transfers it to the client. On client, a DTLS
broadcaster decrypts the received video stream. However, DTLS also has a high processing
overhead on low-performance processors because it uses the AES256 block cipher algorithm. Thus,
DTLS is not appropriate for real-time video stream encryption on IoT security cameras.

Figure 1. Datagram transport layer security (DTLS) encryption flow.

To address the processing overhead problem, a hardware-based AES encryption mechanism
has been proposed in [19]. Here, an AES-specialized hardware chipset conducts the encryption in
various steps. Hardware-based AES encryption can address processing overhead problems on a
lightweight processor. However, it has low versatility and requires additional cost. To solve the
problems of block cipher-based video stream encryption algorithms, a permutation-based video

Sensors 2020, 20, 3627 3 of 14

encryption algorithm, which encrypts video stream only using the information inside the frame, is
proposed.

2.2. Permutation-based Video Encryption

A permutation-based video encryption algorithm encrypts video by permutating a specific part
in the frame with another specific part. Video frame data includes a significant amount of pixel
information. Thus, recovering the original location of all pixels is almost impossible. For full high
definition (FHD) resolution, which is mostly adopted for multimedia contents, a frame includes 1920 1080 2,073,600 pixels. In this instance, a malicious attacker must rearrange and review
2,073,600 frames to find the original frame using a brute-force attack. Thus, brute-force attack on a
permutated frame without the permutation list is practically impossible.

The encryption speed of permutation-based video encryption is much faster than the block
cipher-based encryption. Generally, the size of video data is significantly larger than text data. Block
cipher-based encryption brings high overhead since it performs an operation at the same part of data
repeatedly. Thus, adopting block cipher-based video encryption on real-time video streaming is
practically impossible. Permutation-based video encryption algorithms do not perform permutation
at the same part of data repeatedly. Thus, it can encrypt video with lower overhead than block
cipher-based video encryption.

The position of the encryption algorithm classifies the permutation-based video encryption
algorithms (see Figure 2). A video codec compresses the original video stream. Permutation-based
video encryption algorithms can be classified as pre-compression, while-compression, and
post-compression.

Figure 2. Classification of permutation-based video encryption algorithms.

Liu and Koenig [14], Sultana and Shubhangi [15], and Akhter et al. [20] are previously proposed
permutation-based video encryption algorithms (see Table 1). The while-compression encryption
algorithm by Akhter et al. performs encryption simultaneously with the moving picture experts group
(MPEG) video compression [20]. This algorithm encrypts the video before entropy coding and after
discrete cosine transform (DCT) conversion. By doing so, it can reduce encryption time and
minimize the size of final cryptographic videos. When the DCT conversion is complete, the
high-frequency components within the video frame are removed. Thus, this algorithm is
advantageous in terms of encryption speed and the size of the cryptographic video is smaller than
the original video. However, it has to use a special codec that includes encryption algorithms, and is
not compatible with other video formats except MPEG. Moreover, it is vulnerable to
known-plaintext attacks using the same permutation list for all frames in the video.

Sensors 2020, 20, 3627 4 of 14

Table 1. Permutation-based video encryption algorithms.

 Liu and Koenig [14] Sultana and Shubhangi [15] Akhter et al. [20]
Encryption

Position Post-compression Pre-compression While-compression

Weakness

File internal
information-based

Inference, Streaming
Overhead

Permutation list brute-force,
Known-plaintext attack

Can adapt to MPEG
only, Known-plaintext

attack

Key Exchange Each frame Once Once
Video Format

Generality Yes Yes No

The algorithm proposed by Liu and Koenig is a post-compression encryption algorithm that
separates a compressed video frame into blocks of a specific size, and then permutates them to
encrypt videos [14]. Since the compressed video has a smaller size than the original video, the size of
the final cryptographic video can also be reduced. However, the attacker can restore the original
frame data using file structures such as header markers, an EOF marker, and Huffman tables.
Moreover, if some permutation list is missing during the decryption, the critical file structure may be
lost. In this case, the client cannot even obtain a portion of the original frame data that has not been
lost. This algorithm divides the compressed frame data into 256 same-sized blocks and permutates
them according to the permutation list for encrypting the video frames. However, it is vulnerable to
known-plaintext attacks as it uses the same permutation list for all frames in the video. In order to
counter known-plaintext attacks, a method for creating and using different permutation lists for
each frame was proposed. However, it is unsuitable for real-time streaming because of the high
processing overhead of key exchange and permutation list generation.

The algorithm proposed by Sultana and Shubhangi [15] is a pre-compression encryption
algorithm. Although pre-compression encryptions are less effective and result in large sized final
cryptographic frames by including high-frequency components in the original frame, it is impossible
to deduce the original video frame data based on the file structure such as the header marker and
EOF marker. Moreover, even if some data goes missing during the transmission, the content of the
video frame can still be verified except for the missing parts. Since this algorithm is designed to
repeat the faro shuffle and frame rotation several times instead of generating a random permutation
list, it is relatively easy to restore the original frame data through brute-force attacks.

In this paper, while maintaining the efficiency of existing permutation-based algorithms, we
propose a robust permutation-based video encryption algorithm for known-plaintext attacks, which
is a common vulnerability of such algorithms. CSPRNG is used to update the permutation lists for
each video frame. Instead of generating a permutation list for each frame, the random values
generated by CSPRNG are added to the permutation list used in the previous frame. Accordingly,
we can solve the problem of key exchanging and permutation list generating overhead, a weakness
in Liu and Koenig’s algorithm [14]. In addition, by performing permutation for each color channel
following color channel separation, non-recognition of shape elements and color elements can be
simultaneously satisfied. Making color elements unrecognizable can lead to a higher security than
the previously proposed permutation-based video encryption algorithms, which only make the
shape elements unrecognizable.

3. Proposed Algorithm

The proposed algorithm was based on the permutation-based video encryption mechanism; it
included a permutation list management module to resolve the vulnerabilities of the previously
proposed permutation-based video encryption algorithms, and a video processing module to improve
security. The permutation list management module stores and updates the permutation list for each
frame using CSPRNG. The image processing module performs the permutation on the video frame,

Sensors 2020, 20, 3627 5 of 14

including color channel permutation and pixel permutation, using the permutation list. The
communication module performs the seed exchange and the cryptographic video frame exchange.

3.1. Encryption Module Structure

The jumble lightweight video encryption algorithm (JLVEA) encryption module includes a
seed management module, a permutation list management module, an image processing module,
and a communication module (see Figure 3). The seed management module generates and stores a
seed for permutation lists generation. The seed is a 128-bit integer value, which takes about 5849 years
in a computing environment with 1 tera floating point operations per second (TFLOPS) to deduce by a
brute-force attack. The seed value directly affects the permutation lists generation. Thus, it must be
kept safe after the exchange. All access attempts by external entities without the permutation list
management module is restricted. For a more robust seed protection, seed management modules can
be located in physically isolated environments, such as trusted platform modules (TPMs) [21]. The
permutation list management module generates the permutation list using CSPRNG and the seed. The
generated permutation list is stored within the permutation list management module. The resolution
of the input video determines the length of the permutation list. The image processing module loads
the original video data and performs matrix permutation on each frame of the video based on the
permutation list (see Figure 4). At this time, the color channel of the input video frame is separated and
reordered so that the color composition of the original video frame cannot be deduced. The separation
of color channels makes it difficult for humans to visually identify the contents of the original video
frame with a relatively small number of permutations. The video stream server and client determine
the color channel order based on the exchanged seed values (see Table 2). After exchanging the seed,
they calculate “SEED mod 5” to get a color channel reordering information. Alternatively, they can
use the seed values and CSPRNG to generate permutation lists for the different color channel
reordering every frame. The communication module allows the video stream server and client to
exchange seeds, and transmit the encrypted video frame data.

Figure 3. JLVEA encryption module structure and flows.

Figure 4. Matrix permutation in video frame: (a) permutation list—image processing module
permutates the video frame based on permutation list; (b) matrix permutation—image processing
module permutates rows and columns using every two elements from permutation list; and (c)
permutated frame.

Sensors 2020, 20, 3627 6 of 14

Table 2. Example of color channel reordering information.

SEED Mod 5 Color Channel Merging Order
0 RBG
1 BGR
2 BRG
3 GRB
4 GBR

The seed management module includes a hardware random number generator (HRNG), seed
storage, and RSA encryption/decryption module (see Figure 5). The seed management module uses
HRNG to generate completely random 128-bit integer seed values. The generated seed value is
stored in the seed storage. The seed storage must be managed to restrict external access because an
attacker can replicate the entire permutation list by using it. RSA encryption/decryption module has
different roles depending on the device to which the seed management module belongs. In the
streaming server that generates seeds, and encrypts and transmits the video, the RSA
encryption/decryption module encrypts the seeds using the public key of the client, and forwards
them to the communications module. In the client that receives encrypted seeds from the server and
decrypts the video, the RSA encryption/decryption module decrypts the received encrypted seeds
using its private key and stores the decrypted seed values in the seed store.

Figure 5. Seed management module structure and flows.

The permutation list management module includes CSPRNG and permutation list storage (see
Figure 6). CSPRNG generates a permutation list based on seed values generated by the seed
management module. Most modern operating systems such as Microsoft Windows or Linux include
the embedded CSPRNG module [22]. However, if the video stream server and client use a different
operating system, the CSPRNG of each device may not be compatible. In this instance, the proposed
algorithm can use cross-platform supporting external CSPRNG libraries such as GnuTLS (i.e., GNU
transport layer security library) [23]. The permutation list is stored in the permutation list storage.
The resolution of the input video determines the length of the permutation list. When the number of
permutations is 15, the original video frame and permutated video frame's MSE is 60 (see Figure 7).
MSE is 80 for 126 permutations, and 100 for 307 permutations, respectively. Experimentally, when
the difference from the original frame is more than MSE 100, it is difficult for a human to recognize
the original contents of the video frame. In this instance, the length of the permutation list is similar
to the number of horizontal pixels in the video frame. When the matrix permutation for one video
frame is completed in the image processing module, a random number generated by CSPRNG is
added to the permutation list to create a new list for the next frame. By updating the permutation list
for each frame, the proposed algorithm can be robust against known-plaintext attacks.

Sensors 2020, 20, 3627 7 of 14

Figure 6. Permutation list management module structure and flows.

(a) (b)

(c) (d)

Figure 7. Original video frame and encrypted video frames: (a) original video frame and (b) 15 times
permutated video frame. A human can easily recognize the frame content; (c) 126 times permutated
video frame and (d) 307 times permutated video frame. A human cannot recognize the frame
content. It has an MSE value of 100 when compared to the original frame.

CSPRNG updates the permutation list (see Algorithm 1). The minimum and maximum updated
values are determined by the row and column length of the video frame. If the updated elements of
the permutation list are negative, the maximum value is added. If they exceed the maximum value,
the maximum value is subtracted. This brings the new values within the matrix size range of the
video frame. CSPRNG is set to follow a continuous uniform distribution. This ensures that the
elements of the permutation list are not concentrated in a specific range. The permutation list
following the continuous uniform distribution can encrypt all frames to a similar level since the
distribution characteristic is maintained after the permutation list is updated. By having the
CSPRNG update the permutation list, updating the permutation list for every frame without using
additional memory becomes possible.

The image processing module loads and performs matrix permutation on the video frame using
the permutation list. Before matrix permutation, the color channels are separated, and matrix
permutation for each channel is performed. The permutated channels are then merged to produce
the final cryptographic video frame. Owing to the separated color channels and a different matrix
permutation on each channel, an attacker cannot verify the color composition of the original video
frames. The communication module exchanges the seed and encrypted video stream with other
devices.

Sensors 2020, 20, 3627 8 of 14

Algorithm 1: Permutation List Update.
Input: Frame width w, height h, and permutation list P
Output: Updated permutation list P
01: for p in P do
02: if index of p % 2 == 0, then
03: r = random(-w, w)
04: else, then
05: r = random(-h, h)
06: end if
07: p = p + r
08: if index of p % 2 == 0, then
09: if p > w then
10: p = p – w
11: elseif p < 0, then
12: p = p + w
13: end if
14: else, then
15: if p > h, then
16: p – h
17: elseif p < 0, then
18: p + h
19: end if
20: end if
21: end for

3.2. Encryption Flow

The encryption and streaming process can be divided into five phases: connection
establishment, video stream encryption, transmission, video stream decryption, and permutation
list update (see Figure 8). The server encrypts and transmits encrypted videos, and the client receives
encrypted videos from the server. In the connection establishment phase, (1) the client creates an
RSA key pair and (2) transmits the public key to the video server. The video server that receives the
streaming request (3) generates a random seed, (4) encrypts the seed with the public key sent by the
client, and (5) sends the encrypted seed back to the client. (6) The client decrypts the transmitted
seed and (7) stores it in the seed management module to establish the connection. Through processes
(1)–(6), the server and client share the same seed. Seed exchanges using RSA infrastructure lead to
relatively higher overheads. However, seed exchanges are performed only once during the initial
connection. Thus, RSA-based seed exchange enables safe seed exchange without affecting actual
encryption performance. In the video stream encryption phase, (8) the server loads the video from a
file or video capture device and (9) generates a permutation list using the seed. Then, (10) the color
channels are separated and (11) matrix permutation is performed for each channel. When the matrix
permutation for all color channels is completed, (12) the channels are merged to produce the final
encrypted video. At this step, the video frame separated by RGB can be merged in the order of BGR,
GRB, etc. to make the color composition of the encrypted video frame different from the original
video frame. (13) Encrypted frames are sent to the client. In the video decryption phase, (14) the
client generates the same permutation list as the server using the seed. Then, (15) the color channels
are separated and (16) matrix permutation is performed in the reverse order of the permutation list.
(17) Finally, the original video frame is obtained by merging the color channels. At this time, the
order of channel combinations should be the same as the server. After the original video frame is
obtained, both the server and the client perform a permutation list update. (18) The permutation list
is updated by adding a random number generated by CSPRNG to it. (19) The client updates the
permutation list in the same way.

Sensors 2020, 20, 3627 9 of 14

Figure 8. Proposed algorithm encryption sequence diagram.

The proposed algorithm is designed to be robust to known plain-text attacks by applying
different permutation lists to all frames. If the encryption module creates a new permutation list for
each frame, the permutation list updating process may result in storage and processing overheads.
The proposed algorithm is designed to increase storage space and speed efficiency, and to be robust
against known-plaintext attacks by updating the permutation list using CSPRNG instead of
pre-generating the corresponding permutation list for each frame.

4. Performance Evaluation

For the JLVEA encryption module’s performance evaluation, we first implemented it and then
performed a security analysis, encryption speed analysis, and memory efficiency analysis. The
proposed algorithm along with Liu and Koenig’s [14] and Sultana and Shubhangi’s [15] algorithms
were implemented in Python, and RSA encryption was performed using PyCrypto [24], the
cryptographic library for Python. All experiments were performed on the BCM2837 processor [25]
included in Raspberry Pi (see Table 3). The experiment used a 1280 × 720 resolution video taken with
the Raspberry Pi camera module.

Table 3. Experiment environment.

Hardware Component Specification
CPU ARMv8 64 bit 1.4 GHz
SoC BCM2837

RAM 1 GB LPDDR2
Networking Gigabit Ethernet, 802.11 b/g/n/ac WLAN

In order to analyze the security of the proposed algorithm, the video frame encrypted with the
algorithm of [14,15] and the video frame encrypted with the proposed algorithm were compared;
when using the proposed algorithm, the contents of the original video frame were encrypted to a
higher level with a higher MSE value. To show the efficiency of the proposed algorithm, we
compared the encryption time. In order to show the memory efficiency of the permutation list
update using CSPRNG, we generated a permutation list for a certain number of frames and
compared the memory usage. The transmission failure rate was analyzed according to the
communication loss rate to show that a pre-compression encryption method can more effectively

Sensors 2020, 20, 3627 10 of 14

preserve the original video frame following a communication loss than a post-compression
encryption.

4.1. Security Evaluation

The original frame has its own color composition according to the information contained within
the frame. In the case of encrypted frames, the original color composition was completely removed
by color channel separation and recombination. If the encrypted frame has a color composition
similar to the original frame, the attackers may deduce some information in the original video frame,
such as whether someone resides at their home or not. This experimental result shows the difficulty
of information deduction based on color composition on the proposed algorithm. (See Figures 9,10)

The permutation list also has a critical impact on security. The proposed algorithm can generate
47,483,761,585,029,120,000 different permutation lists. It takes 55 days to generate all permutation
lists with a 10 TFlops computing machine. Moreover, since the frames encrypted by the proposed
algorithm did not include internal file structures such as header markers or EOFs, it was not possible
to automate the verification that they have been normally decrypted. It means all
47,483,761,585,029,120,000 frames reassembled through a brute-force attack must be verified directly
by humans. Therefore, it was practically impossible to decrypt frames encrypted with the proposed
algorithm through a permutation list brute-force attack. The attacker could deduce the permutation
list if the attacker would succeed to extort an encrypted frame and the corresponding original frame.
However, even if the extortion happens in the proposed algorithm, the attacker cannot decrypt the
next frame because it does not use the same permutation list used for the previous frame. Liu and
Koenig’s algorithm [14] can generate 256! permutation lists. However, this encrypted data contains
internal file structures, which can be used to recover parts of the original data. Sultana and
Shubhangi’s algorithm [15] uses only two types of faro shuffle and three types of frame rotation to
generate a permutation list. Thus, only 2 3 1920 11,520 different permutation lists can be
generated for 1920 permutations.

(a) (b) (c)

Figure 9. Color composition comparison for the proposed algorithm, and Sultana and Shubhangi’s
algorithm [15]. Both frames are encrypted by performing 1920 permutations for rows and columns:
(a) original video frame. The resolution is 1920 × 1080; (b) video frame encrypted with JLVEA. The
frame has a different color composition than the original frame since the proposed algorithm
separates color channels before permutation; (c) video frame encrypted with faro perfect algorithm.
The frame’s color composition is similar to the original frame.

(a) (b)

Figure 10. Color histogram comparison of original frame and frame encrypted with the proposed
algorithm: (a) color histogram of original frame. It has its own specific color distribution; (b) color
histogram of encrypted frame. Original color distribution has been destroyed.

The seed should be strongly protected to ensure the security described above. Seed exchange
was conducted only once for the whole encryption process. Thus, we adopted a public key

Sensors 2020, 20, 3627 11 of 14

infrastructure-based key exchanging mechanism to exchange the seed without considering the
encryption overhead. We could use security proven algorithms such as RSA [26] or ECDSA [27].

4.2. Encryption Time Analysis

We compared the encryption time of the proposed algorithm, Liu and Koenig’s algorithm [14],
and Sultana and Shubhangi’s algorithm [15] with the same number of permutations (see Figure 11).
Encryption with Liu and Koenig’s algorithm took 0.000515 seconds, the proposed algorithm took
0.001294 seconds, and Sultana and Shubhangi’s algorithm took 0.070386 seconds. Since Liu and
Koenig’s algorithm involves post-compression encryption, the original video data to be encrypted is
relatively small. Therefore, this algorithm can encrypt the video relatively faster. Sultana and
Shubhangi’s algorithm, which performs pre-compression encryption in a manner similar to the
proposed algorithm, showed a higher encryption time than the proposed algorithm. For Sultana and
Shubhangi’s algorithm, the encryption time is assumed to be high because all rows and columns in a
video frame must be rearranged for every permutation. Although the proposed algorithm takes
longer to encrypt than Liu and Koenig’s algorithm, the level of overhead increase is acceptable
because it is robust to header inference attacks and frame loss from packet loss. Moreover, its
encryption performance is significantly better than the existing pre-compression encryption
algorithms.

Figure 11. Encryption time.

4.3. Memory Efficiency Analysis

We compared the memory usage of Liu and Koenig’s algorithm [14], the proposed algorithm,
and the proposed algorithm with a pre-generated permutation list (see Figure 12). Liu and Koenig’s
algorithm used 5.12 KB of memory, while the proposed algorithm used 15.4 KB of memory. The
memory usage of the proposed algorithm with a pre-generated permutation list was 153.5 KB. The
higher memory usage of the proposed algorithm than Liu and Koenig’s algorithm could be
attributed to an increase in the number of the permutation lists because of color channel separation.
However, since color channel separation resulted in a meaningful level of security improvement, the
memory usage increase at that level was significant. The proposed algorithm could prevent an
extreme increase in memory usage by using CSPRNG to update the permutation list instead of
generating multiple permutation lists for each frame.

0.000515 0.001294

0.070386

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Puzzle JLVEA Faro Perfect

En
cr

yp
tio

n
Ti

m
e

(s
)

Encryption Algorithms

Encryption Time

Sensors 2020, 20, 3627 12 of 14

Figure 12. Memory usage.

4.4. Communication Loss Resistance

We simulated a packet loss scenario to check how many frames became unrecognizable in
post-compression encryption algorithms and pre-compression encryption algorithms (see Figures 13
and 14). Liu and Koenig’s algorithm [14] involves post-compression video encryption, which
includes an internal file structure in the permutation range. Thus, if a packet containing an internal
file structure is lost, the entire video frame cannot be recognized. For HD videos with a resolution of
1280 × 720, the original video frame could not be recognized with a high probability of 95% or more
with 90 packet losses, and 50% of the original frame could not be recognized with just 22 packet
losses. For standard definition (SD) videos with 640 × 480 resolution, because of a higher proportion
of an internal file structure, the original video frame could not be recognized with a 95% probability
for 28 packet losses and a 50% probability for 9 packet losses.

In the proposed algorithm, a part of the video frame was misplaced or lost because of packet
loss. However, the contents of the video frame can be fully recognized. These experimental results
show that post-compression encryption algorithm for real-time video streaming was vulnerable to
packet loss. On the other hand, the proposed algorithm could recognize the content of video frame
except the lost parts even when some packets are lost.

Figure 13. Packet loss–video frame loss.

5.12
15.4

153.6

0
20
40
60
80

100
120
140
160
180

Puzzle JLVEA JLVEA Pregenerated

M
em

or
y

U
sa

ge
 (K

B)

Encryption Algorithms

Memory Usage

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

0

0.2

0.4

0.6

0.8

1

The number of Packet Loss

V
id

eo
 F

ra
m

e
Lo

ss

Packet Loss - Video Frame Loss

HD

SD

Sensors 2020, 20, 3627 13 of 14

Figure 14. Video frame obtained by client following packet loss.

5. Conclusions

In this paper, we proposed a lightweight permutation-based video encryption algorithm to
encrypt and transmit a video steam in real time on low-performance devices, such as IoT security
cameras. Based on the permutation-based video encryption mechanism, we proposed an improved
algorithm for a higher encryption performance than block cipher, while also being robust against
problems such as known-plaintext attacks, header inference, and packet loss vulnerability from
previously proposed permutation-based video encryption algorithms. Using CSPRNG, we solved
the known-plaintext attack vulnerability by creating a new permutation list for each frame, and
achieved a high security level through color channel separation, making it more difficult to deduce
the contents of the video frame. Moreover, a permutation-based encryption was applied before
compression so that the content of the original video frame could be recognized except for the lost
part, even with packet loss during real-time video streaming. In the future, we would like to conduct
further studies with the aim of minimizing the increased encryption time to the level of
post-compression encryption algorithms.

Author Contributions: J.Y. and M.K. completed this work. J.Y. developed the proposed system and
implemented and experimented the prototype of the proposed system. M.K. organized for designing and
developing the proposed system in this work and guided this whole work as a corresponding author. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) [No.2018R1A2B6009620].

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication of this
paper.

References

1. Robles, R.J.; Kim, T.H. A review on security in smart home development. IJAST 2010, 15, 13–22.
2. Lin, H.; Bergmann, N.W. IoT privacy and security challenges for smart home environments. Information

2016, 7, 44.
3. Zhang, Y.; Kasahara, S.; Shen, Y.; Jiang, X.; Wan, J. Smart contract-based access control for the internet of

things. IEEE IoT-J 2018, 6, 1594–1605.
4. Riad, K.; Hamza, R.; Yan, H. Sensitive and energetic IoT access control for managing cloud electronic

health records. IEEE Access 2019, 7, 86384–86393.
5. Xu, H.; Tong, X.; Meng, X. An efficient chaos pseudo-random number generator applied to video

encryption. Optik 2016, 127, 9305–9319.
6. Liu, B.; Liu, J.; Wang, S.; Zhong, M.; Li, B.; Liu, Y. HEVC Video Encryption Algorithm Based on Integer

Dynamic Coupling Tent Mapping. JACIII 2020, 24, 335–345.

Sensors 2020, 20, 3627 14 of 14

7. Gusmeroli, S.; Piccione, S.; Rotondi, D. IoT access control issues: A capability based approach. In
Proceedings of the 2012 Sixth International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing, Washington, DC, USA, 2012; pp. 787–792.

8. Zhang, Z.K.; Cho, M.C.Y.; Wang, C.W.; Hsu, C.W.; Chen, C.K.; Shieh, S. IoT security: ongoing challenges
and research opportunities. In Proceedings of the 2014 IEEE 7th international conference on
service-oriented computing and applications, Matsue, Japan, 17 November 2014; pp. 230–234.

9. Sallam, A.I.; El-Rabaie, E.S.M.; Faragallah, O.S. Efficient HEVC selective stream encryption using chaotic
logistic map. Multimedia Syst. 2018, 24, 419–437.

10. Kartsch, V.; Guermandi, M.; Benatti, S.; Montagna, F.; Benini, L. An Energy-Efficient IoT node for HMI
applications based on an ultra-low power Multicore Processor. In Proceedings of the 2019 IEEE Sensors
Applications Symposium, Sophia Antipolis, France, 11 March 2019; pp. 1–6.

11. Jayakumar, H.; Lee, K.; Lee, W.S.; Raha, A.; Kim, Y.; Raghunathan, V. Powering the internet of things. In
Proceedings of the 2014 International Symposium on Low Power Electronics and Design, La Jolla, CA,
USA, 2014; pp. 375–380.

12. Heron, S. Advanced encryption standard (AES). Network Secur. 2009, 2009, 8–12.
13. Lee, H.J.; Lee, S.J.; Yoon, J.H.; Cheon, D.H.; Lee, J.I. The SEED encryption algorithm. 2005. Available

online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.374.3466 (accessed on 23 June 2020).
14. Liu, F.; Koenig, H. Puzzle-A novel video encryption algorithm. In Proceedings of the IFIP International

Conference on Communications and Multimedia Security, Berlin, Germany, 19 September 2005; pp. 88–97.
15. Sultana, S.F.; Shubhangi, D.C. Video encryption algorithm and key management using perfect shuffle.

IJERA 2017, 7, 1–5.
16. Shelby, Z.; Hartke, K.; Bormann, C. The constrained application protocol. 2014. Available online:

https://datatracker.ietf.org/doc/rfc7252/ (accessed on 23 June 2020).
17. Kothmayr, T.; Schmitt, C.; Hu, W.; Brunig, M.; Carle, G. DTLS based security and two-way authentication

for the Internet of Things. Ad Hoc Networks 2013, 11, 2710–2723.
18. Nurrohman, A.; Abdurohman, M. High Performance Streaming Based on H264 and Real Time Messaging

Protocol (RTMP). In Proceedings of the 2018 6th International Conference on Information and
Communication Technology, Bandung, Indonesia, 3 May 2018; pp. 174–177.

19. Hamalainen, P.; Alho, T.; Hannikainen, M.; Hamalainen, T.D. Design and implementation of low-area and
low-power AES encryption hardware core. In Proceedings of the 9th EUROMICRO Conference on Digital
System Design, Dubrovnik, Croatia, 30 August 2006; pp. 577–583.

20. Akhter, A.S.; Islam, S.; Hossain, M.J.; Deb, R.; Uddin, M.B. MPEG Encryption by Zigzag, Partitioning and
Swapping. IJCSNS 2010, 10, 116.

21. Yan, Z.; Govindaraju, V.; Zheng, Q.; Wang, Y. IEEE Access Special Section Editorial: Trusted Computing.
IEEE Access 2020, 8, 25722–25726.

22. Genç, Z.A.; Lenzini, G.; Ryan, P.Y. NoCry: No More Secure Encryption Keys for Cryptographic
Ransomware. In Proceedings of the International Workshop on Emerging Technologies for Authorization
and Authentication, Luxembourg City, Luxembourg, 27 September 2019; pp. 69–85.

23. GnuTLS. Available online: https://www.gnutls.org/ (accessed on 22 Jun 2020).
24. PyCrypto. Available online: https://pypi.org/project/pycrypto/ (accessed on 20 May 2020).
25. BCM2837– Raspberry Pi Documentation. Available online:

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md (accessed on
20 May 2020).

26. Zhou, X.; Tang, X. Research and implementation of RSA algorithm for encryption and decryption. In
Proceedings of the 2011 6th International Forum on Strategic Technology, Harbin, China, 22 August 2011;
pp. 1118–1121.

27. Johnson, D.; Menezes, A.; Vanstone, S. The elliptic curve digital signature algorithm (ECDSA). IJIS 2001, 1,
36–63.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

