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Abstract: Important wine quality traits such as sensory profile and color are the product of complex
interactions between the soil, grapevine, the environment, management, and winemaking practices.
Artificial intelligence (AI) and specifically machine learning (ML) could offer powerful tools to assess
these complex interactions and their patterns through seasons to predict quality traits to winegrowers
close to harvest and before winemaking. This study considered nine vintages (2008–2016) using
near-infrared spectroscopy (NIR) of wines and corresponding weather and management information as
inputs for artificial neural network (ANN) modeling of sensory profiles (Models 1 and 2 respectively).
Furthermore, weather and management data were used as inputs to predict the color of wines
(Model 3). Results showed high accuracy in the prediction of sensory profiles of vertical wine
vintages using NIR (Model 1; R = 0.92; slope = 0.85), while better models were obtained using
weather/management data for the prediction of sensory profiles (Model 2; R = 0.98; slope = 0.93) and
wine color (Model 3; R = 0.99; slope = 0.98). For all models, there was no indication of overfitting as
per ANN specific tests. These models may be used as powerful tools to winegrowers and winemakers
close to harvest and before the winemaking process to maintain a determined wine style with high
quality and acceptability by consumers.

Keywords: sensory profile; chemical fingerprinting; water balance; artificial intelligence; wine color

1. Introduction

The viticulture and winemaking industries have been accumulating important data from past
vintages for record-keeping, related mainly to operations and management practices, such as machinery
usage, fertilization, irrigation scheduling pest, and disease incidence, and control applications [1].
Other wineries keep records of physicochemical characteristics and/or sensory profiles related to berry
and wine quality traits, either done at chemistry laboratories or in-house, with some of these vineyards
with records of more than 15 growing seasons. Keeping with digital technological advances, these
management tools can be found in the form of computer, smartphone, and tablet PC applications for
portability and easy access to records [2]. However, there have been minimal attempts to analyze
these records using new and emerging tools, such as data mining and machine learning. Most new
researches have been focused on the implementation of robotic platforms and unmanned aerial and
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terrestrial vehicles to acquire remote sensing data to obtain information for decision-making related to
irrigation scheduling, pest and disease detection or yield estimation, among others [3–7].

Specifically, research taping into records using machine learning has been recently applied to
a robotic dairy farm, analyzing and modeling four years of data using machine learning to assess
milk quality traits and productivity [8]. Machine learning modeling was implemented in a vineyard
from vertical vintages and meteorological data to obtain aroma profiles according to changes in
seasonality [9]. The latter showing that quality trait aspects from wines produced can be characterized
and modeled.

Berries and wine sensory profiles, such as color, anthocyanin content, aroma profiles, astringency,
and mouthfeel, among others, are dependent on berry quality traits [10,11] as a product of the grapevine
and soil interaction [12,13], management practices, and seasonal conditions [14,15]. Further aroma
profiles are expressed as product of selection of yeasts [16–18], the winemaking technique [19], and wine
aging [20,21].

The effects of management practices such as canopy management [22,23], specifically in terms
of pruning techniques [23,24], canopy training systems [23–25], fertilization management [26–30],
and irrigation scheduling, on berry and wine quality traits have been widely reported. Irrigation
scheduling has been recognized as one of the main management practices to manipulate berry size
and compounds in berries, specifically by using two techniques, namely regulated deficit irrigation
(RDI) [31–34] and partial rootzone drying (PRD) [35,36]. These techniques are mostly applied from
veraison to harvest (V-H) since the maximum benefit can be achieved for berry quality traits, such
as sugar content, skin to flesh ratio, anthocyanin, and polyphenol content, and with minimal impact
on yield.

Seasonality has a natural variability. However, this variability has been exacerbated in the past
20 years due to climate change [37,38] affecting wine quality traits through droughts, excessive rain,
increased ambient temperatures, frosts, heatwaves, and bushfires. It can be said that the last half of the
20th century was benefited by climate change conditions (i.e., increased ambient temperatures with less
climatic anomalies), which expressed most of the cultivar characteristics from different wine regions
around the world [39,40]. From the first 20 years in the 21st century, higher ambient temperatures
and climatic anomalies have resulted in severe droughts and changes in key phenological stages of
grapevines, affecting productivity and quality of grapes [41,42]. One major consequence is the dual
warming impact, wherein the increase in temperature due to climate change causes the compression
of phenological stages and earlier maturity of grapes and results in early harvest during the warmer
months producing excessive atmospheric demands [43,44]. This could force grapevines to extract
water from wherever possible, even from berries producing berry shriveling and patterns of cell death
within the mesocarp of berries [45–47]. Berry cell death has shown to be directly linked with berry
quality and aroma profiles [48]. Specifically, higher temperatures imposed on Shiraz and Chardonnay
treatments in the vineyards resulted in increased cell death patterns and rates.

Machine learning (ML), which is part of artificial intelligence (AI) is a powerful predictive tool
that can be used to analyze and model complex processes such as winegrowing and winemaking.
ML and other AI tools have been previously applied for different beverages such as beer, sparkling
water, cider, and wines to assess their quality and consumer preferences after the beverage has been
produced [49]. For Pinot Noir, recent research has shown the applicability of ML modeling using
weather and management practices as inputs to model the aroma profile of resulting wines in a
vertical vintage assessment [50]. This research offers an integrative ML tool based on near-infrared
spectroscopy (NIR) from wines from a vertical vintage (Model 1) and the effects of seasonal weather
patterns and water management practices (Model 2) to assess sensory profiles of wines before the
winemaking process. Furthermore, weather data and management practices were used to predict wine
color in three different color-scales (i) CIELab, (ii) RGB, and (iii) CMYK (Model 3). This information
can be used by winemakers to adjust the process to obtain more consistent wine styles, which can be
recognized by consumers.
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2. Materials and Methods

2.1. Vineyards and Samples Description

Data from nine different vintages (2008–2016) of Pinot Noir wine were obtained from a boutique
vineyard (14.5 ha) located in the South of the Great Dividing Range of the Macedon Ranges in
Romsey/Lancefield, Victoria in Australia at an elevation of 540 m.a.s.l. The vineyard is located in a
region with fresh and cool evenings starting in the autumn season, which allows slow ripening as well
as maintenance of the natural acidity. Being a commercial boutique vineyard, Pinot Noir wines are
produced under controlled processing methods and using only berries from the site and fermented
using wild yeast from the vineyard/winery. These were then matured in French oak for 20–22 months.
Samples of each vintage (wine bottles 750 mL) were obtained from the online store of the vineyard
(Table 1).

Table 1. Sample vintages used for the study, including labels/abbreviations, alcohol content, and pH.

Wine Vintage Label/Abbreviation Alcohol Content pH

2008 W08 13.7% 3.7
2009 W09 13.9% 3.6
2010 W10 13.9% 3.7
2011 W11 13.7% 3.6
2012 W12 14.2% 3.6
2013 W13 13.6% 3.6
2014 W14 13.6% 3.8
2015 W15 14.2% 3.7
2016 W16 13.7% 3.5

2.2. Weather Data Acquisition

As described in the publication from Fuentes et al. [50], integrative weather information for
each vintage was obtained from the Bureau of Meteorology (BoM). The derived weather parameters
based on temperature and rainfall data consisted of (i) degree days from September to harvest
(DD-S-H), (ii) maximum January temperature (MJT), (iii) mean maximum temperature from veraison to
harvest (MeanMaxTV-H), (iv) mean minimum temperature from veraison to harvest (MeanMinTV-H),
and (v) water balance (WB).

For degree days, which is considered as a thermal time, it was calculated with base 10 ◦C
from hourly temperature data reconstructed from readily available maximum and minimum daily
temperature data from BoM. The hourly temperature (TH) reconstruction was obtained using the
method proposed by Zhang et al. (2016) [51] and using the following formula:

DD =
23:59∑
00:00

TH > 10 ◦C (1)

where DD = degree days; TH = hourly temperature in ◦C.
Water balance (WB) was calculated based on values of irrigation in megaliters (I; ML), effective

rainfall (RF), and evapotranspiration (ETc) calculated using the corresponding crop coefficient (Kc) for
different phenological stages. Specific crop coefficients (Kc) used were based on those considered by
Collins et al. [52]. The 0.85 fraction corresponds to effective rain, which can be readily available to
plants [53]:

WB = I + RF(0.85) − ETc (2)

2.3. Near-Infrared Spectroscopy and Color Data Analysis

Triplicates from two bottles of each of the wine samples were analyzed three times each
(n = 9 readings) using a near infra-red (NIR) spectroscopy handheld device (microPHAZIR™ RX



Sensors 2020, 20, 3618 4 of 16

Analyzer; Thermo Fisher Scientific, Waltham, MA, USA). This machine is capable of acquiring the
spectra within the 1596–2396 nm range with readings every 7–9 nm. Whatman® qualitative grade
three filter paper of 7 cm (Whatman plc., Maidstone, UK) was saturated with the wine samples and
then read with the device. The NIR values of the filter paper were subtracted to obtain the values for
wine. This method was described and validated in a study by Gonzalez Viejo et al. [54].

Color was measured in triplicates using the NIX™ PRO color sensor (Nix Sensor Ltd., Ontario,
Canada) with D50 illuminant and 10◦ observer. A total of 15 mL of wine was poured into a
35 mm × 10 mm Corning® CellBIND® Petri dish (Sigma -Aldrich Inc., St. Louis, MO, USA) and placed
over a generic/unbranded Light Emitting Diode (LED) light pad (Hong Kong) and measured with
the NIX™ PRO device connected via Bluetooth to a smartphone and the NIX™ PRO color sensor
application (App). Data were obtained in three color scales (i) CIELab, (ii) Red, Green, Blue (RGB),
and (iii) Cyan, Magenta, Yellow, Black (CMYK).

2.4. Descriptive Sensory Evaluation

A sensory panel of 12 participants from The University of Melbourne (Ethics ID: 1545786.2)
was trained using a combination of International Standard methodology (ISO 8586-1: 1993E Sensory
analysis–General guidelines for the selection, training, and monitoring of selected assessors and
expert sensory assessors, and quality control procedures) [55] and the quantitative descriptive analysis
method (QDA®). The training details are described in the study published by Gonzalez Viejo et al. [56],
using panelists that were regular wine consumers and with training designed using wine samples and
references related to red wine. Once the panelists were trained, a blind sensory session was conducted
in the sensory laboratory at The University of Melbourne, which consists of individual booths with
uniform lighting. The number of samples (N = 9) was adequate and enough for sensory evaluation to
avoid fatigue of the panelists due to the alcohol concentration and astringency present in the wine,
this makes the results more reliable. This is in accordance with the recommended maximum number
of samples, which is usually between six and twelve for descriptive sensory evaluation [57,58].

The sensory questionnaire was displayed in Android (Google, Mountain View, CA, USA) Tablets
using the Bio-Sensory App (The University of Melbourne, Parkville, Vic, Australia) [59]. Table 2 shows
the descriptors assessed by the panelists, which were rated using a 15-cm non-structured scale. Samples
were served at 20 ◦C in International Standard Wine Tasting Glasses by Luigi Bormioli, and the serving
size was 30 mL.

Table 2. Descriptors evaluated in the sensory session, and the anchors used in the line-scale.

Descriptor Anchors

Color intensity Light–Dark
Red fruits aroma Absent–Intense

Black fruits aroma Absent–Intense
Yeast aroma Absent–Intense
Spicy aroma Absent–Intense
Floral aroma Absent–Intense
Oak aroma Absent–Intense

Sweet aroma Absent–Intense
Sweet taste Absent–Intense
Acidic taste Absent–Intense
Bitter taste Absent–Intense
Oak flavor Absent–Intense

Herbs flavor Absent–Intense
Red fruits flavor Absent–Intense

Black fruits flavor Absent–Intense
Spicy flavor Absent–Intense

Body Light–Full
Astringency Absent–Intense

Warming mouthfeel Absent–Intense
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2.5. Statistical Analysis and Machine Learning Modeling

An analysis of variance (ANOVA) was performed for the sensory and color data to evaluate
significant differences between samples for each parameter. Fisher’s least significant difference (LSD)
post hoc test was conducted for pairwise comparisons using α = 0.05.

Three artificial neural network (ANN) regression models were developed using a Matlab® R2020a
(Mathworks, Inc., Natick, MA, USA) code. A total of 17 different training algorithms were tested
and compared (data not shown) to find the best models according to their performance, accuracy,
and absence of overfitting signs. For Model 1, the raw absorbance values of 100 wavelengths within
the 1596–2396 nm spectrum measured using the NIR device were used as inputs, while Model 2
was developed using the weather and water balance data mentioned in Section 2.2, both to predict
the 19 sensory descriptors shown in Table 2. These models were constructed using the Levenberg
Marquardt training algorithm with data divided randomly as 70% of samples used for training, 15% for
validation with performance based on means squared error (MSE), and 15% for testing using a default
derivative function (Figure 1). A neuron trimming exercise (Neurons: 3, 5, and 10) was conducted to
find the best performance and no signs of overfitting.

Model 3 was developed using the weather and water balance data mentioned in Section 2.2 to
predict color in three color scales (i) CIELab, (ii) RGB, and (iii) CMYK. The model was built using a
random data division, with 70% of the samples used for training using the Bayesian Regularization
algorithm and 30% for testing using an MSE performance algorithm (Figure 1). A neuron trimming
exercise (Neurons: 3, 5, and 10) was conducted to find the model with the best performance and no
overfitting signs.Sensors 2020, 20, x FOR PEER REVIEW 6 of 16 
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the lowest; similarly, the R-value of W14 was the lowest (darker red), while W11 was the highest 
(lighter red). W08 was the highest in “b” and second lowest in G, which represent darker green colors. 

Figure 2 shows the ANOVA results for the sensory descriptors. Significant differences were 
found among samples for all descriptors. Sample W14 presented the highest intensity for descriptors 
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Figure 1. Two-layer feedforward network model depicting the inputs, targets/outputs, and number
of neurons for each model. Weather inputs: (i) degree days from September to harvest (DD-S-H),
(ii) maximum January temperature (MJT), (iii) mean maximum temperature from veraison to harvest
(MeanMaxTV-H), and (iv) mean minimum temperature from veraison to harvest (MeanMinTV-H).
Sensory descriptors are found in Table 2.

3. Results

3.1. ANOVA Results

Table 3 shows the results of the ANOVA for color parameters in the three scales (CIELab, RGB,
and CMYK). Significant differences were found among samples for all color parameters. It can be
observed that the wine from 2014 (W14) was the darkest in color (L = 32.05) and significantly different
from the other vintages, while W11 was the lightest (L = 59.23). According to the CIELab scale, W14
was the highest in “a” value, which represents the red color on the positive values, while W11 was the
lowest; similarly, the R-value of W14 was the lowest (darker red), while W11 was the highest (lighter
red). W08 was the highest in “b” and second lowest in G, which represent darker green colors.

Figure 2 shows the ANOVA results for the sensory descriptors. Significant differences were found
among samples for all descriptors. Sample W14 presented the highest intensity for descriptors such
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as color, red and black fruits aroma, sweet aroma, bitter taste, body, and astringency. At the same
time, it had the lowest intensity in spicy flavor. On the other hand, W11 had the lowest intensity for
color, black fruits aroma, sweet taste, herbs flavor, black fruits aroma, body, astringency, and warming
mouthfeel. In contrast, it had the highest intensity for spicy aroma and acidic taste. The strongest
warming mouthfeel, sweet taste, and bitterness were found in W12.Sensors 2020, 20, x FOR PEER REVIEW 7 of 16 
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Figure 2. Mean values of sensory descriptors of wines from all vintages. Different letters (a–g) denote
significant differences between samples based on ANOVA and Fisher’s least significant difference (LSD)
post hoc test at α = 0.05. Sample abbreviations are described in Table 1. Error bars = standard error
(range: 0.32–1.82).
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Table 3. Mean values of color parameters of wines from all vintages. Different letters (a–g) denote significant differences between samples based on ANOVA and
Fisher’s least significant difference (LSD) post hoc test at α = 0.05.

Sample L SE a SE b SE R SE G SE B SE C SE M SE Y SE K SE

W08 38.35b 0.60 31.98e 0.45 20.57f 0.20 144.33b 2.03 67.33b 1.20 59.00a 1.53 0.30b 0.01 0.80g <0.01 0.75f 0.01 0.25d 0.01
W09 44.38c 0.67 28.71cd 0.30 17.29e 0.06 155.83c 2.13 85.00c 1.32 78.17b 1.76 0.30b 0.01 0.72e <0.01 0.65e 0.01 0.18c 0.01
W10 50.41e 0.79 25.45b 0.17 14.01d 0.17 167.33d 2.33 102.67de 1.67 97.33cd 2.33 0.30b 0.01 0.65c 0.01 0.56d 0.01 0.10b 0.01
W11 59.23g 0.62 18.11a 0.09 12.17c 0.29 180.33e 1.45 130.67g 1.76 122.33f 1.86 0.29ab <0.01 0.51a 0.01 0.47b 0.01 0.03a 0.01
W12 51.98e 0.38 26.44b 0.46 13.31cd 0.47 173.00d 0.58 106.00e 1.16 102.33de 1.45 0.29ab <0.01 0.65c <0.01 0.53c 0.01 0.08b <0.01
W13 50.40e 0.73 29.65d 0.74 14.43d 0.88 173.33d 2.91 99.00d 1.52 97.00c 2.08 0.28a 0.01 0.68d 0.01 0.56d 0.02 0.09b 0.01
W14 32.05a 0.69 37.13g 1.26 12.46c 0.47 131.00a 3.22 46.67a 1.45 58.00a 1.53 0.33c 0.01 0.89h 0.01 0.68e 0.01 0.32e 0.02
W15 55.55f 0.57 27.06bc 0.50 7.03b 0.21 181.00e 2.41 115.00f 1.02 121.89f 1.31 0.28a 0.01 0.62b <0.01 0.42a 0.01 0.03a <0.01
W16 47.97d 0.68 35.11f 0.67 5.63a 0.39 170.33d 2.67 89.00c 1.53 105.67e 1.76 0.30b 0.01 0.75f 0.01 0.46b 0.01 0.07b 0.01

Abbreviations: SE- Standard error; L, a, and b -parameters from CIELab scale; R, G and B -Red, Green, and Blue from RGB scale; and C, M, Y, K - Cyan, Magenta, Yellow and Black from
CMYK color scale. Sample abbreviations are described in Table 1.
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3.2. Machine Learning Models

Table 4 shows the statistical data of the three models. It can be observed that Model 1, which was
developed using NIR values as inputs to predict the intensity of sensory descriptors, presented a high
overall correlation coefficient (R = 0.92; Figure 3a). However, the validation R-value (R = 0.82) is far
from the training (R = 0.96), and the performance of validation (MSE = 0.68) and testing (MSE = 0.83)
were not as close, which are signs of possible overfitting. Furthermore, the slope for validation is
low–moderate, and the overall model presented 5.48% of outliers (103 out of 1881), based on the 95%
confidence bounds (Figure 3a). In contrast, Model 2, which was developed using weather values
as inputs to predict the intensity of sensory descriptors, had very high overall correlation (R = 0.98;
Figure 3b) and no signs of overfitting as the validation and training R values were close (R = 0.99 and
R = 0.96), and validation and testing performances are the same. Slopes from the three stages are high
(slope = 0.85–0.96); the overall model presented 2.87% of outliers (36 out of 1254), based on the 95%
confidence bounds (Figure 3b). On the other hand, Model 3, which was constructed using weather
data as inputs to predict color parameters, had a very high overall correlation (R = 0.99; Figure 3c) and
the lower training performance (MSE < 0.01) compared to the testing (MSE = 0.02), shows that there
were no signs of overfitting. Furthermore, slope values were high and close to unity (slope ~1), while
the overall model presented 3.33% of outliers (22 out of 660), according to the 95% confidence bounds
(Figure 3c).

Table 4. Statistical results from the three artificial neural network models.

Stage Samples Observations
(Samples × Targets) R Performance

(MSE) Slope

Model 1 (Near-infrared inputs; Sensory targets)

Training 69 1311 0.96 0.03 0.90
Validation 15 285 0.82 0.16 0.68

Testing 15 285 0.82 0.13 0.83
Overall 99 1881 0.92 - 0.85

Model 2 (Weather inputs; Sensory targets)

Training 46 874 0.98 0.01 0.96
Validation 10 190 0.96 0.04 0.85

Testing 10 190 0.96 0.04 0.85
Overall 66 1254 0.98 - 0.93

Model 3 (Weather inputs; Color targets)

Training 46 460 0.99 <0.01 0.98
Testing 20 200 0.97 0.02 0.98
Overall 66 660 0.99 - 0.98

Abbreviations: R = correlation coefficient, MSE = means squared error.
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[9,50]. From all nine seasons, the most contrasting vintage was 2011, presenting higher and 
anomalous rainfall with lower irrigation input, resulting in a water balance of 673.7 mm and lowest
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vintage (Figure 2), consistent with previous studies [60,61]. On the contrary, the 2013 and 2014 

Figure 3. Graphs of the overall correlations for (a) Model 1 using near-infrared absorbance values used
as inputs to predict sensory descriptors (Table 2), (b) Model 2 using weather information: (i) degree days
from September to harvest (DD-S-H), (ii) maximum January temperature (MJT), (iii) mean maximum
temperature from veraison to harvest (MeanMaxTV-H), and (iv) mean minimum temperature from
veraison to harvest (MeanMinTV-H) plus (v) water balance as inputs to predict sensory descriptors
(Table 2), and (c) Model 3 using weather and water balance data as inputs to predict color parameters
in three scales (i) CIELab, (ii) RGB, and (iii) CMYK.

4. Discussion

Weather information for contrasting seasons for the same vineyard has been previously
reported [9,50]. From all nine seasons, the most contrasting vintage was 2011, presenting higher
and anomalous rainfall with lower irrigation input, resulting in a water balance of 673.7 mm and
lowest solar exposure between veraison and harvest of 15.6 MJ m−2. Higher water availability will
increase canopy vigor and offset canopy balance towards the vegetative fraction over reproductive
(grapes). This explains lower color (Table 3) and sensory profiles of wines that resulted from this
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particular vintage (Figure 2), consistent with previous studies [60,61]. On the contrary, the 2013 and
2014 vintages were related to lower water balance (−117.5 and −61.9 mm respectively) and higher solar
exposure between veraison to harvest (21.8 and 19.0 MJm−2, respectively) with warmer temperatures.
These vintages produced wines with the highest color (Table 3) and sensory quality traits (Figure 2).
Color is an important quality trait for Pinot Noir wines, and its prediction before winemaking can offer
powerful decision-making tools to winegrowers [62,63].

The use of the CIELab color scale in food and beverages is attributed to its uniform distribution
of color in the scale and considered as the closest to the human eye perception of colors. However,
RGB has also been reported to be similar to human perception [64] and has been used in food studies
such as oil, beer, and wine [65–67]. The latter scale has been found to be correlated with pigments
such as carotenoids in olive oil [66] and used to predict adulteration in wines [67]. On the other
hand, despite that CMYK is not utilized in food, it may provide useful information to print the
corresponding color on labels to increase consumer perception before opening the bottle. According
to Piqueras-Fiszman et al. [68,69], it is very important for packaging to display the real colors of
the contained product to ease consumer familiarization with the food or beverage. Furthermore,
Lick et al. [70] found that there is an association between the colors in labels and the flavors that
consumers expect in the wine.

Within the 1596–2396 nm NIR range, overtones of several components may be found. Some of
these compounds that are related to the sensory descriptors are aromatics (1685 nm), water (1790 and
1940 nm), carboxylic acids, which form esters that are common aromatic compounds (1900 nm),
pOH that is related to acidity and inverse scale to pH (1908 nm), alcohol (2090 nm), sucrose (2080 nm),
and citric acid (2220 nm), among others. Furthermore, intensities of basic tastes rated by a trained
panel have been modeled to be predicted using NIR absorbance values within the aforementioned
range in chocolate, which indicates there is an association between this wavelength range and sensory
attributes [71].

Machine learning modeling has been previously implemented to predict aroma profiles for the
same vintages reported in this study, and aroma patterns are consistent with the sensory results
presented here (Figure 2) [9]. Aroma profiles are also dependent on canopy architecture and the
vegetative and reproductive balance, similar to other crops, such as cocoa trees, which have also
been modeled using machine learning [72]. These modeling techniques have been proven to be
accurate and robust to predict aroma and sensory profiles of other beverages as per recent research
published on artificial intelligence, robotics, computer vision, and machine learning applications to
beverages [73–75].

The ML model based on chemical fingerprinting of wines using NIR (Model 1) was not as accurate
compared to Models 2 and 3 based on weather and management information from vertical vintages.
Further disadvantages of Model 1 are related to the requirement of the NIR instrument, which can be
cost-prohibitive to winegrowers and winemakers, and measurements are obtained after winemaking.
However, it could offer a quick assessment of wines produced without the requirement of trained
sensory panels, which in turn can be time-consuming and cost-prohibitive and not accessible for most
wineries. The implementation of Model 1 could offer a rapid, robust, accurate, and reproducible way to
assess the sensory profile of wines and wine batches to maintain a certain wine style that characterizes
specific wineries.

More practical and accurate models developed in this study were based on weather information
and water management of vineyards (Models 2 and 3) to predict sensory profiles and color of the wines,
respectively. The effect of seasonal variability on soil, grapevine, environment, and water management,
and its influence on the quality traits in grapes and wines have been well-established. Models 2 and 3
offer information on sensory profiles and wine traits before harvest and winemaking. These models
will offer the opportunity to winemakers to adjust vinification techniques to obtain a more consistent
wine style, predict the market and consumer acceptance for pricing adjustments, better description of
wines in labels for accurate information to consumers, among others.
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Models 1 to 3 are specific to the location and corresponding wine and winemaking techniques;
thus, they could have very limited applicability for other vineyards, wineries, and wines from different
soil types, climatic regions, and cultivars. However, the methodology is very easy to reproduce to
obtain specific models when libraries of vertical wines and meteorological information are available
through the years. Furthermore, once the models are constructed per winery, region, and cultivars,
weather information projections can be incorporated for early prediction of sensory profile and color
of resulting wines. Even though the models can be considered as site-specific and variety specific,
by adding more data, they have the capability to “learn”, hence making them more broadly applicable
to other environments and cultivars.

Temperatures and rainfall, which were the basis of weather parameters in this paper, can be
obtained for up to three months in advance for any specific region in Australia from the Bureau of
Meteorology (BOM, Outlook information, Australia). From this information, evapotranspiration (ET)
and water balance data can be estimated early in the season by applying ET predictive models based
on temperature [76,77] and corresponding Kc values. Earlier prediction (three months in advance)
will be associated with higher estimation errors of temperature and ET and overall outputs for Model
1 and 2. However, periodic model feeding from veraison onwards will offer reference information
for changes of sensory and color trends for wines, which may be used as a decision-making tool to
schedule irrigation and canopy management within the season.

One of the main disadvantages found through this research was related to putting all the historical
information together from vineyards. It is common that these industries have a mix of information
and data recorded manually (handwritten), and printed but not recorded digitally, based on different
software platforms (i.e., Excel, Word, database platforms) or specific database commercial software.
Furthermore, it could be considered as a disadvantage the specialized analysis required to construct
the models proposed here concerning the physicochemical and sensory analysis of vertical libraries
of wines available. Recent studies and developments have made it possible to implement new and
emerging technologies to make these analyses more affordable and user-friendly. Some of these are, for
example, the development of robotic pourers coupled with computer vision, machine learning and gas
release analysis of beers [65,78] and sparkling wines [75], low-cost electronic noses for aroma profile and
faults detection [73], low-cost near-infrared spectroscopy devices and color sensors that can be attached
to smartphones with applications in food and beverages [50,79], and sensory analysis of consumers
using a newly developed computer application, which can be downloaded by users and deployed in
Android-based devices to obtain normal sensory analysis (self-reported) plus biometrics for emotional
response and physiological changes of participants, such as heart rate, blood pressure [80], and body
temperature among others [59].

5. Conclusions

This study is one of the first attempts to apply these techniques for the assessment of vertical
vintages in the wine industry, which have offered encouraging results with the construction of
robust machine learning models with high accuracy and practicality. Models presented in this study
were based on new and emerging technologies (near-infrared spectroscopy) and ubiquitous weather
information from past seasons and relevant vineyard management data applied to the vertical library
of wines that are mostly available in the majority of vineyards around the world. Further research
should be conducted to incorporate more cultivars, seasonality, and winemaking techniques to create
more robust machine learning models to assess final wine aroma profiles, sensory profiles, and color.
This research is the first step to achieve universal machine learning models to apply artificial intelligence
to the winemaking industry. These models and procedures may be considered preliminary. However,
they have the following advantages: (i) easy to construct site-specific models for other regions and
cultivars using vertical vintages and historical meteorological data, (ii) models can incorporate future
seasons and use the intrinsic “learning” capabilities of these methodologies to incorporate climate
change factors that may affect targets proposed, (iii) models were constructed based on information
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that can be considered nowadays ubiquitous and wineries that keep vintage libraries of wines can get
full benefits from these procedures. The main disadvantage of obtaining these benefits could be related
to the physicochemical and sensory analysis of wines required to construct the models. However,
recently, there has been a body of research to make these measurements more affordable and accessible
to the industries in a “do-it-yourself” fashion.
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