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Abstract: Deep neural networks have been successfully applied in domain adaptation which uses the
labeled data of source domain to supplement useful information for target domain. Deep Adaptation
Network (DAN) is one of these efficient frameworks, it utilizes Multi-Kernel Maximum Mean
Discrepancy (MK-MMD) to align the feature distribution in a reproducing kernel Hilbert space.
However, DAN does not perform very well in feature level transfer, and the assumption that source
and target domain share classifiers is too strict in different adaptation scenarios. In this paper, we
further improve the adaptability of DAN by incorporating Domain Confusion (DC) and Classifier
Adaptation (CA). To achieve this, we propose a novel domain adaptation method named C2DAN.
Our approach first enables Domain Confusion (DC) by using a domain discriminator for adversarial
training. For Classifier Adaptation (CA), a residual block is added to the source domain classifier in
order to learn the difference between source classifier and target classifier. Beyond validating our
framework on the standard domain adaptation dataset office-31, we also introduce and evaluate on the
Comprehensive Cars (CompCars) dataset, and the experiment results demonstrate the effectiveness
of the proposed framework C2DAN.

Keywords: transfer learning; domain adaptation; MK-MMD; domain confusion; classifier adaptation;
vehicle classification

1. Introduction

In recent years, deep learning has made great achievements in a large number of computer
vision tasks, such as image recognition [1–3], object detection [4,5], fine-grained classification [6,7],
semantic segmentation [8,9] and so on. For such satisfactory results, training with huge labeled datasets
is essential, but in real applications, data labeling is too expensive, and sometimes impracticable.
For example, in video surveillance, images can be affected seriously by camera position and illumination
variance, and the application scenarios are also ever-changing, so these factors make the task of labeling
the entire dataset impossible. In order to solve such problems, Domain Adaptation (DA) [10] is a very
efficient method, which aims to extend the prediction model learned from the source domain with
abundant labeled data to the target domain which only has the unlabeled or a small number of labeled
data. Here the data between the source and target domain are different but related.

The main idea of domain adaptation is to reduce the difference between domains and to
learn a prediction model. Two types of mechanism are used most to address domain shift:
discrepancy-based and adversarial-based. The representative discrepancy-based methods [11–20]
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minimize the domain discrepancy by using a distance metric such as Maximum Mean Discrepancy
(MMD) [17], CORAL [18,19] and Kullback-Leibler divergence [20], among which MMD-based methods
are widely used. In this sort of methods, the difference between source and target domains is usually
reduced by optimizing the MMD in Reproducing Kernel Hilbert Space (RKHS), and the feature
representation with domain invariance needs to be learned. Adversarial-based methods [21–30] use a
discriminator to distinguish whether the data comes from the source domain or the target domain,
so as to increase the domain confusion and minimize the distance between the source and the target
domain distribution.

However, these methods are not without problems. The typical discrepancy-based Deep Adaptation
Network (DAN) framework [12] which is superior to other similar methods still faces performance
degradation problems in feature level transfer. Since adversarial-based methods show efficiency in DA, we
investigate herein if combining a discrepancy-based method with adversarial learning will be helpful to
improve the performance. In addition, most previous works are based on the assumption that the source
domain and target domain share the classifier, but the assumption is too strict to maintain stable effects
in different adaptation scenarios, so it is necessary to relax the assumption and reduce the differences
between source classifier and target classifier.

In this paper, inspired by the adversarial-based method [21] and Domain Adaptation with Residual
Transfer Networks (RTN) [14], we propose our framework called C2DAN which improves the DAN
framework by combing it with Domain Confusion (DC) and Classifier Adaptation (CA). These changes
make the extracted feature representation more adaptive to the target domain. At the same time,
aiming at solving the problem of different adaptation effects of MK-MMD in different scenarios, this
paper explores the suitable weight selection of MK-MMD. In addition, we pursue the best combination
of MK-MMD, DC and CA to further enhance the efficiency of domain adaptation. Experiments on the
standard domain adaptation dataset Office-31 [31] and the CompCars [32] dataset which is used for
vehicle classification task demonstrate the effectiveness of our proposed method C2DAN.

The contributions of this paper are as follows:

(1) We combine Domain Confusion (DC) with MK-MMD in DAN for both feature alignment and
domain alignment, which makes the model more generalized in the target domain.

(2) The model is extended by adding Classifier Adaptation (CA) to minimize the difference of source
classifier and target classifier, the accuracy of the proposed method is further improved.

(3) The best combination of MK-MMD, DC and CA in different scenarios is obtained through
experiments on office-31 and CompCars dataset, the experimental results show that our improved
method C2DAN surpass the performance of DAN.

The structure of this paper is as follows: Section 1 briefly introduces the research objectives and
contributions of this paper. Section 2 gives a review of related works about deep domain adaptation.
In Section 3, the principle and implementation of the deep fusion method between MK-MMD, DC
and CA are proposed. In Section 4 the experimental results on dataset Office-31 are demonstrated
and analyzed. The suitable weight selection of MK-MMD in different scenarios is explored. The best
combination of MK-MMD, DC and CA is also discussed in Section 4. The details and results of our
vehicle classification experiments are shown in Section 5. The conclusions of this paper are summarized
in Section 6.

2. Related Work

For the deep domain adaptation methods, the basic criterion is to add the adaptation metric after
selecting the adaptive layer, and then to fine tune the network. At the PRICAL meeting in 2014, the
Domain Adaptive Neural Network (DaNN) concept [11] was put forward. This network has only two
layers of neurons, which include a feature layer and a classifier layer. The characteristic of this network
lies in the MMD adaptive layer after feature layer, which calculates the distance in Reproducing kernel
Hilbert space (RKHS) between the source domain and target domain, and then optimizes its loss, but
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because of the poor ability of feature representation based on the shallow network, it is also difficult
to solve practical problems. After this, many researchers combined this idea into deep networks.
These works adopt AlexNet trained on ImageNet for domain adaptation. The main idea is to fix the
first seven layers and add MMD metrics before the classifier layer to implement domain adaptation.
However, the effect of such single adaptive layer is limited, so the DAN network was proposed in [12].
It uses MK-MMD, which has stronger representation ability by combing the multi-kernel concept.
At the same time, three adaptive layers are added into the network, which achieves better classification
effect without increasing the training time. At the ICML conference in 2017, JAN [13] was proposed to
extend the data adaptive method to the category adaptation, which used Joint MMD (JMMD) metrics.
Inspired by the deep residual network (ResNet) [2] framework, RTN [14] learns adaptive classifiers
and transferable features from labeled source domains and unlabeled target domains by embedding
the adaptation process of classifiers and features into a unified deep network architecture.

Adversarial-based models use a generator to align the source and target domain data in feature space
by working against the discriminator. Generative Adversarial Network (GAN) [33] has been transferred
into different application scenarios since it was first presented in 2014. Isola et al. proposed [34] and tried
to do image translation with conditional GAN (CGAN) [35], allowing the network to learn image to image
mapping functions without having to customize features manually. Coupled Generative Adversarial
Networks (CoGAN) [36] learns the joint distribution of source domain and target domain data by imposing
a constraint on both networks to share parameters, the ability of the network is limited so that the data
generated from noise is about the same for both networks. CoGAN consists of two GAN, which is the
same as CycleGAN [37], DualGAN [38] and DiscoGAN [39]. Shen et al. proposed the WGDRL [40] metric
which is based on WGAN [41] to measure the distance between source domain and target domain.

In this work, the DAN [12] method is further improved by domain alignment (DC) and classifier
alignment (CA). For domain alignment, DC is used to further utilize the source domain information,
which makes the extracted features more powerful in the target domain representation. Then CA is
added to improves the domain adaptation effect by aligning the classifiers of source domain and target
domain. Meanwhile, we explore the applicable weights of MK-MMD under different scenarios and the
best combination of the three aspects. We prove the effectiveness of the proposed method both on
standard dataset and vehicle classification task.

3. C2DAN: Improved Deep Adaptive Network

The network structure proposed in this paper is based on DAN [12] which adopts multi-layer and
multi-kernel MMD. We add a domain classification layer fDC to perform domain confusion. Domain
alignment will be completed when the domain classifier cannot distinguish whether the input is from
the source domain or from the target domain. And in order to learn the difference between source
classifier and target classifier, a residual block which connects the classifiers of two domain is added
to the source classifier. The joint optimization of the four loss functions which include the loss of
multi-layer MK-MMD, the loss of fDC layer, the loss of CA and the final classification loss of the overall
network, is used to achieve good unsupervised domain adaptation effect. The network structure of
C2DAN is shown in Figure 1.
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Figure 1. The structure of proposed network C2DAN. 

3.1. MK-MMD 

Figure 1. The structure of proposed network C2DAN.
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3.1. MK-MMD

Multi-kernel Maximum Mean Discrepancy (MK-MMD) is an extension of MMD. MMD is one of
the most commonly used non-parametric methods to measure the distribution difference between two
domain datasets. The detailed operation is to map the feature representation of source domain and
target domain to the reproducing kernel Hilbert space (RKHS), and then calculate the mean distance
between the two datasets in RKHS. Given the data distribution s and t of the two domains, and by
using the function φ(·), the MMD between s and t is calculated as follows:

MMD2(s, t) = sup
‖φ‖
H
≤1

∥∥∥∥Exs∼s[φ(xs)] − Ext∼t

[
φ
(
xt
)]∥∥∥∥2

H

(1)

where Exs∼s[·] represents the mathematical expectation of the source domain’s distribution. And ‖φ‖ ≤ 1

represents a series of functions in the unit ball of reproducing kernel Hilbert space H. Let Ds =
{
Xs

i

}M

i=1
represent sample sets of distribution s, then an empirical estimate of MMD can be expressed as follows:

MMD2(Ds, Dt) =

∥∥∥∥∥∥∥ 1
M

M∑
i=1

φ
(
xs

i

)
−

1
N

N∑
j=1

φ
(
xt

j

)∥∥∥∥∥∥∥
2

H

(2)

where φ(·) represents the feature mapping about k
(
xs, xt

)
=

〈
φ(xs),φ

(
xt
)〉

, and k
(
xs, xt

)
is usually

defined as a convex combination of L basis kernels kl
(
xs, xt

)
, like the following:

k
(
xs, xt

)
=

L∑
l=1

βlkl
(
xs, xt

)
, s.t.βl ≥ 0,

L∑
l=1

βl = 1 (3)

The MMD method is based on single kernel transformation. The multi-kernel MMD (MK-MMD)
assumes that the optimal kernel can be obtained by linear combination of multiple kernels. One of the
most successful ways to use MK-MMD is DAN. As shown in [12], let Hk denote the RKHS with the
characteristic kernel k, and let the mean value of distribution p in Hk be an independent element µk(p),
then we can get Ex∼p f (x) =

〈
f (x),µk (p)

〉
Hk

, where f ∈ (Hk), The distance of mean value between
probability distribution p and q is expressed as dk(p, q), and its square formula is as the following:

d2
k(p, q) ,

∥∥∥∥Ep[φ(xs)] − Eq
[
φ
(
xt
)]∥∥∥∥2

Hk
(4)

Similar to MMD, feature mapping φ is related to characteristic kernel, so k
(
xs, xt

)
=

〈
φ(xs),φ

(
xt
)
〉 .

Here k
(
xs, xt

)
is defined as a convex combination of m PSD kernels {ku}. Multi-kernel k can use different

kernels to enhance the effect of MK-MMD and achieve an optimal and reasonable kernel selection:

K ,

k =
m∑

u=1

βuku :
m∑

u=1

βu = 1, βu ≥ 0,∀u

 (5)

k is weighted by different kernel and the coefficients
{
βu

}
is the weight to ensure that the generated

multi-kernel k is characteristic.

3.2. Domain Confusion

In order to reduce the difference of marginal distribution between two domains, maximizing
domain confusion (DC) is an effective method. The schematic diagram of domain confusion is shown
in Figure 2. For maximizing domain confusion, a domain classification layer fDC is considered in
this paper. The main function of this layer is to judge whether the sample belongs to the source
domain or target domain by using the feature representation gained from trained samples. From an
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intuitive point of view, the more domain-specific the extracted features belong to, the better the effect
of domain classification is. Meanwhile the more common the extracted features are, the better the
effect of domain confusion is. When the classifier trained by a specific feature representation cannot
distinguish the samples of source domain or target domain, we can call this feature representation
is domain invariant. In this paper, we use a domain confusion loss, which is optimized to obtain a
domain invariant feature representation.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 18 

 

distinguish the samples of source domain or target domain, we can call this feature representation is 
domain invariant. In this paper, we use a domain confusion loss, which is optimized to obtain a 
domain invariant feature representation. 

  
Figure 2. The definition of domain confusion. 

According to [12], for a feature representation , we measure its domain invariance by 
learning the best domain classifier based on this representation.  is the parameter of the domain 
classifier to be learned. By optimizing the following loss function (6), the best domain classifier can 
be learned. Besides, we introduce the loss of domain confusion for a domain classifier, which 
calculates cross entropy between the predicted output domain label and a uniform distribution of 
domain labels, so as to maximize the confusion and reduce the distribution differences between the 
two domains. The uniform distribution of domain labels means that the possibility of feature 
representation belonging to source or target domain is 	, in which case the domain label is most 
difficult to judge. D is the number of domains and here D is 2. And the loss function of domain 
confusion is shown in Equation (7): 

( ) [ ]; 1 logD repr D D d
d

L y d qφ θ≥ = − =   
 

(6)

( ) 1; logconf D repr d
d

L q
D

θ θ = −  (7)

where  denotes the domain to which the sample belongs, and q represents the softmax value of 
the domain classifier, = ; . 

The optimization of the domain confusion loss above is to find a domain invariant feature 
representation, in which the best domain classifier cannot achieve good results. Ideally, we want to 
optimize these two losses simultaneously in the training process. But there are two contradictions 
between domain classification and domain confusion. Learning a good domain classifier means that 
the effect of domain confusion is very poor, and also reaching a good domain confusion effect means 
that the effect of domain classification is very poor. Therefore, the two losses of layer f  need to be 
optimized jointly to achieve a compromise and reasonable optimization results. 

3.3. Classifier Adaptation 

In order to reduce the difference of classifiers between two domains, adding classifier adaptation 
(CA) is also an effective method. CA is motivated by the deep residual learning [2] which is shown 
in Figure 3 and Domain Adaptation with Residual Transfer Networks [14]. Based on the formula =  in [2], we can deduce our classifier adaptation (CA) function: 

( ) ( ) ( )s tf x f x f x= Δ + , (8)

 is the output of source classifier and 	is the output of target classifier, ∆ 	is a 
perturbation of classifiers between two domains. Let ≜  and = . There is an 
assumption that when target domain and source domain are connected, perturbation function 

Figure 2. The definition of domain confusion.

According to [12], for a feature representation φrepr, we measure its domain invariance by learning
the best domain classifier based on this representation. φD is the parameter of the domain classifier to
be learned. By optimizing the following loss function (6), the best domain classifier can be learned.
Besides, we introduce the loss of domain confusion for a domain classifier, which calculates cross
entropy between the predicted output domain label and a uniform distribution of domain labels, so as to
maximize the confusion and reduce the distribution differences between the two domains. The uniform
distribution of domain labels means that the possibility of feature representation belonging to source
or target domain is 1

D , in which case the domain label is most difficult to judge. D is the number of
domains and here D is 2. And the loss function of domain confusion is shown in Equation (7):

LD ≥
(
φrepr;θD

)
= −

∑
d

1[yD = d] log qd (6)

Lcon f
(
θD;θrepr

)
= −

∑
d

1
D

log qd (7)

where yD denotes the domain to which the sample belongs, and q represents the softmax value of the
domain classifier, q = so f tmax

(
θD f

(
x;θrepr

))
.

The optimization of the domain confusion loss above is to find a domain invariant feature
representation, in which the best domain classifier cannot achieve good results. Ideally, we want to
optimize these two losses simultaneously in the training process. But there are two contradictions
between domain classification and domain confusion. Learning a good domain classifier means that
the effect of domain confusion is very poor, and also reaching a good domain confusion effect means
that the effect of domain classification is very poor. Therefore, the two losses of layer fDC need to be
optimized jointly to achieve a compromise and reasonable optimization results.

3.3. Classifier Adaptation

In order to reduce the difference of classifiers between two domains, adding classifier adaptation
(CA) is also an effective method. CA is motivated by the deep residual learning [2] which is shown
in Figure 3 and Domain Adaptation with Residual Transfer Networks [14]. Based on the formula
H(x) = F(x) + x in [2], we can deduce our classifier adaptation (CA) function:

fs(x) = ∆ f (x) + ft(x) (8)
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fs(x) is the output of source classifier and ft(x) is the output of target classifier, ∆ f (x) is
a perturbation of classifiers between two domains. Let x , ft(x) and H(x) = fs(x). There is an
assumption that when target domain and source domain are connected, perturbation function ∆ f (x)
can be learned from the labeled data in the source domain and the unlabeled data in the target domain.
The source label classifier’s loss function can be computed as:

min
fs(x)=4 f (x)+ ft(x)

1
ns

ns∑
i=1

J
(
θrepr

(
xs

i

)
, ys

i

)
(9)

where J is the cross-entropy loss function, and θrepr
(
xs

i

)
denotes the conditional probability that the

network attaches label ys
i to the sample xs

i .
Although classifier adaptation (CA) has reduced the difference of source classifier and target

classifier, the output of target classifier ft(x) cannot be guaranteed to fit the target domain very well.
Therefore, the entropy minimization principle is used to optimize the parameters and minimize the
entropy of conditional distribution of each class in order to encourages the low-density separation
among classes of target domain. The target classifier’s loss function can be computed as:

min
ft

1
nt

nt∑
i=1

H
(

ft
(
xt

i

))
(10)

where H is the entropy loss function, H
(

ft
(
xt

i

))
= −

∑c
j=1 f t

j

(
xt

i

)
log f t

j

(
xt

i

)
, c is the number of classes and

f t
j

(
xt

i

)
denotes the probability that the label is j for xt

i .

3.4. Loss Function

According to DAN’s network, this paper uses the classic five convolutional layers and three full
connection layers. Each full connection layer L learns a nonlinear mapping hl

i = f l
(
Wlhl−1

i + bl
)
, where

Wl and bl are the weights and offsets of the Lth layer, hl
i is the feature representation for xi in the

Lth layer, and f l is the activation function. Let θrepr =
{
Wl, bl

}L

l=1
represents the parameter set of the

convolutional neural networks, the empirical loss function of the whole network is as follows:

min
θrepr

1
N

N∑
i=1

J
(
θrepr

(
xt

i

)
, yi

)
(11)

In this paper, we add classifier adaptation (CA) by adding two fully connected layers as residual
layers to ensure that ft(x) does not deviate too far from fs(x), so Equation (11) is rewritten into
Equation (9).

In the standard convolutional neural network, the deep feature representation becomes from
generalization to specialization with the layer from low to high. The higher the network layer is, the
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greater domain’s difference is, which cannot be reduced by fine-tune alone. Therefore, it is necessary
to make adaptation on the full connection layers instead of convolutional layers. In this paper, we
propose two ways to do domain adaptation on the full connection layers and reduce the difference of
domain distribution. One way is to add MK-MMD based multi-layer adaptation, and the other way is
to add a domain classification layer fDC. We further extend our method by adding classifier adaptation
(CA). Then the three factors are considered into the corresponding loss function, and the loss function
of the whole network is as follows:

L = min
fs(x)=4 f (x)+ ft(x)

1
ns

ns∑
i=1

J
(
θrepr

(
xs

i

)
, ys

i

)
+ λ

l2∑
l=l1

d2
k

(
Dl

s, Dl
t

)
+γ

{
−
∑
d

1[yD = d] log qd −
∑
d

1
D log qd

}
+
β
nt

nt∑
i=1

H
(

ft
(
xt

i

)) (12)

where λ, γ and β are the balanced weights of MK-MMD, DC and low-density separation between
classes of target domain respectively.

To train a convolutional neural network from scratch requires a large amount of labeled data,
which is also impossible for domain adaptation problems, so in this paper the initial network adopts
AlexNet model trained on ImageNet 2012 as the pre-trained model. Then we freeze the convolution
layer from layer 1 to layer 3 and fine-tunes the 4th and 5th convolution layer, and other parameters are
calculated by optimizing the loss function through training.

For different domain adaptation scenarios, the weight of loss function could be different. When we
combine MK-MMD, domain confusion and classifier adaptation, we also explore the contribution’s
difference with different domain adaptation metric to different scenarios. We also consider the
reasonable combination of the two methods. This part is explained in Section 4.

4. Experiment Results and Analysis

4.1. Data Set

Office-31 [31] is a standard data set in the research field of domain adaptation. The Office-31
dataset contains 31 categories of 4,652 images collected from three separate domains, which are
(1) Amazon (A, downloaded from amazon.com) with 2817 images, (2) Webcam (W captured from
webcams) with 795 images, and (3) DSLR (D captured from digital SLR cameras) with 498 images.
The example images are shown in Figure 4. There are six transfer scenarios in these three domains,
which are A –> W, D –> W, W –> D, A –> D, D –> A and W –> A.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 18 

 

adaptation (CA). Then the three factors are considered into the corresponding loss function, and the 
loss function of the whole network is as follows: 

( ) ( ) ( )
( )( ) ( )

[ ]

( )( )

2

1

2

1

1

1min , ,

11 log log

s

s t

t

n l
s s l l

repr i i k s tf x f x f x i l ls

D d d
d d

n
t

t i
it

L J x y d D D
n

y d q q
D

H f x
n

θ λ

γ

β

= + = =

=

= +

 + − = − 
 

+

 

 





, (12)

where λ, γ and β are the balanced weights of MK-MMD, DC and low-density separation between 
classes of target domain respectively. 

To train a convolutional neural network from scratch requires a large amount of labeled data, 
which is also impossible for domain adaptation problems, so in this paper the initial network adopts 
AlexNet model trained on ImageNet 2012 as the pre-trained model. Then we freeze the convolution 
layer from layer 1 to layer 3 and fine-tunes the 4th and 5th convolution layer, and other parameters are 
calculated by optimizing the loss function through training. 

For different domain adaptation scenarios, the weight of loss function could be different. When 
we combine MK-MMD, domain confusion and classifier adaptation, we also explore the 
contribution’s difference with different domain adaptation metric to different scenarios. We also 
consider the reasonable combination of the two methods. This part is explained in Section 4. 

4. Experiment Results and Analysis 

4.1. Data Set  

Office-31 [31] is a standard data set in the research field of domain adaptation. The Office-31 
dataset contains 31 categories of 4,652 images collected from three separate domains, which are (1) 
Amazon (A, downloaded from amazon.com) with 2817 images, (2) Webcam (W captured from 
webcams) with 795 images, and (3) DSLR (D captured from digital SLR cameras) with 498 images. 
The example images are shown in Figure 4. There are six transfer scenarios in these three domains, 
which are A –> W, D –> W, W –> D, A –> D, D –> A and W –> A.  

Office-10+Caltech10 dataset contains 10 categories which are selected from Office-31 and 
Caltech-256. There are four domains in total, three domains (A, W, D) separated from Offce-31 and 
one domain (C) from Caltech-256. Then six transfer tasks can be built: A –> C, W–> C, D –> C, C –> A, 
C –> W and C –> D. While Office-10+Caltech has less categories, it will be easier to make adaptation 
than Office-31 dataset. In this paper, experiments and comparative analysis will be conducted on the 
two datasets. 

   

A D W 

Figure 4. Examples of the Office-31 dataset. (A) (Amazon, downloaded from amazon.com), (D) (DSLR, 
captured from digital SLR cameras), (W) (Webcam, captured from webcams). 

In addition to the improved deep adaptation network which combines DC and MK-MMD 
proposed in this paper, the experiment will be compared with the traditional CNN method, the DAN 
method only using MK-MMD and the Residual Transfer Networks (RTN) method using classifier 

Figure 4. Examples of the Office-31 dataset. (A) (Amazon, downloaded from amazon.com), (D) (DSLR,
captured from digital SLR cameras), (W) (Webcam, captured from webcams).

Office-10+Caltech10 dataset contains 10 categories which are selected from Office-31 and
Caltech-256. There are four domains in total, three domains (A, W, D) separated from Offce-31
and one domain (C) from Caltech-256. Then six transfer tasks can be built: A –> C, W–> C, D –> C,
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C –> A, C –> W and C –> D. While Office-10+Caltech has less categories, it will be easier to make
adaptation than Office-31 dataset. In this paper, experiments and comparative analysis will be
conducted on the two datasets.

In addition to the improved deep adaptation network which combines DC and MK-MMD
proposed in this paper, the experiment will be compared with the traditional CNN method, the DAN
method only using MK-MMD and the Residual Transfer Networks (RTN) method using classifier
adaptation (CA). At the same time, in order to explore the application value and conditions of domain
confusion in this network, the experiments of FC6 and FC7 based on DAN and Combination of RTN
and DC also will be conducted and compared. Finally, we do the experiments which combining
MK-MMD, DC with CA.

4.2. Experiment Procedure

In this paper, we use Caffe to develop the proposed deep neural network, which contains the
classic five convolutional layers and three full connection layers. Similar to the method of DAN,
MK-MMD layers are attached to the three full connection layers to calculate the multi kernel maximum
mean discrepancy of feature representation between source domain and target domain in Hilbert space.
At the same time, the domain classification layer fDC (called DC layer), which is derived from the idea
of domain confusion, is added after the seventh full connection layer. Besides, two residual layers are
added after FC8 to reduce the difference between the source classifier and target classifier. Then the
classification loss, domain confusion loss and entropy loss of target classed are also calculated. In order
to implement the function of the layer fDC, it is necessary to add the corresponding domain labels 0 and
1 to the data of source and target domains in the model file. And the input data of layer fDC include the
feature representation obtained by the seventh full connection layer and the labels of the two domains.

Here we use fine-tuning method to train this model. Considering the problem of the amount
of data in the training set, we get the parameters of the first three convolutional layers from the
pre-training model and freeze them. Then we fine-tune the subsequent convolutional layers and
the full connection layers by the way of back-propagation. The random gradient descent method is
used in the experiment, which parameter is 0.9. And the learning rate adopts ‘inv’ method, which
parameter is 0.75, and the initial learning rate is 0.001. We set the batch size to 64 for all methods,
and optimize the learning rate for each model independently. Since all the comparative methods use
mmd as test statistic, Gaussian kernel is used to median pairwise squared distances on training data.
We perform cross-valuation on labeled source data to select candidate parameters, the weights are
selected following the strategy: (1) Try to get the best results by adjusting the mmd weight when we
apply the DAN method. Then the mmd weight is fixed, which means we use the same mmd weight in
all other methods. (2) Try to get the best results by adjusting the entropy weight when we realize the
RTN method and fix the entropy weight. (3) Realize our method C2DAN based on the mmd weight
and entropy weight. The detail to choose weights is introduced in Section 4.4.

4.3. Experiment Results and Analysis

This experiment implements the unsupervised domain adaptation of the improved deep adaptation
network C2DAN combining DC, CA and MK-MMD, which means DAN+DC+CA, on the Office-31
dataset and Office–10+Caltech-10 dataset. And comparing with the ordinary convolution neural
network CNN (Baseline), the classical deep adaptation network DAN [12] and RTN [14], the
experimental results are shown in Tables 1 and 2.
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Table 1. Result of unsupervised domain adaptation experiment on Office-31 dataset.

A-W D-W W-D A-D D-A W-A Average

Baseline 60.6(~0.6) 95.0(~0.5) 99.1(~0.2) 59.0(~0.7) 49.7(~0.3) 46.2(~0.5) 68.2
DAN [12]
RTN [14]

66.9(~0.6)
70.0(~0.4)

96.3(~0.4)
96.8(~0.2)

99.3(~0.2)
99.6(~0.1)

66.3(~0.5)
69.8(~0.2)

52.2(~0.3)
50.2(~0.4)

49.4(~0.4)
50.0(~0.6)

71.6
72.7

DAN+DC (fc6) 67.3(~0.6) 96.0(~0.3) 99.1(~0.2) 66.0(~0.7 51.5(~0.3) 49.6(~0.5) 71.5
DAN+DC (fc7)

RTN+DC
C2DAN

69.0(~0.7)
73.0(~0.7)
74.0(~0.6)

96.2(~0.4)
97.3(~0.5)
96.6(~0.7)

99.5(~0.2)
99.6(~0.1)
99.6(~0.1)

67.0(~0.6)
70.8(~0.2)
71.5(~0.3)

52.5(~0.5)
50.4(~0.4)
53.0(~0.6)

50.2(~0.5)
51.8(~0.6)
52.2(~0.4)

72.5
73.8
74.4

Table 2. Result of unsupervised domain adaptation experiment on Office-10+Caltech10 dataset.

A-C W-C D-C C-A C-W C-D Average

Baseline 82.6(~0.3) 75.8(~0.3) 77.1(~0.5) 90.5(0.1) 79.6(0.2) 83.5(0.5) 81.5
DAN [12]
RTN [14]

86.0(~0.5)
88.1(~0.2)

81.5(~0.2)
85.6(~0.1)

81.8(~0.3)
84.1(~0.2)

92.0(~0.5)
93.0(~0.1)

90.6(~0.5)
96.3(~0.3)

90.2(~0.3)
94.2(~0.2)

87.0
90.2

DAN+DC (fc6) 85.0(~0.1) 80.4(~0.3) 80.0(~0.3) 91.7(~0.3) 85.6(~0.2) 88.6(~0.2) 85.2
DAN+DC (fc7)

RTN+DC
C2DAN

86.4(~0.2)
88.4(~0.4)
88.7(~0.3)

82.2(~0.5)
86.5(~0.2)
86.3(~0.5)

82.5(~0.1)
85.3(~0.3)
85.0(~0.5)

92.8(~0.3)
93.7(~0.3)
93.5(~0.2)

92.3(~0.5)
96.3(~0.1)
97.0(~0.3)

91.3(~0.5)
95.0(~0.2)
95.6(~0.1)

87.9
90.8
91.0

From the experimental results in Tables 1 and 2, we can make the following observations:
(1) For different domain adaptation scenarios, the domain adaptation method has different effects.
For the adaptation between domain D and W, the effect is not obvious because the similarity between
the two domains is very high. Then for the adaptation of domain A to D or W, the result is obviously
better. (2) Comparing to the DAN and RTN, the average accuracy of the six adaptation scenarios is
improved by about 1% with the use of DC. Combining DC with MMD makes the features obtained
from source domain more capable of representing the target domain samples, and further reduces
the difference of domain distribution. (3) The average accuracy of the method RTN combined with
DC is higher than the DAN combined with DC. The main reason is that RTN has classifier adaptation
module which can enhance the accuracy of classification. From the data point of view, the use of
classifier adaptation can further improve the effect of domain adaptation.

To go deeper into different modules of C2DAN, we show the results of each module of C2DAN in
Tables 1 and 2. (1) The average accuracy of the method combined with DC6 is not as good as the DAN
method using only MK-MMD or the method combining with DC7. Theoretically, with the increase
of the number of convolutional layers, the features extracted from each convolutional layer change
from generalization to specialization. Therefore, DC7 is selected to make the best domain classifier
achieve the maximum domain confusion. (2) Seen from different adaptation scenarios, the adaptation
effect of domain A to W is the best. And the comparison of accuracy can be seen in Figure 5a. For the
adaptation from domain W to A, the experimental results are not improved obviously, which are shown
in Figure 5b. Due to the small amount of data in the source domain W and the poor ability of feature
representation for real-world images, the improvement is not obvious when the adapting from the
real-world images in domain W to the information-rich website images in domain A. (3) Comparing
RTN+DC with C2DAN, the average accuracy of C2DAN is 73.8% on the Office-31 dataset, which is
0.6% higher than RTN+DC, but the accuracy of C2DAN is similar to RTN+DC in Office-10+Caltech-10,
which seems little improvement. The difference between the two datasets is Office-10+Caltech-10
has less categories which make it easier to be transferred. Both of these two methods have combined
domain confusion with classifier adaptation, the difference is C2DAN conducts feature alignment by
MK-MMD and RTN by tensor MMD. From the data point of view, the combination of MK-MMD, DC
and CA is more effective in more difficult tasks.
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4.4. Analysis of Weights

In this paper, we explore and analyze the suitable weights of three different domain adaptation
loss. The weight parameter of MK-MMD ranges from {0.1, 0.4, 0.7, 1, 1.4, 1.7, 2}, the weight parameter
of domain confusion ranges from {0.01, 0.05, 0.1, 0.15, 0.2} and the weight parameter of classifier
adaptation ranges from {0.05, 0.1, 0.15, 0.2, 0.25} It’s necessary to select appropriate weights and best
combination in different scenarios.

For the weight parameter of MK-MMD, as shown in [12], the adaptation effect of domain A
(website images with rich information) to domain D (complex images captured by digital SLR camera)
is best when λ is 1, as shown in Figure 6a. However, this conclusion is not suitable when the source
domain is W or D. From the experimental result, we can see that the effect of domain adaptation
becomes worse with the increase of weight and the result is best when λ is 0.1. Therefore, in the actual
application, the weight of MK-MMD λ should be 1 in the case of abundant information in the source
domain, such as website images. Then, the weight λ should be 0.1 in the case of less information
and complex environment in the source domain, such as images captured by web camera or digital
SLR camera.

For the weight parameter γ of fDC layer, we should consider the optimal combination of the two
weight parameters. In this paper, we conduct experiments and analyze to get the best fit γ under the
optimal λ for every adaptation scenario. When the source domain is A and λ is 1, the best result can
be obtained if γ equals 0.1. The comparison of different weights γ from domain A to domain W is
shown in Figure 6b. Meanwhile, when the source domain is W or D and λ is 0.1, the best result can
be obtained if γ equals 0.01. The comparison of different weights γ from domain W to domain A is
shown in Figure 6b.

For the weight parameter β of entropy loss, we should consider the optimal combination of the
three weight parameters. In this paper, we conduct experiments and analyze to get the best fit β under
the optimal λ and γ for every adaptation scenario. When the source domain is A and λ is 1 and γ

equals 0.1, the best result can be obtained if β equals 0.2. The comparison of different weights β from
domain A to domain W is shown in Figure 6c. Meanwhile, when the source domain is W or D and λ is
0.1 and γ is 0.01, the best result can be obtained if β equals 0.05. The comparison of different weights β
from domain W to domain A is shown in Figure 6c.
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From the experimental results, as a domain adaptation method, the weight of domain confusion
loss should be one tenth of MK-MMD loss. In theory, domain confusion aims to make the most
distinguishable feature representation get the worst classification effect. If the weight of fDC is too high,
the training will tend to domain confusion at the beginning, in which case, feature representation with
rich and effective information cannot be learned. Therefore, the weight of domain confusion should
be relatively small. At the same time, the fundamental purpose of domain adaptation is to obtain
domain invariant feature representation. From this point of view, MK-MMD narrows the distribution
difference in the mapping space by narrowing the distance of feature representation to obtain domain
invariant feature, but domain confusion only judges the degree of domain confusion and improves the
domain invariance of feature representation by optimizing its loss. It can be said that MK-MMD acquire
domain invariance actively, but domain confusion is a passive verification. MK-MMD plays a stronger
role and domain confusion further improve the effect of domain adaptation at this level. As a result,
the proportion of domain confusion loss to the total loss function is less than that of MK-MMD loss.

In summary, when domain adaptation is carried out from the domain with rich obvious information
(e.g. network images) to the domain with less complex information (e.g. real word camera images),
the weight of MK-MMD is 1, the weight of domain confusion is 0.1 and the weight of classifier
adaptation is 0.2. For reverse domain adaptation scenario, the weight of MK-MMD is 0.1, the weight of
domain confusion is 0.01 and the weight of classifier adaptation is 0.05. The weights above make the
combination of MK-MMD, domain confusion and classifier adaptation more reasonable and lead to
better result.
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5. Application on Vehicle Classification

5.1. The Introduction of the Dataset

This paper uses Comprehensive Cars (CompCars) [32] dataset to carry out unsupervised domain
adaptation vehicle classification experiments. CompCars dataset is one of the largest datasets for
fine-grained vehicle recognition. This dataset consists of two parts, vehicle image dataset from website
(data) and vehicle image dataset from road surveillance (sv_data).

Each section contains 163 types of vehicles, each of which is subdivided into smaller categories
according to specific models and years. The model of the experiment is based on AlexNet. The model
level is not deep enough and the capability is limited. Therefore, 20 kinds of vehicles are selected for
unsupervised domain adaptation experiments, instead of using the whole dataset. The examples of
website vehicle image dataset in CompCars are shown in Figure 7.
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Figure 7. website vehicle images, (a) Zhonghua, (b) Mitsubishi, (c) Besturn

From the above images, we can see that the shooting angle of the vehicle in the website dataset
is not the same. The front, side and back angles are all included. But in the surveillance images, the
vehicles are taken from the front with only slight angle change. The angle of view of side and back
has changed too much and the distribution is totally different, so this kind of images is not suitable
for domain adaptation training. Therefore, we need to filter the website images and only select the
pictures taken from the front and the side view which include the vehicle head information.

The examples are shown in Figure 8. The examples of the surveillance vehicle dataset sv_data are
shown in Figure 9.
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Figure 9. Examples of sv_data.

From Figure 9, we can see that the surveillance pictures are taken from the front angle but under
different weather and illumination conditions. In this experiment, the selected website images are
used as labeled source domain and the surveillance vehicle images belong to unlabeled target domain.
Although the website images are taken approximate frontally, they are collected under good lighting
conditions and the angle is biased, which results in the distribution differences between the source
domain and the target domain due to the angle of view, illumination and other factors. The vehicle
classification experiments using these two parts of data can prove the validity of the model in solving
the problem of domain shift.

Details of the dataset used in this experiment are as follows. The website dataset(data) contains
20 categories, totaling 6425 pictures, and the surveillance dataset(sv_data) contains 20 categories,
totaling 6960 pictures. The categories and their quantities are shown in the Table 3 below.

Table 3. The categories and quantities.

Acura Benz Besturn BYD Changan

data 157 570 72 356 405
sv_data 370 155 68 395 465

Dongfengfengdu Geely Haima Honda Hyundai

data 46 426 69 360 645
sv_data 92 576 203 380 572

Jeep Lexus MAZDA Mitsubishi Nissan

data 200 283 314 275 431
sv_data 304 188 371 281 462

Shuanglong Toyota Volkswagen Volvo Zhonghua

data 190 511 553 370 193
sv_data 264 572 533 598 111

5.2. Experiments Details and the Result

We use four methods to conduct comparative experiments: convolutional neural network CNN
(baseline), DAN, the proposed deep adaptation network combining domain confusion with MK-MMD
and the combination of DC, CA and MK-MMD. According to the analysis result, the experiment
adapts from the domain with rich information network images to the domain with surveillance images
including less rich information. Therefore, in our experiment, the loss weight of MK-MMD is 1, the
loss weight of domain confusion is 0.1, and the loss weight of classifier adaptation is 0.1.

The experiment is carried out under the framework of caffe. We need to add MK-MMD layer,
domain confusion layer and residual layers, and then recompile caffe. Twenty types of vehicles are
labeled with "0" ~ "19". During the training process, there is no label information in the vehicle image
of the target domain. The accuracy results of vehicle classification experiments are shown in Table 4.
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Table 4. Comparison of vehicle classification accuracy.

Method Accuracy

CNN (Baseline) 0.351
DAN [12] 0.449
RTN [14] 0.443

DAN+DC 0.476
RTN+DC 0.456

C2DAN (DAN+DC+CA) 0.507

First of all, we need to point out that although the CompCars dataset is used for fine-grained
classification, the purpose of our experiment is to verify the ability of unsupervised domain adaptation
method to solve the model degradation problem when the source domain training model is applied in
the target domain (without any labels). The emphasis is on the improvement of the domain adaptation
effect, so it is inappropriate to compare with advanced fine-grained classification model.

Meanwhile, it can be seen from the examples of website images and surveillance images that the
source and target images used in this experiment have various changes in background, illumination,
angle of view, etc. The domain shift is large, so the overall accuracy of this experiment is not high.
However, even in this complex case, the method in this paper has achieved better results. In the
follow-up study, assuming that the available source and target domain data are purer or more
task-specific, the domain adaptation effect of this method will be better. The experimental results are
analyzed as below.

From the experimental results, it can be seen that the accuracy of unsupervised domain adaptation
in vehicle classification task from the labeled source domain to the unlabeled target domain is 35.1%
without any domain adaptation components. The DAN method based on the MK-MMD component
has a classification accuracy of 44.9%, which is 9.8% higher than that of baseline. This proves that the
domain adaptation can overcome inter-domain distribution differences caused by the variation of
illumination and angle of view. The classification accuracy of DAN+DC and RTN+DC are both higher
than the original methods DAN and RTN, which can prove the effectiveness of DC. The accuracy of
our method C2DAN is 50.7%, 5.8% higher than DAN and 6.4% higher than RTN. It can be in inferred
that the classification accuracy is greatly enhanced because the huge difference between source domain
and target domain has been reduced by CA and DC. The results demonstrate that the combination of
MK-MMD, DC and CA is reasonable and efficient. Moreover, comparing with the standard domain
adaptation datasets Office-31 and Office-10+Caltech-10, the improvement of C2DAN on CompCars is
more significant, which means C2DAN has powerful adaptation ability on challenging tasks.

5.3. Accuracy and Analysis of Various Categories

Here, we compare and analyze the classification accuracy of each vehicle type. The accuracy
results of each vehicle type are shown in the following Table 5.

From the results above, the following conclusions can be drawn:

(1) It can be seen that the classification accuracy of 17 types of vehicles has been improved after using
the proposed DAN+DC or C2DAN methods. Compared with that of the DAN method, only one
type has decreased, the data in the table show that the difference is little and the decline is not
serious. The accuracy of 85% vehicle types have been improved, which proves that the proposed
method is reasonable and effective.

(2) For vehicle types with less data, such as the Besturn and Dongfengfengdu cars, in which type
the number of samples in source domain and target domain are both less than 2% of the total
number of datasets, the proposed method improves the accuracy of vehicle classification by
28.5% and 5.5% respectively compared with the DAN method, and improves by 38.7% and 13.1%
compared with the method using only CNN. It proves that the proposed method’s superiority is
obvious. The feature extracted by the model in a limited number of samples greatly improves the
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representation ability in the target domain. By enhancing the feature invariance, the distribution
difference between the source domain and the target domain is further reduced.

(3) For the performance degradation of some classes, the main reason is that MK-MMD is an active
acquisition while domain confusion is a passive verification for domain invariant feature. Besides,
when the domain invariant property of the feature extracted by MK-MMD has reached the
optimum level, the improvable space is very limited and the balance training of two kinds of loss
may sacrifice the ability of domain adaptation in some categories. However, the sacrifice degree
of this part is not too large. It is within the acceptable range and the accuracy of most categories
has been improved.

Table 5. Comparison of classification accuracy for 20 vehicle types.

CNN (Baseline) DAN DAN + DC C2DAN

Acura 0.511 0.600 0.614 0.608
Benz 0.265 0.696 0.587 0.781

Besturn 0.118 0.220 0.505 0.206
BYD 0.083 0.387 0.332 0.504

Changan 0.606 0.326 0.328 0.338
Dongfengfengdu 0.054 0.130 0.185 0.054

Geely 0.474 0.534 0.520 0.641
Haima 0.000 0.039 0.060 0.014
Honda 0.431 0.281 0.389 0.409

Hyundai 0.271 0.470 0.472 0.530
Jeep 0.740 0.815 0.803 0.869

Lexus 0.617 0.399 0.479 0.724
MAZDA 0.218 0.498 0.496 0.517

Mitsubishi 0.238 0.476 0.605 0.514
Nissan 0.530 0.510 0.574 0.500

Shuanglong 0.273 0.401 0.409 0.391
Toyota 0.196 0.222 0.234 0.195

Volkswagen 0.580 0.656 0.658 0.714
Volvo 0.582 0.698 0.652 0.679

Zhonghua 0.234 0.612 0.622 0.712

Generally speaking, the proposed method indeed improves the effect of domain adaptation in the
whole vehicle classification dataset.

6. Conclusions

This paper proposes an improved deep adaptive network C2DAN, which combines MK-MMD
with Domain Confusion (DC) and Classifier Adaptation (CA). DC is added to learn domain invariant
features by using a domain classification layer to perform adversarial training. We add residual blocks
in source classification layer to preform CA which can reduce the discrepancy between source classifier
and target classifier.

Experiments on standard domain adaptation datasets Office-31, Office-10+Caltech-10 and vehicle
classification dataset CompCars show that: (1) DC and CA are both efficient to reduce the domain
shift, which means the proposed method can improve the adaptation ability when knowledges are
transferred form labeled source domain to unlabeled target domain. (2) The most suitable weights of
MK-MMD and the best weight combination of MK-MMD, DC and CA in different transfer scenarios
are explored from theory and experiments. (3) When used in challenging transfer tasks, C2DAN shows
great advantages to reduce the huge differences between two domains. It can be inferred that DC is
helpful to align the feature distribution with the use of MK-MMD. CA is also necessary especially
in difficult transfer scenarios, we can’t use shared classifier to get good performance because the
classification standards of source domain and target domain could be quite different.
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In the future work, domain adaptation is going to face challenges that are harder than ever, DC and
CA are both illuminating ideas which can be added to new domain adaptation methods. Furthermore,
our work is expected to be applied in other computer vision tasks such as fine-grained classification
and object detection.
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