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Abstract: Cardiovascular diseases (CVD) are often characterized by their multifactorial complexity.
This makes remote monitoring and ambulatory cardiac rehabilitation (CR) therapy challenging.
Current wearable multimodal devices enable remote monitoring. Machine learning (ML) and
artificial intelligence (AI) can help in tackling multifaceted datasets. However, for clinical acceptance,
easy interpretability of the AI models is crucial. The goal of the present study was to investigate
whether a multi-parameter sensor could be used during a standardized activity test to interpret
functional capacity in the longitudinal follow-up of CR patients. A total of 129 patients were followed
for 3 months during CR using 6-min walking tests (6MWT) equipped with a wearable ECG and
accelerometer device. Functional capacity was assessed based on 6MWT distance (6MWD). Linear
and nonlinear interpretable models were explored to predict 6MWD. The t-distributed stochastic
neighboring embedding (t-SNE) technique was exploited to embed and visualize high dimensional
data. The performance of support vector machine (SVM) models, combining different features and
using different kernel types, to predict functional capacity was evaluated. The SVM model, using
chronotropic response and effort as input features, showed a mean absolute error of 42.8 m (±36.8 m).
The 3D-maps derived using the t-SNE technique visualized the relationship between sensor-derived
biomarkers and functional capacity, which enables tracking of the evolution of patients throughout
the CR program. The current study showed that wearable monitoring combined with interpretable
ML can objectively track clinical progression in a CR population. These results pave the road towards
ambulatory CR.
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1. Introduction

Cardiovascular diseases (CVD), a general term encompassing a collection of heart and blood
vessels-related disorders, are the leading cause of mortality worldwide [1]. The increasing prevalence
of CVD, caused by an aging and growing population, shows that there is a high need for prevention
programs in order to improve long-term outcomes [2]. Cardiac rehabilitation (CR) is a highly
recommended secondary prevention measure and is considered to be a key component in current
treatment strategies [3–5]. Unfortunately, most patients eligible for CR will not participate or complete
the program due to referral issues, enrolment problems, or suboptimal completion rates [6,7]. A possible
solution to improve participation rates is to move to home-based CR, which relies on remote monitoring
and coaching strategies [8]. Moreover, the same remote monitoring strategies can further augment
preventive cardiology practices by monitoring the patients’ disease status at home, as early signs of
worsening can be detected [9]. However, the complexity of CVD makes reliable remote monitoring
challenging. Most CVD are complex multi-system clinical syndromes and there is no single quantitative
parameter available that captures the complexity of the information required to assess disease status.
Therefore, a multi-parametric approach is necessary to accurately reflect the physiological condition of
CVD patients.

A proper interpretation of physical fitness is essential to accurately follow-up a patient’s progression
throughout a CR program. Various wearable sensors that can track a variety of physiological signals,
reflective of physical fitness, are available today and their implementation within a cardiac population
has been investigated extensively. Previous research suggested that free-living step count, measured
by commercially available activity trackers, could function as an objective measure for functional
classification in heart failure patients [10,11]. Thijs I. et al. showed that wearable technology, in the
form of wrist worn devices, could function as an assessment tool of physical activity at home during
rehabilitation after cardiac surgery [12]. However, the problem that arises in free-living conditions is the
unsupervised assessment of physical activity, making proper interpretation challenging. Other research
groups developed wearable systems to monitor exercise capacity during a submaximal exercise test.
The submaximal 6-min walking test (6MWT) is easy to perform and reflects the ability to perform
ordinary daily activities. Several studies focused on the added value of accelerometer-derived
parameters in assessing performance during a 6MWT [13–15]. The results of these studies can
contribute to the translation of a submaximal exercise test to assess functional capacity in patients
towards an in-home environment. Moreover, adding extra features, e.g., heart rate (HR) estimation
by means of photoplethysmograph (PPG) or electrocardiogram (ECG), in the follow-up of patients’
health status is continuously being examined [16,17]. The advantage of monitoring multiple features
simultaneously is that it improves the accuracy of outcome measures [18].

Wearable sensor technology enables the ability to collect huge amounts of data, which can be
used to optimize healthcare strategies to the patients’ needs and the changing socioeconomic system.
The challenge to correctly interpret this large volume of data in a clinically meaningful and reliable
manner remains [19]. Machine learning (ML) methods are increasingly being used in healthcare
to tackle the complexity of diseases, patients, multi-parameter signals, and to take on the big data
challenges [20]. Many possibilities of ML exist in the field of cardiovascular medicine to further
optimize and personalize care [21]. Moreover, it allows to use a large collection of variables in a
hypothesis free-approach to enable data-driven discovery [20]. Again, a standardized approach in
a controlled environment is necessary to enable correct interpretation linked to the disease status of
patients, thereby lowering the chances of false alerts in future use and preventing needless worrying
by patients.

The goal of the present study was to investigate whether a multi-parameter sensor could be
used during a standardized activity test in a controlled environment to interpret functional capacity
in the longitudinal follow-up of CR patients. Moreover, it is investigated whether the combination
of physiologically relevant features could function as a surrogate for functional capacity within a
CR population.
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2. Materials and Methods

2.1. Study Population

A total of 129 cardiovascular patients, following a multidisciplinary CR program at a single
tertiary care center (Ziekenhuis Oost-Limburg, Genk, Belgium) were recruited for the study. Patients
with heart failure and reduced ejection fraction, heart failure, and preserved ejection fraction and
cardiovascular patients with a left ventricular ejection fraction less than or equal to 55% were eligible
to participate. In addition, eligible patients were at least 18 years of age. The main exclusion criteria
were inability to exercise due to orthopedic or neurological limitations. The group of patients who
participated in this study were representative for the typical CR population. The study complied with
the Declaration of Helsinki and the local ethical committee approved the study protocol (reference
number: B371201423023). All subjects gave written informed consent prior to participation in the study.

2.2. Multidisciplinary CR Program

After a cardiovascular-related hospitalization, patients were referred to the multidisciplinary
CR program. Patients had to follow a total of 45 ambulatory rehabilitation sessions, consisting of
both aerobic and resistive exercises, at a frequency of three 1-h sessions a week. Moreover, dietary
sessions, psychological support, and social consultations were offered throughout the multidisciplinary
program. Functional capacity was assessed by a cardiopulmonary exercise test (CPET) at baseline and
at end-of-study. The HR achieved at 90% of ventilator threshold during CPET was chosen as target
HR during aerobic training. Resistive training was performed at 50–80% of one repetition maximum.
Training intensity was increased every two weeks based on patient performance.

2.3. Study Design

At study entry the baseline characteristics, medical history, clinical data, treatment scheme,
echocardiography data, and CPET results were collected from the electronic medical record.
Every patient performed a 6MWT at baseline (start of the rehabilitation program). Next, a follow-up
6MWT was performed every three weeks, for four times in total. This resulted in five 6MWTs per
patient collected throughout the study protocol. The 6MWT was performed according to a standardized
protocol [22]. Prior to the 6MWT, patients were at rest for 5 min to achieve a resting HR. Additionally,
a recuperation phase of 5 min was included after the 6MWT to achieve recovery HR. The distance
walked after 6 min (6MWD) was recorded and was used to assess functional activity throughout the
CR program. During the 6MWT, patients were equipped with a wearable multi-parameter device.
The device was attached to the chest at the level of the lower sternum. The reliability and usability of
the device was already proven in a previous study [23]. The wearable device was equipped with the
Multi Sensor Integrated Circuit chip (MUSEIC, imec the Netherlands, Eindhoven, The Netherlands),
supporting a wide range of sensor modalities, including ECG (Fs = 512 Hz) and accelerometer data
(Fs = 32 Hz). The two electrodes were positioned according to lead II of Einthoven’s triangle.

2.4. Feature Extraction

The ECG and accelerometer data retrieved from the wearable device were divided into three
different parts for each measurement. A 5-min resting phase (prior to walking), a 6-min walking phase,
and a 5-min recuperation phase (after walking). Features are calculated independently for ECG and
for accelerometer data. Features for each of the three different phases of the 6MWT were obtained.
Therefore, no downsampling or upscaling of ECG or accelerometer data was performed. At first,
artefacts within the ECG signal were automatically detected and removed after visual inspection [24].
Next, an initial automatic R-peak detection was performed using an algorithm described in [25] and
wrong detections were manually corrected. The R-peaks were used to generate the HR, from which the
HR parameters were calculated. All the parameters were smoothed using a non-overlapping sliding
window of 150 ms in which the local HR was calculated. The 150 ms sliding window was chosen to
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match the width of the widest possible QRS complex. Additionally, by calculating a local average
HR, the effects of ectopic beats on the subsequent computation of HR parameters is mitigated. Next,
the local average HR values were used to deduce HR parameters that comprise the information of
specific periods into a single output parameter. Resting HR (HRrest) was calculated by averaging the
HR values during the 5-min lasting resting phase. The maximal HR (HRmax) was extracted during
the walking phase, by finding the maximum value of the local HR averages in the final 2 min of
the recording. The average HR (HRavg) is also obtained by averaging the HR over the local average
values of the 16 min recording. The chronotropic response was equal to the difference between HRmax

and HRrest and represented the ability of the heart to respond to exercise. Time to recuperation was
calculated starting 5 s after walking, as the time required for the HR to decrease 66.6% of the range from
HRmax to HRrest. The accelerometer data was used to estimate the patient’s effort during the walking
phase of the 6MWT. Effort has previously been used as a measure of physical activity intensity [26–28].
Three non-overlapping time windows of 2 min length each, as well as for the full 6 min test duration
were used to calculate the effort. The following formula was used to estimate the effort:

effort =

√√ n∑
k=0

(Xk
2 + Yk

2 + Zk
2) (1)

The total number of accelerometer sample points considered is represented by n (n = Fs * recording
time), Xk is a vector representing the acceleration along X axis, while the other axes are represented,
respectively, by Yk, and Zk vectors. The anthropometrics features were retrieved from the patients’
electronic health records.

2.5. Linear Regression Model

To determine the strongest predictors of 6MWD a stepwise linear regression model was built
(Statistics and Machine Learning Toolbox, MATLAB, Version R2018a, Mathworks, Natick, MA, USA).
Performance and goodness of fit of the model were assessed using the root-mean-square error (RMSE)
and R-squared measures. The predictors that were included into the model were anthropometric-,
ECG-derived, and accelerometer-derived features. The anthropometrics features were age, height,
weight, and gender. Features derived from the electrocardiogram signal were HRmax, HRrest, HRavg,
chronotropic response, time to recuperation, and time to HRmax starting from the beginning of the
6MWT. Effort, an accelerometer-derived feature, together with HR parameters can function as an
objective measure of functional capacity.

2.6. Machine Learning Model Derivation

Nonlinear relations are usually difficult to be captured by ANOVA and other linear methods.
Therefore, a nonlinear model for predicting the 6MWD after a single 6MWT was explored with the
selected sensor-derived features. The dataset was divided in two sets; 80% of the subjects were
used to train our model while the remaining 20% of the patients were used for model validation.
A 20-fold-validation was performed to measure prediction error. The performance of different support
vector machine (SVM) regression models with functional capacity as target output were compared.
Different kernel types were used, i.e., radial basis function (RBF), linear, polynomial of the 2nd order,
3rd order, and 4th order. The RBF kernel is also known as the universal approximator. In other words,
it is a kernel that can approximate any other kernel depending on the sigma parameter. Sigma was
optimized. In addition, the comparison of the kernels was extended to six feature combinations.
The features used include height, chronotropic response, and effort (fitrsvm, Statistics and Machine
Learning Toolbox, MATLAB, Version R2018a, Mathworks, Natick, MA, USA). The SVM regression
model uses radial basis function kernels, with automatic scaling and enables to work with and predict
continuous output variables. The kernel scaling divides all elements of the predictor matrix by the
value of the kernel scale. Next, the appropriate kernel to compute the Gram matrix was applied.



Sensors 2020, 20, 3601 5 of 15

The kernel scaling was obtained using a heuristic procedure, which exploits subsampling, and the
results can slightly vary at each iteration. However, no significant differences were noted in the 20
times that the algorithms ran. The model used was the Iterative Single Data Analysis as presented by
Kecman et al. [29].

2.7. Feature Analysis and Tracking

Next, a state-of-the-art embedding technique that allows to visualize high dimensional data
into a simple chart was used. To this end, the t-distributed stochastic neighboring embedding
(t-SNE) technique was exploited [30] (Statistics and Machine Learning Toolbox, MATLAB, Version
R2018a, Mathworks, Natick, MA, USA). It is a technique used for dimensionality reduction enabling
the identification of relevant patterns in large datasets by creating a low dimensional graph while
preserving the structure of the high dimensional data. In addition, this algorithm works in an
unsupervised fashion, this means that no label or any a-priori knowledge was used to compute the
mapping. Chronotropic response, effort, and session number were used as input features to create a
composite of these three dimensions for each individual 6MWT. Next, to study the relation of these
composites with other anthropometric and ECG-derived features, the plots were color-coded.

3. Results

3.1. Functional Capacity

Of the 129 patients that were included in the study, 89 patients completed the total study protocol.
Forty patients were excluded from analysis due to failure to complete the total study protocol because
of health-related problems, lack of motivation, and work or family commitment. Patients showed an
increase in functional capacity throughout the CR program based on the results of the consecutive
6MWTs. A significant mean increase of 101 ± 59 m (p < 0.001) in 6MWD between baseline and
end-of-study was seen. Patient characteristics and functional capacity measures are shown in Table 1.

Table 1. Patient characteristics and functional capacity assessed based on 6-min walking distance (6MWD).

Variable Total Population (n = 89)

Anthropometric Features
Male 65 (73%)

Age, yrs 63 ± 1
Height, m 1.72 [1.70–1.74]
Weight, kg 79.2 ± 1.4
BMI, kg/m2 26.7 ± 0.4

LV ejection fraction, % 46 [43–49]
Comorbidities

Atrial fibrillation 22 (25%)
Hypertension 38 (43%)
Dyslipidemia 39 (44%)

Diabetes 12 (14%)
NYHA Class

Class I 26 (29%)
Class II 44 (49%)
Class III 19 (21%)

6MWD, m
Baseline 484 ± 96

1st follow-up 533 ± 100
2nd follow-up 564 ± 100
3rd follow-up 570 ± 103
End of study 585 ± 104

Baseline VO2 max, mL/kg/min 17.0 ± 5.1

BSA, Body Surface Area; LV, left ventricular; NYHA, New York Heart Association; 6MWD, 6-min walking distance.



Sensors 2020, 20, 3601 6 of 15

3.2. Linear Regression Model

Linear regression analysis was performed using stepwise variable selection procedures to identify
the best predictors of exercise capacity measured during a standardized 6MWT. Anthropometric,
ECG- and accelerometer-derived features were included as independent variables in the model with
6MWD as outcome measure. Non-predictors were removed to obtain a simpler model with fewer
predictors while a similar predictive accuracy was maintained. Chronotropic response and effort were
found to be the most significant predictors of 6MWD. The determination coefficient R2 of the model
was 0.661, which indicates that the 6MWD can be reasonably determined by the chronotropic response
and effort measured during the 6MWT. In other words, by using these two predictor variables 66%
of variation in the 6MWD can be defined, the RMSE was 64.8 m. The overall model prediction is
presented as an adjusted variable plot to visualize the fit of the independent variables, chronotropic
response and effort, versus the dependent variable 6MWD (Figure 1).Sensors 2020, 20, x FOR PEER REVIEW 7 of 16 
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Figure 1. Added variable plot for the whole model. The adjusted whole model visualizes the fit of
two independent variables (effort and chronotropic response) against the dependent variable. 6MWD,
6-min walking distance. R-squared: 0.661, p-value < 0.001.

3.3. Machine Learning Model Derivation

Chronotropic response and effort were the most relevant features selected by the stepwise linear
regression analysis. Next, the performance of different SVM models was investigated to further analyze
the relationship between feature combinations and the 6MWD. Table 2 shows the MEA ± SD on the
test samples for predictions with different kernel types in SVM. RBF kernels perform better than
other kernel types for most feature combinations. Additionally, based on the RBF kernel outcome,
it becomes clear that adding chronotropic response and height to IMU effort, improves the performance
of the SVM, meaning that both features have additional value. Based on MEA ± SD alone, the model
combining the three features performs best. However, the difference between the chronotropic response
+ IMU effort model (42.8 m ± 36.8 m) and the chronotropic response + IMU effort + height model
(37.7 m ± 36.2 m) is small. Moreover, height should be considered as a confounding factor as it remains
stable throughout the different measurement sessions.

The model performance was evaluated with random sampling by running 20-fold-validation.
The patient data was split into a training and validation set with a splitting percentage of 80% train—20%
validation. No significant difference was observed. Figure 2 shows the results of the 6MWD prediction
for 20% of the patients in the validation set for a single random split (n = 18 patients, accounting
for 89 6MWTs in total). The prediction curve (blue) approaches the trend of the actual 6MWD data
(red), indicating a good performance of the SVM predictor, using only chronotropic response and
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accelerometer-derived effort as input features. With the exception of some 6MWT measurement
sessions, the error on the 6MWD prediction is kept within reasonable ranges (yellow).

Table 2. Kernel type comparison in support vector machine model.

Kernel Type MAE ± STD Features

RBF 42.8 m ± 36.8 m

IMU effort, chronotropic response
Linear 55.2 m ± 51.3

Polynomial order 2 45.3 m ± 43.3 m
Polynomial order 3 58.3 m ± 55 m
Polynomial order 4 259.4 m ± 68 m

RBF 40.1 m ± 39.1 m

IMU effort, height
Linear 67.6 m ± 62.5 m

Polynomial order 2 257.3 m ± 70.3 m
Polynomial order 3 98.6 m ± 77.5 m
Polynomial order 4 284.1 m ± 92.6 m

RBF 47.2 m ± 47.6 m

IMU effort
Linear 67.7 m ± 63.2 m

Polynomial order 2 90.7 m ± 60.7 m
Polynomial order 3 267.6 m ± 57.6 m
Polynomial order 4 285.6 m ± 67.6 m

RBF 37.7 m ± 36.2 m

IMU effort, chronotropic response, height
Linear 55.0 m ± 51.8 m

Polynomial order 2 42.6 m ± 40.4 m
Polynomial order 3 44.6 m ± 50.7 m
Polynomial order 4 263.5 m ± 176 m

RBF 60.0 m ± 58.7 m

Chronotropic response
Linear 131.0 m ± 110.4 m

Polynomial order 2 75.7 m ± 71.4 m
Polynomial order 3 83.2 m ± 71.7 m
Polynomial order 4 89.9 m ± 81.1 m

RBF 67.5 m ± 67.1 m

Chronotropic response, height
Linear 100.1 m ± 85.3m

Polynomial order 2 65.5 m ± 59.3 m
Polynomial order 3 193.9 m ± 123.1 m
Polynomial order 4 250.5 m ± 408.4 m

RBF, radial basis function; MAE, mean average error; SD, standard deviation.Sensors 2020, 20, x FOR PEER REVIEW 9 of 16 
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Figure 3 shows the distribution of the error for the prediction of the 6MWD performed by the
SVM model on the validation set. The mean average error was 42.5 m (±35.5 m).
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Figure 3. Error distribution in 6MWD prediction. Mean average error is equal to 42.5 m (±35.5 m).

3.4. Feature Analysis and Tracking

A nonlinear dimensionality reduction technique, t-SNE, incorporates all relevant features for each
individual patient measurement session while plotting sessions with more similar features closer to
each other. In addition, it facilitates the visualization of relevant patterns within a high dimensional
dataset. Chronotropic response and accelerometer-derived effort were used as input features, together
with 6MWT session number, representative for the moment in rehabilitation. The axes do not strictly
represent distance or time but are the results of a composite projection of features in a 3D space.
Each point in the 3D graphs obtained in the t-SNE represent a composite of dimensions for each
individual 6MWT per patient. To visualize and study the relation of variables, not included as input
features, the composite points were color-coded. A color-coded plot for anthropometric, ECG- and
accelerometer-derived features was created. However, due to the high dimensional character of the
available dataset, only a selection of color-coded plots, representative for the most relevant features,
is shown.

Figure 4 shows the selection of color-coded plots visualizing the relation of session number,
distance, chronotropic response, and effort with the composite points. Figure 4a shows points
color-coded by measurement session number to be able to investigate the relation between the
chronotropic response, effort, and the actual moment in time in the rehabilitation program. This graph
clearly represents the role of session number as an input feature. All patients performed five 6MWTs
throughout CR, visualized by five colors ranging from dark blue to yellow. The composite points
representative for baseline 6MWT are clustered at the top of the graph (blue points), while the composite
points for the end-of-study 6MWT session are clustered at the bottom right part of the graph (yellow
points). The position of each composite point is preserved in the other graphs, however the color-code is
different for every feature that was studied. Figure 4c,d visualizes the relationship between, respectively,
the chronotropic response and effort and the composite points. The yellow color stands for high
chronotropic response and high effort, both indicators of good exercise capacity. It appears that higher
chronotropic responses and high effort reside in a subspace which is close to the high performance
6MWD. The 6MWTs characterized by a high effort and high chronotropic are clustered at the bottom
left side (yellow points) as shown in Figure 4c,d. When the same composite points are studied in the
graph that is color-coded for 6MWD, it appears that these points are characterized by a high 6MWD
(yellow) (Figure 4b). Whereas, sessions performed with low effort and low chronotropic response are
located at the right side of the graph (blue points). These composite points are characterized by low
6MWD as seen in Figure 4b.
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Figure 4. (a) t-distributed stochastic neighboring embedding (t-SNE) projection, colors represent
rehabilitation time (session number) (upper left graph); (b) t-SNE projection, colors represent distance.
Note that distance has not been used as input feature in the model, but it has only been used to color
the map (upper right graph); (c) t-SNE projection, colors represent chronotropic response (bottom left
graph); (d) t-SNE projection, colors represent effort during the last 2 min of the 6MWT (bottom right
graph). The axes do not represent distance or time but are the results of a composite projection of
features in a 3D space.

It is important to note that in Figure 4b 6MWD was only used to color-code the composite points,
6MWD was not used as an input feature to create the 3D graph.

3.5. Rehabilitation Tracking

Figure 5a shows the rehabilitation trajectories for all subjects, color-coded by the 6MWD.
The patients improve in functional capacity throughout the CR program, as visible by the increase in
6MWD and thus change in color. All patients will move from the upper to the lower part in space.
Subjects who show a large improvement throughout CR are characterized by a change in color-coding
(blue to yellow). Each patient is characterized by a unique trajectory. Figure 5b shows the trajectory
of a patient who increases more than 100 m in 6MWD throughout CR. According to the subgroups
present in Figure 4b,c, this patient can be characterized by an increase in chronotropic response and
effort throughout CR, suggesting that the patient’s heart responds better to exercise at the end of CR
compared to the start. Patient number 24 shows a small increase in 6MWD throughout CR (Figure 5c).
The patient’s chronotropic response and effort remain low. The lack in improvement can be caused by
the inability of the heart to adapt to exercise, as seen in the low chronotropic response values. Figure 5d
shows the trajectory of patient number 15 throughout the CR program. Initially, an increase in 6MWD
is seen between baseline and the second 6MWT, but the improvement stabilizes during the following
measurements. Again, this patient is characterized by a low chronotropic response and effort value
throughout CR. For these specific patients, a lower response to CR, represented by a low increase
in distance walked throughout the program, is characterized by a lower chronotropic response and
lower effort.
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Figure 5. (a) Tracking all patients during the rehabilitation program (top left); (b) tracking of
rehabilitation for patient 38. The 6MWD has increased from about 600 m (green) to more than 700 m
(yellow) between the first and last session of the rehabilitation program (top right); (c) tracking of
patient number 24. This patient shows a small difference in the 6MWD between the start and the end
of the rehabilitation program (bottom left); (d) tracking of patient number 15. This patient shows an
increase in 6MWD between baseline and the second 6MWT, stable afterwards (bottom right).

4. Discussion

4.1. Main Findings

The multifactorial complexity of CVD makes remote monitoring of patients and the translation
of CR to an in-home setting challenging. Multi-parameter devices combined with interpretable AI
can help in tackling these problems. The current study therefore investigated the usability of a
multi-parameter sensor in a CR population. Moreover, the combination of physiologically relevant
features as a surrogate for functional capacity was studied. The main findings of the current study are
(1) the combination of chronotropic response and effort, both sensor-derived biomarkers, can function
as a surrogate for functional capacity, captured during a standardized 6MWT in a CR population.
(2) A 3D representation of these combined features enables the interpretation of functional capacity
and together with the SVM regression model output, pave the road towards the implementation of
explainable machine learning techniques by healthcare personnel. (3) In addition, these visualization
techniques enable the follow-up of progression throughout CR, thereby opening up the possibility to
move rehabilitation towards an in-home setting.

4.2. Linear and Nonlinear Regression Models

The 6MWT is a submaximal exercise test that is often used in cardiopulmonary patients to evaluate
physical functional capacity. The outcome measure, the 6MWD, is representative for the ability of
these patients to perform daily activities. Accelerometers have been proposed to measure physical
performance during the 6MWT. Jehn et al. showed that both step frequency and activity counts,



Sensors 2020, 20, 3601 11 of 15

representative for effort, were strongly correlated with 6MWD [15]. In a subsequent study Jehn et al.
showed that step count and walking speed, measured during 6MWTs in their home surroundings,
were significantly correlated with 6MWD in controlled environment [14]. Other studies focused on
investigating the added value of multiparametric monitoring. Lin et al. proposed a system to monitor
cardiopulmonary parameters, i.e., HR and breathing rate, while obtaining precise walking information,
i.e., walking speed and acceleration, during a 6MWT [13]. A difference in these parameters was seen
between a smoker and nonsmoker group, indicating a difference in cardiopulmonary performance.
Altini et al. went even further and estimated functional capacity in free-living conditions in a
healthy population by combining HR and accelerometer-derived parameters measured by a wearable
device [31]. By including these predictors into the model, they were able to explain 76% of the variance in
estimated functional capacity. The regression model in our study, with chronotropic response and effort
as predictors, explained 66% of the variance in estimated 6MWD, representative for functional capacity.
Both studies presented models that gave a reasonably good prediction of functional capacity based on
solely using accelerometer- and ECG-derived features as input. The difference in model performance
can be explained by the difference in study population. A CR population is characterized by a large
diversity among patients, with physical fitness levels ranging from a very low functional capacity to a
functional capacity approaching the fitness levels of healthy subjects. As the CR patient population is
often diverse and complex, the nonlinear relationship between the aforementioned features was further
investigated. Therefore, a SVM regression model was trained to study the nonlinear relationships
between the features selected by the regression analysis and the 6MWD. A model including effort,
chronotropic response, and height showed best performance. The performance only slightly decreased
when omitting height. Therefore, the model only containing features derived from the wearable sensor
data, were compared to existing literature. Juen et al. and Salvi et al. both used machine learning
techniques to predict 6MWD based on solely accelerometer-derived features in a pulmonary patient
population [32,33]. Juen et al. was able to predict the distance with an error rate of 3.78%, while Salvi
et al. made a slight underestimation of 2.01 m (±7.84 m). These models show a better prediction of
6MWD when compared to our overestimation of 42.8 m (±36.8 m). However, as mentioned previously
the CR population is characterized by a diversity in patients which is also represented in the large
range of walking distances among patients. Despite this large variety in distances, the difference
between the distance estimated by the SVM model and the actual distance was for most patients
close to 50 m, which is considered to be the clinically significant threshold for detecting changes in
disease status [34]. Moreover, chronotropic response as an extra input feature contributed to the
ability to predict functional capacity in the CR population. This is in line with previous studies,
which have already shown that chronotropic response is a significant predictor of training response
during a CR program [35,36]. If CR is moved to an in-home setting, proper context interpretation
is necessary. It is difficult to correctly interpret the progression, performance, and motivation of the
patients based on 6MWD alone. Therefore, adding ECG features contributes to a proper interpretation
of functional capacity. In addition, the information of the response of the heart to exercise and the
intensity wherewith the exercise was performed, contributed to the remote optimization of the training
schedule of the patient. Future research can focus on the role of the additional information extracted
from the ECG signal when implemented in a remote rehabilitation setting.

4.3. 3D Visualization of Functional Capacity on Population and Personal Level

The 3D dimensional representation enables the visualization of the relations between chronotropic
response, effort, and 6MWD. Even more, the contribution of chronotropic response and effort in the
prediction of 6MWD is explained in these 3D models. On population level, a distinction between
6MWT performances can be made by only using these sensor-derived features. The high performance
6MWTs, i.e., long predicted distance, are characterized by high chronotropic response and high effort,
while for low performance 6MWTs the opposite is true. The 3D visualization enables the personalized
tracking of progression in functional capacity throughout CR. It enables the physician to not only track
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the patients’ progress, but it also allows to determine the contribution of chronotropic response and
effort in the assessment of functional capacity. Moreover, it enables to compare the performance of
different patients to one another. Therefore, being able to assess functional capacity paves the road
towards home-based CR. This type of explainable and interpretable use of machine learning techniques
are highly needed in healthcare settings as it enables to process large amounts of data but at the same
time lets the physician comprehend the outcome. AI techniques are finding their way into the world of
healthcare [21]. Machine learning approaches have been used to classify heart failure patients based
on their disease status. In addition, in the field of imaging, machine learning techniques are being used
more frequently [37–39]. The implementation of wearable technologies in CR are being investigated by
validating the ability to correctly measure specific physiological features, such as heart rate [40,41].
Our results show the potential of machine learning and sensor technology to tackle the complexity of
cardiovascular diseases, thereby facilitating, improving, and personalizing patient follow-up.

4.4. Limitations and Future Perspectives

Future studies should focus on measuring additional physiological relevant features, i.e., SpO2,
respiration rate etc., and on studying their role in assessing functional capacity in order to further
refine the models and to improve the prediction capacity of the models. Investigating whether the
model prediction would improve when applied in specific subpopulations within the CR population,
would also be of interest. However, this requires the inclusion of additional patients. In addition,
although the 3D visualization enables the interpretation of the contribution of chronotropic response
and effort in the assessment of functional capacity, it should be noted that a limitation to this technique
is that the 3D visualization is not straightforward. Therefore, in the future an alternative to the 3D
graphs should be considered for interpretation by the physicians.

5. Conclusions

To conclude, the main findings of the study were as follows: (1) the combination of sensor-derived
biomarkers, i.e., chronotropic response and effort, can function as a surrogate for functional capacity in
a CR population during a standardized 6MWT. (2) A 3D representation of these combined features
facilitates the interpretation of this functional capacity surrogate. (3) These visualization techniques
enable the follow-up of progression throughout a CR program by tracking the movement on patient
level throughout the graph with respect to chronotropic response and effort. Finally, these findings
pave the road towards the implementation of machine learning techniques that are interpretable by
healthcare personnel and can facilitate the translation of CR to an in-home setting.
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