
sensors

Letter

Real-Time Moving Object Detection in
High-Resolution Video Sensing

Haidi Zhu 1,2, Haoran Wei 3 , Baoqing Li 1,* , Xiaobing Yuan 1 and Nasser Kehtarnavaz 3

1 Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information
Technology, Chinese Academy of Sciences, Shanghai 201800, China; hdzhu@mail.sim.ac.cn (H.Z.);
sinowsn@mail.sim.ac.cn (X.Y.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Electrical and Computer Engineering, University of Texas at Dallas,

Richardson, TX 75080, USA; Haoran.Wei@utdallas.edu (H.W.); kehtar@utdallas.edu (N.K.)
* Correspondence: sinoiot@mail.sim.ac.cn

Received: 21 May 2020; Accepted: 22 June 2020; Published: 25 June 2020
����������
�������

Abstract: This paper addresses real-time moving object detection with high accuracy in high-resolution
video frames. A previously developed framework for moving object detection is modified to enable
real-time processing of high-resolution images. First, a computationally efficient method is employed,
which detects moving regions on a resized image while maintaining moving regions on the original
image with mapping coordinates. Second, a light backbone deep neural network in place of a more
complex one is utilized. Third, the focal loss function is employed to alleviate the imbalance between
positive and negative samples. The results of the extensive experimentations conducted indicate that
the modified framework developed in this paper achieves a processing rate of 21 frames per second
with 86.15% accuracy on the dataset SimitMovingDataset, which contains high-resolution images of
the size 1920 × 1080.

Keywords: real-time moving object detection; high-resolution object detection; deep neural network
moving object detection

1. Introduction

In high-resolution monitoring systems, the capability for real-time processing is needed for
object detection applications. The large amount of data required by high-resolution images poses a
challenge to achieving real-time moving object detection. In addition, difficulties exist when dealing
with complex backgrounds, illumination changes, local motion such as waving trees, dust trailing,
camouflage objects, etc.

Existing methods for moving object detection include background subtraction [1–5], frame
differencing [6,7], optical flow [8–10], ViBe [11,12] and deep learning [13–18]. Accuracies are adversely
affected when using these methods to achieve real-time detection due to high image resolution and
environmental complexities. For example, frame differencing is affected by local motion. When using
optical flow methods, its two basic assumptions (constant brightness and slow-motion) are often not
met in practice. Furthermore, when using these methods, the category and precise coordinates of
each moving object cannot be obtained without the assistance of other algorithms. To some extent,
these difficulties can be addressed by combining feature extraction and classification [19,20], but the
classification results do not address the situation of moving regions as a group.

Recently, a considerable amount of effort has gone into studying moving object detection with
deep learning methods. However, the input of deep neural networks is generally much smaller than a

Sensors 2020, 20, 3591; doi:10.3390/s20123591 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0666-5551
https://orcid.org/0000-0002-7243-9229
http://dx.doi.org/10.3390/s20123591
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/12/3591?type=check_update&version=3

Sensors 2020, 20, 3591 2 of 15

high-resolution image of the size 1920 × 1080. Thus, it is normally difficult to achieve both good speed
and accuracy at the same time.

In this paper, the improvement of a previously proposed coarse-to-fine grained framework for
moving object detection is discussed in order to achieve real-time detection with high accuracy. Initially,
the method to obtain moving regions in the coarse-grained detection stage of the previous framework
is modified to increase the computation speed. Then, the backbone of YOLOV3 [21] in the fine-grained
detection stage of the previous framework is modified to further increase the computation speed
while maintaining good accuracy. Furthermore, a focal loss function [22] is employed to alleviate the
imbalance between positive and negative samples.

2. Related Works

For moving object detection, different approaches based on the difference in color distribution or
pixel intensity have been proposed by researchers, e.g., [1–4,6–10,23], to eliminate the background in
video frames. A widely used algorithm with low computational complexity is frame differencing [6,7],
which utilizes the gray level difference between two or three adjacent video frames. However, frame
differencing is vulnerable to various interferences caused by local motions and complex scenes. Optical
flow methods are based on the assumption that the pixel intensity of objects in the image does not
change between successive frames, and also that object motions are relatively slow.

After moving object detection, connected region labeling algorithms can be employed to obtain
the coordinates of moving regions. Many works are reported in the literature, e.g., [24–30], for
labeling connected components. However, these methods suffer from high computational complexity.
Moreover, these methods have difficulty in merging noise-broken objects. To address this issue, in [31],
we presented an efficient algorithm to detect connected regions and merge broken objects at the same
time with low computational complexity.

With the recent advancement made in deep learning algorithms (in particular, convolutional
neural networks), more effective solutions in terms of higher-accuracy object detection are reported in
the literature. More specifically, two-stage detectors [32–37] are found to produce accurate detection
outcomes. One-stage detectors [21,38–42] are introduced to gain computational efficiency. However,
for moving object detection that involves high-resolution images, convolutional neural networks face
several limitations [31], including (i) the inability to recognize motion and (ii) the generally much
smaller input relative to high-resolution images of the size 1920 × 1080. We proposed the coarse-to-fine
grained framework in [31] to address these issues. In that paper, moving regions were obtained during
the coarse-grained stage. After that, in order to improve accuracy, a fine-grained detection stage was
employed based on the moving regions obtained during the coarse-grained stage. As a result, more
accurate coordinates and categories were obtained. However, the issue of achieving a satisfactory
trade-off between detection accuracy and computational efficiency still remained.

Thus, in this paper, the objective is to achieve real-time detection together with high accuracy.
First, the framework in [31] is used as the starting point. In the coarse-grained detection stage, a more
efficient method is considered to obtain moving regions. In order to achieve a higher computation
speed, the network structure is modified to a light one. As a result, more accurate coordinates and
categories of moving objects are obtained at a higher computation speed in the fine-grained detection
stage. Finally, a so-called focal loss function is employed to improve the final outcome. Extensive
experimentations are conducted to examine the performance of these modifications for real-time
moving object detection on high-resolution (1920 × 1080) images.

More specifically, the contributions of this paper are summarized below:

1. In the coarse-grained detection stage, a more computationally efficient method is developed to
obtain moving regions in high-resolution (1920 × 1080) images.

2. The deep neural network is changed to a light one in the fine-grained detection stage to improve
computational efficiency.

Sensors 2020, 20, 3591 3 of 15

3. The focal loss function is utilized to improve accuracy while alleviating the imbalance between
positive and negative samples.

The rest of the paper is organized as follows: Section 3 discusses the details associated with
the above steps. In Section 4, the experimental results are stated and discussed. The paper is then
concluded in Section 5.

3. Improved Moving Object Detection Framework

In this section, the improvements made to our previously developed framework for moving object
detection are discussed. Figure 1 illustrates the modules of the improved framework developed in
this paper. The modifications are highlighted with bold boxes. Let us begin with the coarse-grained
detection block or stage, which consists of moving object detection with downsampling together with
low-pass filtering and morphology filtering (opening operation). Then, adjustments are made to the
framework in [31] to obtain connected region detection by mapping the coordinates of moving regions
to the original image. In addition, in order to obtain more complete moving regions, the regions are
extended. After cropping, the regions obtained in the coarse-grained detection stage are fed into a
modified network to enable fine-grained detection. As moving objects are initially detected in the
coarse-grained detection stage, in the fine-grained detection stage, objects occupy larger areas in the
regions. Hence, the input size of the deep neural network becomes 320 × 320, or smaller than the size
416 × 416 used in YOLOV3 [21].

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15

The rest of the paper is organized as follows: Section 3 discusses the details associated with the

above steps. In Section 4, the experimental results are stated and discussed. The paper is then

concluded in Section 5.

3. Improved Moving Object Detection Framework

In this section, the improvements made to our previously developed framework for moving

object detection are discussed. Figure 1 illustrates the modules of the improved framework developed

in this paper. The modifications are highlighted with bold boxes. Let us begin with the coarse-grained

detection block or stage, which consists of moving object detection with downsampling together with

low-pass filtering and morphology filtering (opening operation). Then, adjustments are made to the

framework in [31] to obtain connected region detection by mapping the coordinates of moving

regions to the original image. In addition, in order to obtain more complete moving regions, the

regions are extended. After cropping, the regions obtained in the coarse-grained detection stage are

fed into a modified network to enable fine-grained detection. As moving objects are initially detected

in the coarse-grained detection stage, in the fine-grained detection stage, objects occupy larger areas

in the regions. Hence, the input size of the deep neural network becomes 320 × 320, or smaller than

the size 416 × 416 used in YOLOV3 [21].

Finally, according to the positional relationship between objects and moving regions, the

coordinates on the original image (1920 × 1080) are obtained. Basically, the framework mainly

contains a moving detection module with downsampling, a connected region extraction module with

region mapping and an object detection module with a light backbone.

Figure 1. Developed a modified moving object detection framework.

3.1. Coarse-Grained Detection Stage

In the coarse-grained detection stage, low-pass filtering and morphology filtering are performed

to reduce the ill effects of noises. First, video frames are resized by downsampling to reduce the

amount of data. Then, each resized image is filtered by low-pass filtering to eliminate high-frequency

noises. After that, a moving detection algorithm is applied to two consecutive frames for detecting

motion. Finally, a morphology filtering operation (opening operation) is performed to further

suppress the ill effects of noises. Furthermore, the outcome is refined by fine-grained detection.

Due to the considerable amount of data associated with high-resolution scenes, frame

differencing is used here for moving object detection, as it is simple to implement and responsive to

nearly all movements. In [31], frame differencing was also employed because of its low computational

complexity and high sensitivity to movements, and the comparison with other algorithms such as

GMM showed its effectiveness. In the coarse-grained detection stage, in order to reduce the ill effects

of noises, low-pass filtering and morphology filtering are performed. Note that frame differencing,

low-pass filtering and morphology filtering are conducted pixel by pixel. Therefore, the process is

still time-consuming and requires a considerable amount of runtime. Hence, in this paper,

downsampling is considered to achieve higher computational efficiency, reducing the amount of

computation. For downsampling, the Nearest Neighbor Interpolation algorithm is employed, which

Moving Detection
Mathematical
Morphology

region detection

Regions

ExtensionModified network

Regression Results

Classification
Results

Coarse-grained detection

Fine-grained detection

Filtering

Region mapping

Down sampling

Connected region detection

Mapping

Figure 1. Developed a modified moving object detection framework.

Finally, according to the positional relationship between objects and moving regions, the
coordinates on the original image (1920 × 1080) are obtained. Basically, the framework mainly
contains a moving detection module with downsampling, a connected region extraction module with
region mapping and an object detection module with a light backbone.

3.1. Coarse-Grained Detection Stage

In the coarse-grained detection stage, low-pass filtering and morphology filtering are performed
to reduce the ill effects of noises. First, video frames are resized by downsampling to reduce the
amount of data. Then, each resized image is filtered by low-pass filtering to eliminate high-frequency
noises. After that, a moving detection algorithm is applied to two consecutive frames for detecting
motion. Finally, a morphology filtering operation (opening operation) is performed to further suppress
the ill effects of noises. Furthermore, the outcome is refined by fine-grained detection.

Due to the considerable amount of data associated with high-resolution scenes, frame differencing
is used here for moving object detection, as it is simple to implement and responsive to nearly all
movements. In [31], frame differencing was also employed because of its low computational complexity
and high sensitivity to movements, and the comparison with other algorithms such as GMM showed its
effectiveness. In the coarse-grained detection stage, in order to reduce the ill effects of noises, low-pass
filtering and morphology filtering are performed. Note that frame differencing, low-pass filtering

Sensors 2020, 20, 3591 4 of 15

and morphology filtering are conducted pixel by pixel. Therefore, the process is still time-consuming
and requires a considerable amount of runtime. Hence, in this paper, downsampling is considered to
achieve higher computational efficiency, reducing the amount of computation. For downsampling, the
Nearest Neighbor Interpolation algorithm is employed, which is computationally efficient and easy to
implement. Furthermore, the moving regions are refined in the fine-grained detection stage.

With the connected region detection algorithm, the coordinates of each moving region on the
downsampled image are obtained. However, after downsampling, small objects in the image would
appear smaller. To address the adverse impact of downsampling for small objects, moving regions in
the downsampled image obtained by the coarse-grained detection stage are mapped to the original
size image for the fine-grained detection stage. In other words, the coordinates of moving regions on
the original size image are found before applying the fine-grained detection stage.

Assuming that the upper-left and lower-right coordinates of the moving region on the
downsampled image are (x0, y0) and (x1, y1), respectively, let the coordinates of the corresponding
regions on the original image be represented by [(xmin, ymin), (xmax, ymax)], as defined in Equation (1),
where scale denotes the scale of downsampling, which is considered to be 5 in this work. Furthermore,
the regions on the original image are expanded to make sure a complete moving region for the
fine-grained detection stage can be obtained.

xmin = x0 ∗ scale, ymin = y0 ∗ scale
xmax = x1 ∗ scale, ymax = y0 ∗ scale

(1)

3.2. Fine-Grained Detection Stage

3.2.1. Light Deep Neural Network Backbone

In [31], MTiny YOLOV3 with a small input size and fewer anchors was employed in the
fine-grained detection stage to gain a faster computation speed. Although a faster speed was obtained,
the accuracy dropped considerably (from 88.59% to 80.77%). Therefore, Mobilenet, the deep neural
network proposed in [43], is used by substituting the backbone of YOLOV3 (Mobilenet-YOLOV3) in
the fine-grained detection stage. Mobilenet-YOLOV3 makes predictions based on three scales with a
light backbone, with Mobilenet extracting the features. In Mobilenet, depthwise separable convolution
consists of depthwise convolution and pointwise convolution to gain computational efficiency. Since
objects occupy a large area of the moving regions obtained in the coarse-grained detection stage, the
use of a complex network is eased and a light backbone can still achieve favorable accuracy.

3.2.2. Modified Loss Function

For the one-stage detector, one critical issue has an ill effect on the detection accuracy due to the
imbalance in the proportion of positive and negative samples. In order to alleviate this imbalance and
make the network focus on the samples simultaneously, the focal loss function [22] defined in Equation
(2) is employed for training, where y’ denotes the predicted value and y is the label. In Equation (2) a
and b are utilized to balance the importance of positive and negative samples and make the network
pay more attention to the samples separately. For the results reported in this paper, a is set to 0.75 and
b is set to 2. Therefore, with focal loss, higher detection accuracy is achievable with a similar inference
computation speed.

L f ocal =

 −a(1− y′)blogy′, y = 1
−(1− a)y′blog(1− y′), y = 0

(2)

4. Experimental Results and Discussion

In this section, the results of extensive experimentations conducted show the effectiveness of
the modified framework. This framework was implemented on a standard GPU (NVIDIA GeForce
GTX 1080TI). The dataset used is SimitMovingDataset, the same as the one used in [31] (1920 ×

Sensors 2020, 20, 3591 5 of 15

1080). This dataset incorporates various challenging scenarios, such as local motion, camouflage,
multi-scale objects, occlusion, illumination changes, complex background and dust trailing. The mean
Average Precision (mAP) discussed in [31] is utilized here to measure the detection accuracy in order
to incorporate both the regression and classification aspects of the developed framework. In addition,
a commonly used metric AP75 is computed. If not otherwise specified in the paper, the detection
accuracy is measured based on mAP.

4.1. Downsampling in Coarse-Grained Detection Stage

In order to examine the effectiveness of the framework with downsampling, the original framework
in [31] was also tested to compare the performance in terms of runtime and accuracy, as evidenced in
Table 1. In Table 1, blur size is the parameter of the low-pass filtering, which determines the degree of
filtering. Larger sizes lead to more blurring in the output image and more computational complexity.
Moreover, the threshold is the parameter associated with frame differencing, which affects movement
detection. Small thresholds lead to pixels with a smaller difference in intensity values between two
consecutive frames to be regarded as moving pixels. For the results reported in the following parts,
blur size is set to 11 and the threshold is set to 15. Compared with the results of the framework
in [31] (see Table 2), the modified framework with downsampling provided better execution time with
higher accuracy.

Table 1. Results of the original framework with downsampling.

Blur Size Threshold Time (s) mAP (%) AP75 (%)

11 15 0.088 85.84 72.04
11 20 0.078 81.32 69.01
11 25 0.070 74.61 64.34
15 15 0.071 77.59 66.94
9 20 0.088 84.50 69.78

Table 2. Results of different thresholds T0 [31] representing the maximum number of regions detected
sequentially on one video frame.

T0 mAP (%) Time (s)

50 88.59 0.112
10 84.24 0.105
8 81.71 0.103
6 73.34 0.093
4 66.13 0.081
0 48.24 0.059

As an example of the effectiveness of downsampling, Figure 2 illustrates the outcome of the
coarse-grained detection stage consisting of moving object detection with low-pass filtering and
morphology filtering (the left column), as well as the outcome with downsampling (the right column).
From this figure, it can be observed that the coarse-grained detection with downsampling is comparable.
This observation is further supported by the outcome shown in Figure 3, which is the output of the
entire framework with downsampling, Mobilenet backbone and focal loss mentioned in Section 4.2.

Sensors 2020, 20, 3591 6 of 15

Sensors 2020, 20, x FOR PEER REVIEW 5 of 15

incorporate both the regression and classification aspects of the developed framework. In addition, a

commonly used metric AP75 is computed. If not otherwise specified in the paper, the detection

accuracy is measured based on mAP.

4.1. Downsampling in Coarse-Grained Detection Stage

In order to examine the effectiveness of the framework with downsampling, the original

framework in [31] was also tested to compare the performance in terms of runtime and accuracy, as

evidenced in Table 1. In Table 1, blur size is the parameter of the low-pass filtering, which determines

the degree of filtering. Larger sizes lead to more blurring in the output image and more

computational complexity. Moreover, the threshold is the parameter associated with frame

differencing, which affects movement detection. Small thresholds lead to pixels with a smaller

difference in intensity values between two consecutive frames to be regarded as moving pixels. For

the results reported in the following parts, blur size is set to 11 and the threshold is set to 15.

Compared with the results of the framework in [31] (see Table 2), the modified framework with

downsampling provided better execution time with higher accuracy.

As an example of the effectiveness of downsampling, Figure 2 illustrates the outcome of the

coarse-grained detection stage consisting of moving object detection with low-pass filtering and

morphology filtering (the left column), as well as the outcome with downsampling (the right

column). From this figure, it can be observed that the coarse-grained detection with downsampling

is comparable. This observation is further supported by the outcome shown in Figure 3, which is the

output of the entire framework with downsampling, Mobilenet backbone and focal loss mentioned

in Section 4.2.

Table 1. Results of the original framework with downsampling.

Blur size Threshold Time (s) mAP (%) AP75 (%)

11 15 0.088 85.84 72.04

11 20 0.078 81.32 69.01

11 25 0.070 74.61 64.34

15 15 0.071 77.59 66.94

9 20 0.088 84.50 69.78

(a) (b)

(c) (d) Sensors 2020, 20, x FOR PEER REVIEW 6 of 15

(e) (f)

Figure 2. Outcomes of the coarse-grained detection without downsampling (a,c,e) and with

downsampling (b,d,f). The left column and right column correspond to the same images.

Table 2. Results of different thresholds T0 [31] representing the maximum number of regions detected

sequentially on one video frame.

T0 mAP (%) Time (s)

50 88.59 0.112

10 84.24 0.105

8 81.71 0.103

6 73.34 0.093

4 66.13 0.081

0 48.24 0.059

(a) (b)

(c) (d)

Figure 2. Outcomes of the coarse-grained detection without downsampling (a,c,e) and with
downsampling (b,d,f). The left column and right column correspond to the same images.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 15

(e) (f)

Figure 2. Outcomes of the coarse-grained detection without downsampling (a,c,e) and with

downsampling (b,d,f). The left column and right column correspond to the same images.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Outcomes of the framework without downsampling (a,c,e) and with downsampling (b,d,f).

The left column and right column correspond to the same images.

4.2. Improvements in Fined-Grained Detection Stage

4.2.1. Light Backbone

From the results shown in Section 4.1, it can be observed that a higher speed was obtained with

downsampling, but the accuracy dropped considerably when the speed was much higher. Therefore,

Figure 3. Cont.

Sensors 2020, 20, 3591 7 of 15

Sensors 2020, 20, x FOR PEER REVIEW 6 of 15

(e) (f)

Figure 2. Outcomes of the coarse-grained detection without downsampling (a,c,e) and with

downsampling (b,d,f). The left column and right column correspond to the same images.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Outcomes of the framework without downsampling (a,c,e) and with downsampling (b,d,f).

The left column and right column correspond to the same images.

4.2. Improvements in Fined-Grained Detection Stage

4.2.1. Light Backbone

From the results shown in Section 4.1, it can be observed that a higher speed was obtained with

downsampling, but the accuracy dropped considerably when the speed was much higher. Therefore,

Figure 3. Outcomes of the framework without downsampling (a,c,e) and with downsampling (b,d,f).
The left column and right column correspond to the same images.

4.2. Improvements in Fined-Grained Detection Stage

4.2.1. Light Backbone

From the results shown in Section 4.1, it can be observed that a higher speed was obtained with
downsampling, but the accuracy dropped considerably when the speed was much higher. Therefore,
it was not possible to achieve real-time detection with high accuracy using only downsampling. In
order to further improve the computational efficiency, a light backbone, Mobilenet, was employed to
extract the features.

To explore the computational efficiency of the framework with a light backbone, experiments
were conducted to compare the original framework [31] and the modified framework with a light
backbone. The results reported in Table 3 show that the modified framework performed approximately
1.67 times faster than the framework with YOLOV3 [31]. Furthermore, the accuracy dropped by only
0.84%. Compared with the framework with MTiny YOLOV3 [31], the results of the framework with
Mobilenet-YOLOV3 show advantages in terms of accuracy with fast runtime. From Table 3, it can
also be seen that it is difficult for MTiny YOLOV3 (input image size of 96*96) to obtain high accuracy
regression bounding boxes.

Table 3. Results of the frameworks with different networks in the fine-grained detection stage.

Framework Time (s) mAP (%) AP75 (%)

Original framework with YOLOV3 0.112 88.59 73.69
Original framework with MTiny YOLOV3 0.043 80.77 36.44

Framework with Mobilenet-YOLOV3 0.067 87.85 70.26

4.2.2. Further Improvement for Downsampling

In order to obtain higher computational efficiency, downsampling was employed in the framework
with Mobilenet-YOLOV3. As shown in Table 4, compared with the modified framework without
downsampling, it can be observed that the modified framework with downsampling obtained
approximately 1.40 times speedup. In addition, as shown in Tables 3 and 4, the modified framework
outperformed the original framework with MTiny YOLOV3 in terms of accuracy, 4.12% higher with
similar execution time. The importance of the framework with a light backbone and downsampling
is in conducting real-time detection with favorable accuracy. Furthermore, from a qualitative
perspective, Figure 4 illustrates the effectiveness of the modified framework with Mobilenet-YOLOV3
and downsampling.

Sensors 2020, 20, 3591 8 of 15

Table 4. Results of the framework based on Mobilenet-YOLOV3 with and without downsampling.

Network Downsampling Time (s) mAP (%) AP75 (%)

Mobilenet-YOLOV3 N 0.067 87.85 70.26
Mobilenet-YOLOV3 Y 0.048 84.10 64.04

Sensors 2020, 20, x FOR PEER REVIEW 7 of 15

(e) (f)

Figure 3. Outcomes of the framework without downsampling (a,c,e) and with downsampling (b,d,f).

The left column and right column correspond to the same images.

4.2. Improvements in Fined-Grained Detection Stage

4.2.1. Light Backbone

From the results shown in Section 4.1, it can be observed that a higher speed was obtained with

downsampling, but the accuracy dropped considerably when the speed was much higher. Therefore,

it was not possible to achieve real-time detection with high accuracy using only downsampling. In

order to further improve the computational efficiency, a light backbone, Mobilenet, was employed to

extract the features.

To explore the computational efficiency of the framework with a light backbone, experiments

were conducted to compare the original framework [31] and the modified framework with a light

backbone. The results reported in Table 3 show that the modified framework performed

approximately 1.67 times faster than the framework with YOLOV3 [31]. Furthermore, the accuracy

dropped by only 0.84%. Compared with the framework with MTiny YOLOV3 [31], the results of the

framework with Mobilenet-YOLOV3 show advantages in terms of accuracy with fast runtime. From

Table 3, it can also be seen that it is difficult for MTiny YOLOV3 (input image size of 96*96) to obtain

high accuracy regression bounding boxes.

Table 3. Results of the frameworks with different networks in the fine-grained detection stage.

Framework Time (s) mAP (%) AP75 (%)

Original framework with YOLOV3 0.112 88.59 73.69

Original framework with MTiny YOLOV3 0.043 80.77 36.44

Framework with Mobilenet-YOLOV3 0.067 87.85 70.26

4.2.2. Further Improvement for Downsampling

In order to obtain higher computational efficiency, downsampling was employed in the

framework with Mobilenet-YOLOV3. As shown in Table 4, compared with the modified framework

without downsampling, it can be observed that the modified framework with downsampling

obtained approximately 1.40 times speedup. In addition, as shown in Tables 3 and 4, the modified

framework outperformed the original framework with MTiny YOLOV3 in terms of accuracy, 4.12%

higher with similar execution time. The importance of the framework with a light backbone and

downsampling is in conducting real-time detection with favorable accuracy. Furthermore, from a

qualitative perspective, Figure 4 illustrates the effectiveness of the modified framework with

Mobilenet-YOLOV3 and downsampling.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 15

Figure 4. Outcomes of the framework with Mobilenet-YOLOV3 and downsampling.

4.2.3. Focal Loss

Tables 3 and 4 provide the advantages of the modified framework with Mobilenet-YOLOV3 over

that with YOLOV3 or MTiny YOLOV3 in terms of establishing a balance between computational

efficiency and detection accuracy. To address the imbalance of negative and positive samples, the

focal loss function was employed. The number of anchors per grid was altered to 2 to achieve a better

balance between positive and negative samples. To study the effectiveness of focal loss, ablation

experiments were conducted on the framework with Mobilenet-YOLOV3. Different components

were omitted in the framework to observe the effectiveness of each component, including focal loss

and downsampling. As shown in Tables 4 and 5, one sees the obvious benefits of focal loss, as

confirmed visually in Figure 5. In addition, from Table 5, the detection accuracy (AP75) is seen to be

similar for the modified framework with and without downsampling. In other words, it is seen that

downsampling with an extension operation (in the fine-grained detection stage) would not have an

adverse impact on the samples that are easier detected (corresponding to more accurate predicted

bounding boxes) based on Mobilenet-YOLOV3 and focal loss.

Table 4. Results of the framework based on Mobilenet-YOLOV3 with and without downsampling.

Network Downsampling Time (s) mAP (%) AP75 (%)

Mobilenet-

YOLOV3
N 0.067 87.85 70.26

Mobilenet-

YOLOV3
Y 0.048 84.10 64.04

Figure 4. Outcomes of the framework with Mobilenet-YOLOV3 and downsampling.

4.2.3. Focal Loss

Tables 3 and 4 provide the advantages of the modified framework with Mobilenet-YOLOV3 over
that with YOLOV3 or MTiny YOLOV3 in terms of establishing a balance between computational
efficiency and detection accuracy. To address the imbalance of negative and positive samples, the
focal loss function was employed. The number of anchors per grid was altered to 2 to achieve a better
balance between positive and negative samples. To study the effectiveness of focal loss, ablation
experiments were conducted on the framework with Mobilenet-YOLOV3. Different components were
omitted in the framework to observe the effectiveness of each component, including focal loss and
downsampling. As shown in Tables 4 and 5, one sees the obvious benefits of focal loss, as confirmed
visually in Figure 5. In addition, from Table 5, the detection accuracy (AP75) is seen to be similar for the
modified framework with and without downsampling. In other words, it is seen that downsampling
with an extension operation (in the fine-grained detection stage) would not have an adverse impact on
the samples that are easier detected (corresponding to more accurate predicted bounding boxes) based
on Mobilenet-YOLOV3 and focal loss.

Sensors 2020, 20, 3591 9 of 15

Table 5. Results of the modified framework with focal loss with and without downsampling.

Framework Downsampling Time (s) mAP (%) AP75 (%)

Modified framework with Focal loss N 0.067 88.59 71.42
Modified framework with Focal loss Y 0.048 86.15 71.61

Sensors 2020, 20, x FOR PEER REVIEW 9 of 15

Figure 5. Outcomes of the framework with focal loss and downsampling.

Table 5. Results of the modified framework with focal loss with and without downsampling.

Framework Downsampling Time (s) mAP (%) AP75 (%)

Modified framework with Focal loss N 0.067 88.59 71.42

Modified framework with Focal loss Y 0.048 86.15 71.61

4.3. Discussion on Input Size

Generally, the input size of the network has a certain influence on the detection accuracy and

execution time. In the experimentations provided in this subsection, several input sizes were

examined. For fine-grained detection, the detected regions are obtained after the coarse-grained

detection. Objects occupy a large area, and thus, a large input size is not necessary. In addition, with

the size of 320 × 320, the imbalance of positive and negative samples is alleviated to some degree. As

shown in Table 6, an input size of 320 × 320 shows advantages in terms of detection accuracy and

computational efficiency, which is further verified visually in Figures 6–8, with the outcome in Figure

8 being better than those in Figures 6 and 7. Furthermore, as seen in Table 6, the detection accuracy

(AP75) using a 96 × 96 input size with downsampling is not inferior to that without downsampling.

In other words, downsampling with an extension operation (in the fine-grained detection stage)

would not have an adverse impact on the samples that are more easily detected for obtaining accurate

bounding boxes.

Figure 5. Outcomes of the framework with focal loss and downsampling.

4.3. Discussion on Input Size

Generally, the input size of the network has a certain influence on the detection accuracy and
execution time. In the experimentations provided in this subsection, several input sizes were examined.
For fine-grained detection, the detected regions are obtained after the coarse-grained detection. Objects
occupy a large area, and thus, a large input size is not necessary. In addition, with the size of 320 × 320,
the imbalance of positive and negative samples is alleviated to some degree. As shown in Table 6, an
input size of 320 × 320 shows advantages in terms of detection accuracy and computational efficiency,
which is further verified visually in Figures 6–8, with the outcome in Figure 8 being better than those
in Figures 6 and 7. Furthermore, as seen in Table 6, the detection accuracy (AP75) using a 96 × 96 input
size with downsampling is not inferior to that without downsampling. In other words, downsampling
with an extension operation (in the fine-grained detection stage) would not have an adverse impact on
the samples that are more easily detected for obtaining accurate bounding boxes.

Sensors 2020, 20, 3591 10 of 15

Sensors 2020, 20, x FOR PEER REVIEW 10 of 15

(a) (b)

(c) (d)

(e) (f)

Figure 6. Outcomes of the framework with 416 × 416 input size without downsampling (a,c,e) and

with downsampling (b,d,f). The left column and right column correspond to the same images.

Table 6. Results of the framework with focal loss, with and without downsampling on different input

sizes.

Input Size Downsampling (Y/N) Time (s) mAP (%) AP75 (%)

416*416 N 0.079 86.62 67.97

416*416 Y 0.048 82.03 66.65

320*320 N 0.067 88.59 71.42

320*320 Y 0.048 86.15 71.61

96*96 N 0.060 68.78 21.62

96*96 Y 0.031 63.77 29.44

(a) (b)

Figure 6. Outcomes of the framework with 416 × 416 input size without downsampling (a,c,e) and
with downsampling (b,d,f). The left column and right column correspond to the same images.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 15

(a) (b)

(c) (d)

(e) (f)

Figure 6. Outcomes of the framework with 416 × 416 input size without downsampling (a,c,e) and

with downsampling (b,d,f). The left column and right column correspond to the same images.

Table 6. Results of the framework with focal loss, with and without downsampling on different input

sizes.

Input Size Downsampling (Y/N) Time (s) mAP (%) AP75 (%)

416*416 N 0.079 86.62 67.97

416*416 Y 0.048 82.03 66.65

320*320 N 0.067 88.59 71.42

320*320 Y 0.048 86.15 71.61

96*96 N 0.060 68.78 21.62

96*96 Y 0.031 63.77 29.44

(a) (b)

Figure 7. Cont.

Sensors 2020, 20, 3591 11 of 15

Sensors 2020, 20, x FOR PEER REVIEW 11 of 15

(c) (d)

(e) (f)

Figure 7. Outcomes of the framework with 96*96 input size without downsampling (a,c,e) and with

downsampling (b,d,f). The left column and right column correspond to the same images.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Outcomes of the framework with 96*96 input size without downsampling (a,c,e) and with
downsampling (b,d,f). The left column and right column correspond to the same images.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 15

(c) (d)

(e) (f)

Figure 7. Outcomes of the framework with 96*96 input size without downsampling (a,c,e) and with

downsampling (b,d,f). The left column and right column correspond to the same images.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Outcomes of the framework with 320 × 320 input size without downsampling (a,c,e) and
with downsampling (b,d,f). The left column and right column correspond to the same images.

Sensors 2020, 20, 3591 12 of 15

Table 6. Results of the framework with focal loss, with and without downsampling on different
input sizes.

Input Size Downsampling (Y/N) Time (s) mAP (%) AP75 (%)

416*416 N 0.079 86.62 67.97
416*416 Y 0.048 82.03 66.65
320*320 N 0.067 88.59 71.42
320*320 Y 0.048 86.15 71.61

96*96 N 0.060 68.78 21.62
96*96 Y 0.031 63.77 29.44

4.4. Ablation Analysis

In the experimentations reported in this subsection, each modified component, including
downsampling, light backbone and focal loss, was omitted separately to examine its effectiveness. The
results obtained are shown in Table 7. As seen in Figure 9, the final outcome of the framework with
Mobilenet-YOLOV3, focal loss and downsampling worked well on the high-resolution video frames
(1920 × 1080).

Sensors 2020, 20, x FOR PEER REVIEW 12 of 15

Figure 8. Outcomes of the framework with 320 × 320 input size without downsampling (a,c,e) and

with downsampling (b,d,f). The left column and right column correspond to the same images.

4.4. Ablation Analysis

In the experimentations reported in this subsection, each modified component, including

downsampling, light backbone and focal loss, was omitted separately to examine its effectiveness.

The results obtained are shown in Table 7. As seen in Figure 9, the final outcome of the framework

with Mobilenet-YOLOV3, focal loss and downsampling worked well on the high-resolution video

frames (1920 × 1080).

Table 7. Results of the framework with different components.

Network Downsampling Focal Loss Time (s) mAP (%) AP75 (%)

YOLOV3 N N 0.112 88.59 73.69

MTiny YOLOV3 N N 0.043 80.77 36.44

Mobilenet-

YOLOV3
N N 0.067 87.85 70.26

Mobilenet-

YOLOV3
Y N 0.048 84.10 64.04

Mobilenet-

YOLOV3
N Y 0.067 88.59 71.42

Mobilenet-

YOLOV3
Y Y 0.048 86.15 71.61

Figure 9. Outcomes of the entire framework. Figure 9. Outcomes of the entire framework.

Sensors 2020, 20, 3591 13 of 15

Table 7. Results of the framework with different components.

Network Downsampling Focal Loss Time (s) mAP (%) AP75 (%)

YOLOV3 N N 0.112 88.59 73.69
MTiny YOLOV3 N N 0.043 80.77 36.44

Mobilenet-YOLOV3 N N 0.067 87.85 70.26
Mobilenet-YOLOV3 Y N 0.048 84.10 64.04
Mobilenet-YOLOV3 N Y 0.067 88.59 71.42
Mobilenet-YOLOV3 Y Y 0.048 86.15 71.61

5. Conclusions

This study addresses the problem of real-time moving object detection with high accuracy on
high-resolution scenes in the presence of different kinds of noises. Modifications are made to the
framework previously reported in [31] in order to obtain a better balance between accuracy and
speed. The modified framework includes Mobilenet-YOLOV3, downsampling and the use of the
focal loss function. Its effectiveness is verified by extensive experimentations. In order to improve the
performance in terms of detection accuracy and computational efficiency, the backbone of YOLOV3 is
altered to Mobilenet, achieving 1.67 times faster computation speed with similar accuracy. Combined
with downsampling, it achieves 2.33 times faster computation speed than the original framework
with YOLOV3. Finally, the use of focal loss and a suitable number of anchors per grid leads to a
higher speedup. In summary, the modified framework developed in this paper is able to achieve
approximately 21 FPS (Frames Per Second) processing rate with 86.15% accuracy, which is 2.33 times
faster than the framework using YOLOV3.

Author Contributions: Conceptualization, H.Z., H.W., B.L. and N.K.; methodology, H.Z. and H.W.; software,
H.Z.; validation, H.Z., H.W., B.L., X.Y. and N.K.; formal analysis, H.Z. and H.W.; investigation, H.Z. and H.W.;
resources, H.Z., B.L. and X.Y.; data curation, H.Z. and B.L.; writing—original draft preparation, H.Z. and H.W.;
writing—review and editing, H.Z., B.L., X.Y. and N.K.; visualization, H.Z. and B.L.; supervision, B.L., X.Y. and
N.K.; project administration, B.L. and X.Y.; funding acquisition, B.L. and X.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lu, X.; Izumi, T.; Takahashi, T.; Wang, L. Moving Vehicle Detection Based on Fuzzy Background Subtraction. In
Proceedings of the IEEE International Fuzzy Systems Conference, Beijing, China, 6–11 July 2014; pp. 529–532.

2. Kumar, S.; Sen Yadav, J. Segmentation of Moving Objects using Background Subtraction Method in Complex
Environments. Radioengineering 2016, 25, 399–408. [CrossRef]

3. Jiang, S.; Lu, X. WeSamBE: A Weight-Sample-Based Method for Background Subtraction. IEEE Trans. Circuits
Syst. Video Technol. 2018, 28, 2105–2115. [CrossRef]

4. St-Charles, P.L.; Bilodeau, G.A.; Bergevin, R. SuBSENSE: A Universal Change Detection Method with Local
Adaptive Sensitivity. IEEE Trans. Image Process. 2015, 24, 359–373. [CrossRef] [PubMed]

5. Gujrathi, P.; Priya, R.A.; Malathi, P. Detecting Moving object using Background Subtraction Algorithm
in FPGA. In Proceedings of the 2014 Fourth International Conference on Advances in Computing and
Communications, Cochin, India, 27–29 August 2014; pp. 117–120.

6. Sengar, S.S.; Mukhopadhyay, S. Moving object detection based on frame difference and W4. Signal Image
Video Process. 2017, 11, 1357–1364. [CrossRef]

7. Kang, Y.; Huang, W.; Zheng, S. An Improved Frame Difference Method for Moving Target Detection. In
Proceedings of the 2017 Chinese Automation Congress, Jinan, China, 20–22 October 2017; pp. 1537–1541.

8. Bai, Y. Target Detection Method of Underwater Moving Image Based on Optical Flow Characteristics. J.
Coast. Res. 2019, 93, 668–673. [CrossRef]

9. Wang, Z.; Sun, X.; Diao, W.; Zhang, Y.; Yan, M.; Lan, L. Ground Moving Target Indication Based on Optical
Flow in Single-Channel SAR. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1051–1055. [CrossRef]

http://dx.doi.org/10.13164/re.2016.0399
http://dx.doi.org/10.1109/TCSVT.2017.2711659
http://dx.doi.org/10.1109/TIP.2014.2378053
http://www.ncbi.nlm.nih.gov/pubmed/25494507
http://dx.doi.org/10.1007/s11760-017-1093-8
http://dx.doi.org/10.2112/SI93-091.1
http://dx.doi.org/10.1109/LGRS.2019.2892488

Sensors 2020, 20, 3591 14 of 15

10. Sengar, S.S.; Mukhopadhyay, S. Detection of moving objects based on enhancement of optical flow. Optik
2017, 145, 130–141. [CrossRef]

11. Shao, X.; Chen, X.; Li, K.; Lv, Z.; Zhu, H. An Improved Moving Target. Detection Method Based on Vibe
Algorithm. In Proceedings of the 2018 Chinese Automation Congress, Xi’an, China, 23–25 November 2018.

12. Dou, J.; Li, J. Moving object detection based on improved VIBE and graph cut optimization. Optik 2013, 124,
6081–6088. [CrossRef]

13. Zeng, D.; Zhu, M. Background Subtraction Using Multiscale Fully Convolutional Network. IEEE Access
2018, 6, 16010–16021. [CrossRef]

14. Chen, Y.; Wang, J.; Zhu, B.; Tang, M.; Lu, H. Pixelwise Deep Sequence Learning for Moving Object Detection.
IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 2567–2579. [CrossRef]

15. Babaee, M.; Duc Tung, D.; Rigoll, G. A deep convolutional neural network for video sequence background
subtraction. Pattern Recognit. 2018, 76, 635–649. [CrossRef]

16. Wang, Y.; Luo, Z.; Jodoin, P.M. Interactive deep learning method for segmenting moving objects. Pattern
Recognit. Lett. 2017, 96, 66–75. [CrossRef]

17. Patil, P.W.; Murala, S. MSFgNet: A Novel Compact End-to-End Deep Network for Moving Object Detection.
IEEE Trans. Intell. Transp. Syst. 2019, 20, 4066–4077. [CrossRef]

18. Ou, X.; Yan, P.; Zhang, Y.; Tu, B.; Zhang, G.; Wu, J.; Li, W. Moving Object Detection Method via ResNet-18
With Encoder-Decoder Structure in Complex Scenes. IEEE Access 2019, 7, 108152–108160. [CrossRef]

19. Guo, Z.; Cai, B.; Jiang, W.; Wang, J. Feature-based detection and classification of moving objects using LiDAR
sensor. IET Intell. Transp. Syst. 2019, 13, 1088–1096. [CrossRef]

20. Kiaee, N.; Hashemizadeh, E.; Zarrinpanjeh, N. Using GLCM features in Haar wavelet transformed space for
moving object classification. IET Intell. Transp. Syst. 2019, 13, 1148–1153. [CrossRef]

21. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
22. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern

Anal. Mach. Intell. 2020, 42, 318–327. [CrossRef]
23. Lu, X.; Xu, C.; Wang, L.; Teng, L. Improved Background Subtraction Method for Detecting Moving Objects

Based on GMM. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 1540–1550. [CrossRef]
24. Wu, K.; Otoo, E.; Suzuki, K. Optimizing two-pass connected-component labeling algorithms. Pattern Anal.

Appl. 2009, 12, 117–135. [CrossRef]
25. Bataineh, B. A fast and memory-efficient two-pass connected-component labeling algorithm for binary

images. Turk. J. Electr. Eng. Comput. Sci. 2019, 27, 1243–1259. [CrossRef]
26. He, L.; Ren, X.; Zhao, X.; Yao, B.; Kasuya, H.; Chao, Y. An efficient two-scan algorithm for computing basic

shape features of objects in a binary image. J. Real-Time Image Process. 2019, 16, 1277–1287. [CrossRef]
27. He, L.; Chao, Y.; Suzuki, K. A run-based two-scan labeling algorithm. IEEE Trans. Image Process. 2008, 17,

749–756.
28. Allegretti, S.; Bolelli, F.; Grana, C. Optimized Block-Based Algorithms to Label Connected Components on

GPUs. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 423–438. [CrossRef]
29. Jang, Y.; Mun, J.; Oh, K.; Kim, J. Block-Based Connected Component Labeling Algorithm with Block

Prediction. In Proceedings of the 2017 40th International Conference on Telecommunications and Signal
Processing, Barcelona, Spain, 5–7 July 2017; pp. 578–581.

30. Chang, W.Y.; Chiu, C.C.; Yang, J.H. Block-Based Connected-Component Labeling Algorithm Using Binary
Decision Trees. Sensors 2015, 15, 23763–23787. [CrossRef] [PubMed]

31. Zhu, H.; Yan, X.; Tang, H.; Chang, Y.; Li, B.; Yuan, X. Moving Object Detection With Deep CNNs. IEEE Access
2020, 8, 29729–29741. [CrossRef]

32. Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

33. Ullah, A.; Xie, H.M.; Farooq, M.O.; Sun, Z.Y. Pedestrian Detection in Infrared Images Using Fast RCNN. In
Proceedings of the 2018 Eighth International Conference on Image Processing Theory, Tools and Applications,
Xi’an, China, 7–10 November 2018; pp. 1–6.

34. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference
on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

http://dx.doi.org/10.1016/j.ijleo.2017.07.040
http://dx.doi.org/10.1016/j.ijleo.2013.04.106
http://dx.doi.org/10.1109/ACCESS.2018.2817129
http://dx.doi.org/10.1109/TCSVT.2017.2770319
http://dx.doi.org/10.1016/j.patcog.2017.09.040
http://dx.doi.org/10.1016/j.patrec.2016.09.014
http://dx.doi.org/10.1109/TITS.2018.2880096
http://dx.doi.org/10.1109/ACCESS.2019.2931922
http://dx.doi.org/10.1049/iet-its.2018.5291
http://dx.doi.org/10.1049/iet-its.2018.5192
http://dx.doi.org/10.1109/TPAMI.2018.2858826
http://dx.doi.org/10.1002/tee.22718
http://dx.doi.org/10.1007/s10044-008-0109-y
http://dx.doi.org/10.3906/elk-1703-351
http://dx.doi.org/10.1007/s11554-016-0626-7
http://dx.doi.org/10.1109/TPDS.2019.2934683
http://dx.doi.org/10.3390/s150923763
http://www.ncbi.nlm.nih.gov/pubmed/26393597
http://dx.doi.org/10.1109/ACCESS.2020.2972562
http://dx.doi.org/10.1109/TPAMI.2016.2577031

Sensors 2020, 20, 3591 15 of 15

35. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into High Quality Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6154–6162.

36. Wei, H.; Kehtarnavaz, N. Semi-Supervised Faster RCNN-Based Person Detection and Load Classification for
Far Field Video Surveillance. Mach. Learn. Knowl. Extr. 2019, 10, 44. [CrossRef]

37. Jain, P.K.; Gupta, S.; Bhavsar, A.; Nigam, A.; Sharma, N. Localization of common carotid artery transverse
section in B-mode ultrasound images using faster RCNN: A deep learning approach. Med. Biol. Eng. Comput.
2020, 58, 471–482. [CrossRef]

38. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 26 June–1 July 2016; pp. 779–788.

39. Liu, G.; Nouaze, J.C.; Touko Mbouembe, P.L.; Kim, J.H. YOLO-Tomato: A Robust Algorithm for Tomato
Detection Based on YOLOv3. Sensors (Basel Switz.) 2020, 20, 2145. [CrossRef]

40. Pang, L.; Liu, H.; Chen, Y.; Miao, J. Real-time Concealed Object Detection from Passive Millimeter Wave
Images Based on the YOLOv3 Algorithm. Sensors (Basel Switz.) 2020, 20, 1678. [CrossRef] [PubMed]

41. Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection during different growth stages in
orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [CrossRef]

42. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 30th IEEE Conference On
Computer Vision And Pattern Recognition (Cvpr 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

43. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/make1030044
http://dx.doi.org/10.1007/s11517-019-02099-3
http://dx.doi.org/10.3390/s20072145
http://dx.doi.org/10.3390/s20061678
http://www.ncbi.nlm.nih.gov/pubmed/32192222
http://dx.doi.org/10.1016/j.compag.2019.01.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Improved Moving Object Detection Framework
	Coarse-Grained Detection Stage
	Fine-Grained Detection Stage
	Light Deep Neural Network Backbone
	Modified Loss Function

	Experimental Results and Discussion
	Downsampling in Coarse-Grained Detection Stage
	Improvements in Fined-Grained Detection Stage
	Light Backbone
	Further Improvement for Downsampling
	Focal Loss

	Discussion on Input Size
	Ablation Analysis

	Conclusions
	References

