
sensors

Article

TORNADO: Intermediate Results Orchestration
Based Service-Oriented Data Curation Framework for
Intelligent Video Big Data Analytics in the Cloud

Aftab Alam and Young-Koo Lee *

Data and Knowledge Engineering Laboratory, Department of Computer Engineering, College of Electronics and
Information, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; aftab@khu.ac.kr
* Correspondence: yklee@khu.ac.kr; Tel.: +82-31-201-3732

Received: 28 April 2020; Accepted: 16 June 2020; Published: 24 June 2020
����������
�������

Abstract: In the recent past, the number of surveillance cameras placed in the public has increased
significantly, and an enormous amount of visual data is produced at an alarming rate. Resultantly,
there is a demand for a distributed system for video analytics. However, a majority of existing
research on video analytics focuses on improving video content management and rely on a traditional
client/server framework. In this paper, we develop a scalable and flexible framework called TORNADO
on top of general-purpose big data technologies for intelligent video big data analytics in the cloud.
The proposed framework acquires video streams from device-independent data-sources utilizing
distributed streams and file management systems. High-level abstractions are provided to allow the
researcher to develop and deploy video analytics algorithms and services in the cloud under the
as-a-service paradigm. Furthermore, a unified IR Middleware has been proposed to orchestrate the
intermediate results being generated during video big data analytics in the cloud. We report results
demonstrating the performance of the proposed framework and the viability of its usage in terms of
better scalability, less fault-tolerance, and better performance.

Keywords: video big data curation; distributed video analytics; service-oriented architecture;
intermediate results orchestration; big data analytics

1. Introduction

Videos are recorded and uploaded to the cloud regularly. Sources that are actively contributing
to video generation include CCTV, smartphones, drones, and many more, which have resulted in
a big data revolution in video management systems. Various leading industrial organizations have
successfully deployed video management and analytics platforms that provide more bandwidth
and high-resolution cameras collecting videos at scale and has become one of the latest trends in
the video surveillance industry. For example, YouTube users upload more than 400 h of videos per
minute [1], and more than one hundred and seventy million video surveillance cameras have been
installed in China only [2]. It has been reported that the data generated by Internet of things (IoT)
devices will see a growth rate of 28.7% over the period 2018–2025, where surveillance videos are
the majority shareholder, i.e., 65% [3]. Such an enormous video data is considered as “video big
data” because a variety of sources generate a large volume of video data at high velocity that
holds high value. Video data are acquired directly from real-world domains and meet the veracity
characteristic. Handling large-scale complex video data is not worthwhile utilizing conventional
data analysis approaches. Video big data pose challenges for video management, processing, mining,
and manipulation. Therefore, more comprehensive and sophisticated solutions are required to manage
and analyze large-scale unstructured video data. Furthermore, due to the large volume of video data,

Sensors 2020, 20, 3581; doi:10.3390/s20123581 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9222-2468
https://sciprofiles.com/profile/14517
http://dx.doi.org/10.3390/s20123581
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/12/3581?type=check_update&version=2

Sensors 2020, 20, 3581 2 of 36

it requires a flexible solution to store and mine for possible decision-making. However, large-scale
Intelligent Video Analytics (IVA) becomes a reality on the rise of big data analytics and cloud computing
technologies.

Big data technologies, such as Hadoop [4] or Spark [5] ecosystem, are software platforms designed
for distributed computing to process, analyze, and extract the valuable insights from large datasets
in a scalable and reliable way. Cloud computing is a model for enabling ubiquitous, convenient,
and on-demand network access to a shared pool of configurable computing resources that can be
rapidly provisioned and released with minimal management effort or service provider interaction [6].
The cloud is preferably appropriate to offer the big data computation power required for the processing
of these large datasets. For big data analytics, numerous cloud platforms have been developed,
including IBM Big Data Analytics [7], Amazon web service [8], and many more.

Recently, the deployment of distributed computing technologies in the cloud for video big data
analytics has been the center of attraction in academics and industry. In the literature, some efforts
have been made to propose a Cloud-based Video Analytics System (CVAS) for online and offline
IVA, for example, [9–11]. The focus of these studies is more on video analytics (value extraction) and
overlook the data curation issues encompassing value, volume, velocity, and variety management
throughout the lifecycle of IVA in the cloud. Data curation is the active management of data over its
life cycle, from creation, acquisition, and initial storage to the time when it is archived or becomes
obsolete [12]. Industrial CVAS, such as Checkvideo [13], Intelli-Vision [14], assist consumers with
limited functionalities, i.e., real-time IVA service subscription. Google released a cloud-based video
intelligence API to generate video metadata [15] and provided it as a black box to the developer. It
does not allow the developer/researcher to plug new IVA algorithms or to extend its functionality.
Likewise, the understanding, configuration, and operationalization of big data technologies for IVA in
the cloud are tedious and time-consuming, especially in an educational environment. Furthermore,
the IVA lifecycle in the cloud spin around IVA approaches. The existing solutions also do not consider
factors like the management of high-level and low-level features while deploying IVA algorithms.
Motivated by these limitations in existing work, we propose and implement a comprehensive
intermediate results orchestration based service-oriented data curation framework for large-scale
online and offline IVA in the cloud known as TORNADO.

The contribution of TORNADO is many folds, but principally, it can be aligned with the deployment
of IVA algorithms and services in the cloud for video big data analytics. The main contributions of the
proposed TORNADO are listed below.

• We propose a distributed data curation framework for video big data analytics in the cloud and
encompasses key components like role-based access controller, device-independent video stream
acquisition and synchronization, lifelong video stream monitoring tool, and big data persistence.

• High-level abstraction on top of big data technologies have been developed and optimized for
video big data analytics to hide the complexity of big data stack.

• The proposed TORNADO effectively resolves the data curation issues throughout the life cycle of the
IVA pipeline by developing distributed data management modules both for real-time and offline
analytics.

• TORNADO provides IVA algorithms and service creation and publishing APIs that enable developers
and researchers to author and publish contextual and domain-specific IVA algorithms and
services, which are made available to the developers while following as-a-Service (aaS) model [16],
i.e., IVA-Algorithm-as-a-Service (IVAAaaS) [17] and IVA-as-a-Service (IVAaaS) [18]. Under the
Customer-to-Customer (C2C) business model [19], the IVAAaas bridge the gap between the IVA
algorithm creator and IVA service developer.

• We propose and optimize a unified scale-out middleware called IR Middleware against issues
like big dimensionality, intermediate results, and IVA pipeline orchestration.

• We implement the proposed framework and conduct extensive experiments to validate our claims.

Sensors 2020, 20, 3581 3 of 36

The rest of the paper is planned as: Section 2 provides the related work; background and
nomenclature are discussed in Section 3. Section 4 thoroughly explains the proposed framework.
Section 5 presents the execution scenarios. Evaluation has been presented in Section 6 and comparison
with state-of-the-art solutions can be found in Section 7. Finally, the conclusion is written in Section 8.

2. Related Work

Real-time video surveillance and unstructured batch video data analytics in the cloud is an emerging
research domain, and has attracted the attention of researches and practitioners. The state-of-the-art
literature is proof of the fact that there is an increasing interest in adopting big data technologies for video
analytics in the cloud.

In the context of CVAS, Hossain [20] pointed out some significant design considerations
and proposed a cloud-based multimedia framework. The proposed framework consists of core
components like service directory, cloud manager, monitoring and metering, resource allocation
manager, heterogeneous contents manager, consumer manager, and service stack. A prototype
was developed of the proposed system and documented the workload of video analytics services
and storage tasks. The design considerations of this architecture are beneficial for the research
community but are unable to address issues like scalability, fault-tolerance, and video analytics
plugins. This architecture also does not support distributed video analytics in the cloud, IVA life
cycle, the features management. Ajiboye, S.O. et al. [9] stated that the network video recorder is
already equipped with intelligent video processing capabilities but complained about its limitations,
i.e., isolation, and scalability. To resolve such issues, they proposed a general high-level theoretical
architecture called Fused Video Surveillance Architecture. The design goals were cost reduction,
unify data mining, public safety, and intelligent video analytics. The proposed architecture consists
of four layers, i.e., application layer (responsible for system administration and user management),
services layer (for storage and analytics), network layer, and physical layer (physical devices like
camera, etc.). They guaranteed the compatibility of their proposed architecture with the hierarchical
structure of computer networks and emerging technologies. However, this is just a conceptual model
for surveillance systems and does not give explicit architectural details. Liu, X. et al. [10] came out with
a cloud platform for large-scale video analytics and management. They stated that the existing work
failed to design a versatile video management platform in a user-friendly way and to use Hadoop
to tune the performance of video processing effectively. They develop a cloud platform while using
big data technologies, i.e., Hadoop and MapReduce. This architecture only resolves the volume issue
related to large-scale video management in the cloud and cannot be considered as a candidate solution
for CVAS.

Zhang et al. [21,22] stated that the historical video data could be used with the updated video
stream in order to know the status of an activity, for example, identifying the current situation
of traffic on the road, and to predict future activity. To make it possible, they proposed a video
cloud-based service-oriented layered architecture called Depth Awareness Framework. The proposed
framework consists of four layers, i.e., data retrieval layer, offline video analytics layer, online video
processing layer, and domain service layer. The data service layer is supposed to handle large-scale
video data and webcam streams. The offline layer is used to operate on the batch videos, whereas
online processing takes place in a real-time video processing layer. On the top of the proposed
cloud platform, they implemented a deep convolution neural network for obtaining in-depth raw
context data inside a big video, and a deep belief network-based method to predict workload status
of different cloud nodes, as a part of knowledge on the system running status. In another study,
Zhang et al. [11] proposed a cloud-based architecture for large-scale intelligent video analytics
called BiF. BiF architecture considered non-functional architectural properties and constraints, i.e.,
usability, scalability, reliability, fault tolerance, data immutability, recomputation, storing large objects,
batch processing capabilities, streaming data access, simplicity and consistency. The BiF architecture
consists of four main layers, i.e., data collection layer, batch layer, real-time layer, and serving layer.

Sensors 2020, 20, 3581 4 of 36

The data collection layer collects the streaming video frames from the input video sources (camera).
The data curation layer forwards the video frames to the batch layer and streaming layer for batch
processing and real-time analytics respectively. The service layer is to query both views (batch and
real-time views) and integrate them to answer queries from a client. These two frameworks combine
real-time and offline video analytics, but it has some limitations. These frameworks are lacking the
details of data acquisition, architectural details, and there are no technical details on how to develop
new video analytics plugins and to manage the intermediate results.

In literature, there are some more studies in which efforts are made to resolve CVAS related issues.
Pereira, R. et al. [23] was motivated by the fact that digital video compression is crucial for storage
in the cloud and transmission. In this context, they proposed a cloud-based distributed architecture
for video compression based on the Split-Merge technique while using the MapReduce framework.
Liu et al. [24] used distributed technologies, i.e., Hadoop and MapReduce, for video sharing and
transcoding purposes. Likewise, Lin, C.-F. et al. [25] implemented a prototype of a cloud-based video
recorder system. A CVAS was proposed by Ananthanarayanan et al. [26,27] called Killer App to
meet the real-time demands of video analytics and to address latency, bandwidth, and provisioning
challenges. Furthermore, various leading industrial CVAS have successfully been deployed, and they
allow the consumers a service subscription. Some organizations provide real-time video analytics for
security, while others to extract metadata from video contents with the aim of indexing and searching.
Some of the popular real-time video stream analytics service providers are Check Video [13], Eagle Eye
Networks [28], and Intelli-Version [14]. These companies provide cloud-based real-time video analytics
services. However, they did not offer video analytics APIs aaS to the developers and researchers to
build and deploy new video analytics algorithms and services. Recently, Google released a cloud-based
video intelligence API to generate video metadata [15] and provided it as a black box to the developer.
These systems are developed for commercial use and do not allow developers and scientists to create
new video data mining algorithms and services.

Unlike all of the above approaches, TORNADO is an attempt to fill the research gap by proposing,
implementing, and evaluating a novel cloud-based framework for video big data analytics. TORNADO is
designed on top of state-of-the-art distributed computing and data management technologies.
The proposed framework is composed of different types of components and APIs, which can be
deployed on various types of computing clusters independently with the intentions of scalability,
fault-tolerance, and extensibility. Efforts have been made to provide high-level abstractions to hide
the complexity of the cloud and distributed computing technologies. These high-level APIs assist
researches in focusing on distributed IVA logic instead of focusing on the platform. In this direction,
the video data acquisition APIs allow external real-time video data sources to register and collect the
batch video data from the registered users. The acquired data are then maintained securely through a
distributed messaging system and a distributed file system. TORNADO provides role-based access to
the video data through APIs that make the life of the developer easy while developing new video
data mining algorithms and services. IVA experts can develop and register contextual distributed
IVA APIs, which is then available aaS to the users. TORNADO assists the IVA life cycle by managing
the high-level and low-level features through Intermediate Results (IR) Middleware during the IVAs
pipelining. Furthermore, TORNADO develops anomaly detection on the video streaming instances based
upon the contextual IVA algorithm.

3. Background and Nomenclatures

TORNADO is the foundation layer of an ongoing collaborative research project called SIAT [29,30].
SIAT is a layered architecture for distributed IVA in the cloud, as shown in Figure 1. TORNADO is the base
layer that allows the other layers to develop IVA algorithms and services. The Video Data Processing
Layer (VDPL) is in charge of pre-processing and extracting the significant features from the raw videos
and input to the Video Data Mining Layer (VDML). The VDML is accountable for producing the
high-level semantic result from the features generated by the VDPL. The Knowledge Curation Layer

Sensors 2020, 20, 3581 5 of 36

(KCL) [31] deploys video ontology and creates knowledge based on the extracted higher-level features
obtained from VDML. The VDPL and VDML can use the TORNADO base layer under the aaS paradigm.
The VDPL, VDML, and KCL are pipelined in a specific context and become an IVA service to which
TORNADO users can subscribe video data sources under the IVAaaS paradigm. However, the scope of
this paper is the TORNADO layer only.

INTELLIGENT VIDEO ANALYTICS SERVICES (DOMAIN SPECIFIC)

SIAT APIs

Activity Analysis Traffic Analysis Video Retrieval Other Services

VIDEO DATA MIINING LAYER (Batch and Real time Processing)

KNOWLEDGE CURATION LAYER (Mapping, Ontology, and Rules)

Web
Services

TORNADO Framework : (Video Stream Acquisition, Persistence, and Business Logic)

USERS

Video
Analytics

Algorithm &
Services

Video Data
Source

Cluster
Manager

VIDEO DATA PROCESSING LAYER (Pre processing, Feature Extraction etc.)

INTELLIGENT VIDEO ANALYTICS SERVICES (DOMAIN SPECIFIC)

SIAT APIs

Content based
Video Retrial

SIATSIAT

Ontology Based
Services

 APIPIs

Video
Summarization

Real-time Video
Analysts

VIDEO DATA MIINING LAYER (Batch and Real-time Processing)

KNOWLEDGE CURATION LAYER (Mapping, Ontology, and Rules)

Web
Services

TORNADO Framework : (Video Stream Acquisition, Persistence, and Business Logic)

USERS

Video
Analytics

Algorithm &
Services

Video

Video Data
Source

Cluster
Manager

VIDEO DATA PROCESSING LAYER (Pre-processing, Feature Extraction etc.)

Figure 1. SIAT (ongoing collaborative research project) architecture.

The process of IVA undergoes different phases, as shown in Figure 2a. The Video Source are the
sources that either generate video streams from sources connected directly to real-world domains such
as IP-camera or can be already acquired videos in the form of datasets. IVA in the cloud are performed
either on the video streams or on video datasets and is referred as Real-time IVA (RIVA) and Batch
IVA (BIVA), respectively. In the context of IVA, a video can be represented in a hierarchy, as shown
in Figure 2b. A given video may be decomposed into its constituent units either in the temporal or
spatial domain. We call mini-batch to a group of frames with respect to time that belongs to a Video
Source. The size of the mini-batch is dependent on the contextual IVA analysis. Such constituent units
are further subject to low, mid, or/and high-level processing. In the low-level processing, primitive
operations are performed, for example, noise reduction and histogram equalizer, where the input
and output are a sequence of frames. The mid-level processing extracts features from the sequence
of frames, for example, segmentation, description, classification. The high-level processing makes
sense of an ensemble of recognized objects, and perform the cognitive functions normally associated
with vision.

Video

Scene

Shot

Frame

Key
Frame

Spatial

Spatio-
temporal

- Low-Level
- Mid-Level
- High-Level

Analysis Processing
User Domain IVA System

Ingest Transform Infer

Video Source Persist / Publish

(a) (b)

Figure 2. (a) A generic Intelligent Video Analytics (IVA) pipeline. (b) Hierarchical representation of
video units.

The input and output of an IVA algorithm can be a sequence of frames or features. We call these
features IR. Multiple algorithms are pipelined to build a domain-specific IVA service. The input
and output of an IVA service is restricted to Video Source and IR, respectively. Once an IVA
service is developed and deployed then TORNADO users can subscribe a Video Source under the
IVAaaS paradigm. The User represents the stakeholder of the proposed framework, i.e., such
as administrator, the consumer, and researchers/practitioners. A Domain is a specific real-word
environment, for example, street, shop, road traffic, for which an IVA service needs to be built.

Sensors 2020, 20, 3581 6 of 36

The combination of IVA service and hardware constitutes an IVA System where IVA solutions can
scale-out and can run fast.

4. Proposed TORNADO Framework

Formally, we describe the main components of TORNADO in this section and the technical details
in the next subsections. As illustrated in Figure 3, TORNADO is composed of six components, i.e.,
Real-time Video Stream Acquisition and Synchronization (RVSAS), Immediate Structured Big Data
Store (ISBDS), Distributed Persistent Big Data Storage (DPBDS), ISBDS Representation and Mapping
(ISBRM), TORNADO Business Logic, and TORNADO Web Services.

TORNADO – Distributed Video Data Curation Framework for Online & Offline Videos Analytics

IVA Service
Subscription

SIAT’s
other layers

Video Data
Processing Layer

Video Data
Mining Layer

Knowledge
Curation

Layer

TORNADO Web
Service

IVA Algorithm
& Services

IVA SDK

Data Source

Video Stream
Source services

Batch Video
Data Services

Cluster
Management

Services

USERS

Model
Management

Discovery

Subscription

Push
Notification

Visualization

Develop/
Deploy

Document

Distributed
Messaging

System

HBase

HDFS

SE
C

U
R

IT
Y

, S
C

A
LA

B
IL

IT
Y

, F
A

U
LT

-T
O

LE
R

A
N

C
E,

 P
ER

FO
R

M
A

N
C

E

Real-time Video Stream Acquisition & Synchronization (RVSAS)

Distributed Messaging System

Broker Client Services (BCS)

Video Stream
Acquisition

Service

Video
Stream

Producer

Video Stream
Consumer

Service

Topic
Manager

Replication
Manager

Partition
Manager

Health
Manager

Cluster
Configurator

TORNADO Business Logic

IVS Service Disc. &
Subsct. Mgr

IVA Algorithms and
Service Manager

Data Source Mgr.

Ontology Data
Manag er

IS
B

D
S

R
e

p
re

se
n

ta
ti

o
n

 a
n

d
 M

ap
p

in
g

(I
SB

R
M

)

In
st

an
ce

M

ap
p

er
IS

B
 M

o
d

el
Se

le
ct

o
r

D
at

a
V

al
id

at
o

r

Intermediate Result Middleware

Algorithm & Service Lookup Store

User Profile & Logs

Video Data Source Meta-store

Subscription Meta-store

Query Execution Engine

Connection Configurator

Distributed Big Data Store

Passive DRW

ISBDS Access Controller

Immediate Structured Big DS (ISBDS)

Schema Handler

CRUD Operator

Distributed Persistent Big Data Store (DPBDS)

RAW Video
Data Store

User
SpaceModel

1 * * * * * * * * * *
* * * * * * * * * * N

Project
Space

HDFS Handlers

Active DRW

Passive DRW

DPB Access Controller

Big Data Persistence (BDP)

Sequence
Controller

Notification Mgr.

Int.
Results

Manager

Lifelong
Video

Stream
Monitor

User Manager

Cluster Mgr.

Cloud Infrastructure

Figure 3. Proposed TORNADO framework architecture.

The RVSAS component provides interfaces and acquires large-scale video streams from
device-independent video stream sources for on-the-fly processing. The video stream sources are
synchronized based upon the user identification and the timestamp of the video stream generation.
Then, it is queued in the form of mini-batches in distributed stream buffer for RIVA. The RIVA may vary

Sensors 2020, 20, 3581 7 of 36

in the context of a business domain, cross-linked with the video stream sources and user’s profile. RIVA
services are deployed in a cluster of computers for distributed video stream processing to extract the value
for contextual decision making. The video stream queued in the form of a mini-batch can be accessed while
using Video Stream Consumer Services (VSCS). During RIVA service pipelining, the IR are maintained
through Intermediate Results Manager (IR-Manager). Similarly, RVSAS is equipped with a Lifelong Video
Stream Monitor (LVSM) to provide a push-based notification response to the client with the help of a
publish-subscribe mechanism. The extracted values (features and anomalies) and the actual video streams
are then persisted into ISBDS and DPBDS, respectively.

ISBDS component is responsible for storing and managing large-scale structured data in a distributed
environment according to the business logic implemented by TORNADO Business Logic. The structured
data is related to users, access rights, VDPL, VDML, KCL, metadata of the video data stream sources,
batch datasets, big models, and service subscription information. This module also orchestrates
the IR and anomalies being generated by a domain-specific IVA service. According to the demands of
TORNADO, two types of operations are required to be performed on the ISBDS, i.e., random read-write
operation against the real-time queries and bulk load and store operations for offline analytics. For such
operations, we develop and deploy ISBDS Access Controller to access the underlying data securely against
random and scan read-write operations.

DPBDS is built on top of Hadoop Distributed File System (HDFS) and is responsible for providing
permanent and distributed big data persistence to the raw video data, big models, and also supposed
to maintain the actual IVA plugins deployed by other layers. During the contextual distributed offline
video analytics, batch video data and models are needed to be loaded. Similarly, different HDFS file
operations are required, for example, access permission, file creation. In this context, we exploit the
services of DPBDS Access Controller.

The ISBRM component is responsible for validating and mapping the contextual data to the
respective data stores according to the business logic of TORNADO. TORNADO Business Logic hides
the complexity of the proposed system by establishing a well-defined set of uniform and consistent
operations. TORNADO is built to provide IVAAaaS and IVAaaS over the web. Thus, we develop TORNADO
Web Services on top of TORNADO Business Logic to allow the users to utilize the functionality of the
proposed framework over the web. Further technical details of each component are described in the
following subsections.

4.1. Real-Time Video Stream Acquisition and Synchronization

Handling a tremendous amount of video streams, both processing and storage are subject to loss [11].
To handle a large-scale video stream acquisition in real-time and to ensure scalability and fault-tolerance,
we develop the RVSAS component while exploiting a distributed message-oriented middleware known
as Apache Kafka [32]. The RVSAS component is responsible for handling and collecting real-time video
streams and is composed of six modules, i.e., Broker Client Services (BCS), Video Stream Acquisition
Service (VSAS), Video Stream Producer (VSP), VSCS, IR-Manager and LVSM.

4.1.1. Broker Client Services

We utilize Apache Kafka to collect video streams in the form of mini-batches from the producer
cluster, buffer in the Kafka Broker, and then route mini-batches to the consumer’s cluster. To manage
the Kafka Broker for large-scale real-time video stream management and according to the business
logic of the proposed Framework, we develop a module for this purpose known as BCS. The BCS
is composed of five sub-modules, i.e., Topic Manager, Partition Manager, Replication Manager,
Cluster Configurator, and Cluster Health Manager, as shown in Figure 3.

Topic Manager sub-module is used to create new Kafta topics dynamically in the Kafka Broker
Cluster on new RIVA service creation. When a new RIVA service is created then three types of
Kafka topics are automatically created with name convention RIVA_ID, RIVA_F_ID, and RIVA_A_ID
on the Kafka Broker Cluster. Here ID is the unique identifier of the service. These topics are used

Sensors 2020, 20, 3581 8 of 36

to hold the actual video stream, IR, and anomalies detected by the IVA services. The Topic Manager
sub-module permits the admin role to list all topics, check its configurations, and can also override
the configurations if required. Each topic consists of partitions to which the video stream records
are distributed. In general, the degree of parallelism and height throughput is proportional to the
number of partitions in a topic. We develop a Partition Manager sub-module to automatically adjust
the number of partitions in a topic according to video streams from video stream data sources and
according to the stream consumption of the consumer group. To ensure height throughput and
parallelism, a formula has been established for choosing the number of Partitions in a topic ‘T’. Let us
consider, we want to achieve throughput ‘t’ for a producer ‘p’ and a consumer ‘c’ on a single
partition. Then we need at least Max(t/p, t/c) partitions per topic.

For fault-tolerance, Apache Kafka provides Replication Protocol, and topic partitions can be
replicated across Kafka Brokers. The Replication Protocol carries a parameter called Replication
Factor (RF). An optimal value three is recommended for RF, but it must not exceed then the number
of Broker Servers. In the Replication Manager sub-module, we develop APIs on the top of the
Replication Protocol to manage the replication factor accordingly. The Cluster Configuration
sub-module is responsible for holding and managing the cluster configuration parameters which are
used by the producer and consumer, respectively. Similarly, a Cluster Health Manager sub-module
is provided to allow the admin role to manage the health of the cluster.

4.1.2. Video Stream Acquisition Service

VSAS are client APIs and can be configured on the Producer Cluster to acquire large-scale video
stream. VSAS is composed of four sub-modules, i.e., Video Stream Acquisition Adaptor, Video
Stream Event Producer, Frame Detector and Preprocessor, and Record Composed. The Video
Stream Acquisition Adaptor provides interfaces for device independent video stream sources. If a
particular video source is subscribed against a RIVA service, then the Stream Acquisition Service gets the
configuration metadata from the Video Data Source DS in ISBDS and configure the source device for
video streaming. Then the Video Stream Event Producer decodes the video stream, detects the frames,
and forwards to the Frame Preprocessor for meta-data extraction and frame resizing. To communicate
with the video stream source, a JavaScript Object Notation (JSON) object is defined. The contents of this
object consist of five fields, i.e., data source id, number of columns and number of rows in a frame,
the timestamp of the data origination at a data source and payload. This JSON object is known as Record,
which is then forwarded to the Producer Handler, as illustrated in Figure 4.

Producer Handler

Video Stream
Acquisition

Adopter

Video Stream
Event Producer

Frame
Preprocessor

Record
Composer

VSP
[Producer Record]

ISBDS: VDS

- SourceType

- URL

- PortNo.

- UserName

- Password

MsgSchema
-DsId
-Timestamp
-Rows
-Cols
-Data

ACK

ISBDS:
Subscription
Data Source

Topic: RIVA_ID

Partition: CamID

Key: CamID

Value: Video
Stream Record

Serializer

Send()

Partitioner

Topic: RIVA_1

Mini-Batch 0

Mini-Batch 1

Mini-Batch 2

Topic: RIVA_2

Mini-Batch 0

Mini-Batch 1

Mini-Batch 2

Distributed
Broker

Producer Handler

VSP
[Producer Record]

ISBDS: VDS

- SourceType

- URL

- PortNo.

- UserName

- Password

MsgSchema
-DsId
-Timestamp
-Rows
-Cols
-Data

ACK

ISBDS:
Subscription
Data Source

ipip

[Producer Record][P]

Topic: RIVA_IDpi _I

Partition: CamID

Key: CamIDKey

ValueValu : Video Vide
Stream Record

Serializer

Send()

Partitioner

Topic: RIVA_1Topic: RIVA_1

Mini-Batch 0

Mini-Batch 1

Mini-Batch 2

Topic: RIVA_2Topic: RIVA_2

Mini-Batch 0

Mini-Batch 1

Mini-Batch 2

Distributed
Broker
stributestribute

RVSAS Client APIs for VSAS and VSP

Broker Client Service:
Producer Configurations

Video Stream Vide St
Acquisition

Adopterop

Video Stream
Event Producer

Frame
Preprocessor

Record
Composer

Video StreamVide St
Acquisition

VSAS

Figure 4. The internal logic and flow of the Video Stream Acquisition Service (VSAS) and Video Stream
Producer (VSP).

Sensors 2020, 20, 3581 9 of 36

4.1.3. Video Stream Producer

The VSP are also client APIs and are deployed on the Producer Cluster. Its function is to receive
the records from the VSAS module, serialize the records, form mini-batch and then send it to the Kafka
Broker. If a video stream source is subscribed to RIVA service then the Producer Handler will rout the
mini-batches to topic RIVA_1 in the Broker Cluster. Similarly, if subscribed to multiple RIVA services,
then the stream will be routed to the respective topics, as shown in Figure 4. The Kafka Producer Record
has a default message format and is composed of four fields, i.e., Topic Name, Partition Number, Key,
and Value. The Topic Name is dynamically provided by the Subscription Data Source stored in ISBDS
according to the video data source subscription. The Partition and Key fields are set to the video
stream source ID (camera ID provided by the ISBDS Video Data Source meta-store). The input of
the Value field is the Video Stream Record being composed and provided by the Record Composer.
The Producer Recorded is then sent to the Serializer to convert the Producer Record to bytes array
so that it can be sent over the network. The VSP collects the Producer Records and adds them
to the batch of record, for sending to the Kafka Broker. We compress these mini-batches utilizing
the snappy compression algorithm and then VSP sends these newly formed mini-batches to the
Broker Server. We enable the ACK of the VSP to ensure the message delivery. Technically, the VSAS
and VSP sub-modules are encapsulated in videoStreamEventProducer high-level API, as shown in
Algorithm 1.

4.1.4. Video Stream Consumer Services

The acquired video streams are now residing in the Kafka Broker in different topics in the form of
mini-batches. To process these mini-batches of the video stream, we have different groups of computer
clusters known as Video Stream Analytics Consumer Cluster. On each cluster, two types of client
services are configured, i.e., RIVA services and VSCS. Each Video Stream Analytics Consumer Cluster
has different domain-specific RIVA services whereas the VSCS are common for all. The VSCS assists a
RIVA service to read the mini-batches of the video stream from the respective topic in the Kafka Broker for
analytics, as shown in Figure 5.

Video Stream
Acquisition Cluster

TORNADO Kafka
Broker Cluster

Topic: RIVA_ID

P1

P2

Pn

Topic: RIVA_IR_ID

P1

P2

Pn

Producer

Low-level
Kafka & OpenCV APIs

High-level
Video Stream

Acquisition and
Producer APIs

Broker Client Services

Kafka & Zookeeper Low-level APIs

Topic
Manager

Replication
Manager

Partition
Manager

Cluster Health
Manager

Video Stream Analytics
Consumer Cluster

TORNADO Instances

Kafka, OpenCV, &
Spark Stream APIs

VSCS

Cluster
Configurator

Topic: RIVA_A_ID

P1

P2

Pn

RIVA Service

IRM LVSM

Video Data Intermediate

Results

Anomalies

B
IG

 D
A

TA

P
E

R
S

IS
TA

N
C

E
(D

P
B

D
S

, IS
B

D
S

)

Cluster

IRM

LVSM

IRM

VSCS

Figure 5. Video Stream Acquisition and Synchronization workflow.

Sensors 2020, 20, 3581 10 of 36

Algorithm 1: videoStreamEventProducer(topicName, cameraID, cameraURL)
Input : topicName, cameraID, cameraURL
Output : Sent compressed video streams to the Broker Server (Topic RIVA_ID)
/* Initialization */

1 static loadLibrary(Core.NATIVE_LIBRARY_NAME)
2 VidFrameMessage vFrameMsg.set(topicName, cameraID, cameraURL)
/* Create Kafka Producer. Parameters defined in cluster configurator. */

3 Kafka producer← ProducerCreator.createProducer()
4 Mat mat← new Mat()
5 Gson gson← new Gson()
/* Testing camera */

6 VideoCapture camera← null;
7 if StringUtils.isNumeric(videoFrameMessage.getCameraURL) then
8 camera← new VideoCapture(Integer.parseInt(vFrameMsg.getCameraURL()));
9 else

10 camera← new VideoCapture(vFrameMsg.getCameraURL());
11 end
12 EventGeneratorCallback(cameraID) /* Callback to confirm message delivery */
13 while true do

/* Frame resize */
14 Imgproc.resize(mat, mat, newSize(480, 320), 0, 0, INTER_CUBIC)

/* Set the changing attributed from camera stream */
15 vFrameMsg.setCols(mat.cols(), mat.rows(), mat.type())
16 vFrameMsg.setData(new byte[(int) (mat.total() * mat.channels())])
17 mat.get(0, 0, vFrameMsg.getData())
18 vFrameMsg.setTimestamp(Timestamp(currentTimeMillis()))
19 jsonObject.addProperty("cameraId", "timestamp", "rows", "cols", "type")
20 jsonObject.addProperty("data", encodeToString(vFrameMsg.getData()))
21 String jsonString← gson.toJson(jsonObject)
22 JsonObject jsonObject← new JsonObject()

/* Composing VSP Record */
23 ProducerRecord<String, String> messageData← new ProducerRecord<String, String>(
24 videoFrameMessage.getTopicName(), /* send to topic */
25 videoFrameMessage.getCameraId(), /* key */
26 jsonString) /* Value */

/* Send the message to the Broker Server (topic RIVA_ID) */
27 producer.send(messageData, eventGeneratorCallback)
28 end

4.1.5. Intermediate Results Manager

RIVA services generate IR and need to be persisted. Video analytics are always expensive and
to avoid the recomputation, we persist the IR to ISBDS (IR Middleware). The IR demands proper
management in a distributed environment. Thus in this context, we develop IR-Manager, which sends
and gets the IR to and from the topic RIVA_IR_ID in the Kafka Broker Cluster. Similarly, this module is
also responsible for reading IR from the respective topic and persists to the IR data store for reusability
(such as mapping to video ontology, indexing for search) in order to avoid recompilation. The overall
process is shown in Figure 5.

Sensors 2020, 20, 3581 11 of 36

4.1.6. Lifelong Video Stream Monitor

A domain-specific RIVA service processes the video stream for anomalies or abnormal activities.
If any anomalies are detected, then the same is sent to the Kafka Broker topic (i.e., RIVA_A_ID)
by using the LVSM instance. To generate the notification base response, LVSM follows standard
observer-based implementation [33]. Based on this approach, the LVSM module reads the anomalies
from the respective Kafka Broker topic, i.e., RIVA_A_ID and notifies the clients in near real-time and
simultaneously persists to the ISBDS.

To understand the VSAS, IR-Manager, and LVSM, we create a template service (shown in
Algorithm 2). This service is based on Apache Spark Streaming. The input to a RIVA service is
the serviceID, and the subscribed cameraID. The video stream mini-batches are acquired from the
topic RIVA_ID using the VSAS high-level abstraction and assigned to the videoDataset (instance of
Spark dataset abstraction), as shown in step-4. RIVA operations (special or temporal analysis) are
carried out on the videoData as per the developer logic and requirements. The RIVA output in the
form of IR and anomalies are handed over to the IRM (step-5) and LVSM (step-6) APIs, respectively.

Algorithm 2: rivaServiceTemplate(serviceID, cameraID)
Input : serviceID, cameraID
Output : Produce IR, and Anomalies to topic RIVA_IR_ID, and RIVA_A_ID, respectively
/* Initialization */

1 initiate Spark session
/* Schema structure definition */

2 StructureType Schema← DataTypes.createStructType(CameraID, timestamp, rows, cols, type,
data)

/* VSCS abstraction to acquire mini-batches from topic RIVA_ID. */
3 Dataset< VideoEventData > videoDataset← Vscs.readVidStream(serviceID, camerID,

Schema)
/* RIVA service logic written by developer. */

4 RIVA logic goes here...
/* IR abstraction produces IR to the topic RIVA_IR_ID */

5 IntResults.irProduce(IR-Message, serviceID, camID)
/* Condition for anomalies */

6 if True then
/* LVSM abstraction produces Anomalies to topic RIVA_A_ID */

7 Lvsm.produceAnomalies(LVSM-Message, serviceID, camID)
8 end
/* Spark API to start the video stream continuous acquisition from the topic

RIVA_ID */
9 StreamingQuery query = processedDataset.start()

10 query.awaitTermination() /* Wait untill termination. */

4.2. Big Data Persistence

The second component of the proposed framework is Big Data Persistence. The Big Data
Persistence is the backbone of the TORNADO. The Big Data Persistence component is responsible
for providing permanent and distributed big-data persistence to both the structured and unstructured
data of the proposed platform. The Big Data Persistence provides two levels of abstraction on the
acquired data, i.e., ISBDS and DPBDS, which are elaborated in the following subsections.

Sensors 2020, 20, 3581 12 of 36

4.2.1. Immediate Structured Big Data Store

ISBDS is provided to manage large-scale structured data in the distributed environment. Because of
the data-intensive operation and according to the requirements of the other layer, technologically, we deploy
a distributed NoSQL big data storage known as Apache HBase. The NoSQL fits well according to the need
and demands of the TORNADO, but it also has some limitations. It does not provide rich queries like SQL.
Designing a complex system with HBase is a challenging task. Indexing can be challenging to design as
a relational concept and is not implicit. An elegant solution to such issues exists in the form of Apache
Phoenix [34]. Apache Phoenix is an SQL skin for HBase and enables OLTP operations best by combining
the power of SQL and the flexibility and scalability of NoSQL. Thus, we exploit HBase as an NoSQL
distributed data store and Apache Phoenix as a query execution engine. The ISBDS hosts five types of
data, as shown in Figure 6. The detailed description of each type of data has been described subsequently.

Figure 6. Immediate Structured Big Data Store model.

4.2.1.1. User Profile and Logs

TORNADO provides role-based access to users. User logs and the respective role information are
maintained through the user catalog. All the sensitive user information is made secure by deploying
an MD5 [35] encryption scheme.

4.2.1.2. Data source Metastore

The proposed framework manages two types of video sources through Data Source metastore,
i.e., video stream sources and video datasets. The former one can be subscribed to RIVA services,
while the latter one is eligible for BIVA services. The meta-information of these sources, along with
access rights, are managed through the Data Source metastore.

4.2.1.3. Algorithm and Services Metastore

The IVA algorithms and services are managed through Video Analytics Algorithm and
Service meta-store, respectively. The metadata of an IVA algorithm are managed through

Sensors 2020, 20, 3581 13 of 36

ALGORITHM metastore, and the data structure is composed of eight different data fields, i.e., AID,
UID, algoType, algoName, input, output, requiredResources, sourceCodeAddress, and description.
The metadata of the IVA service are managed through SERVICE metastore and encompasses attributes
like SID, UID, dsTypeID, serviceTypeID, serviceName, and description. The relation between the
service and algorithm metastore is managed through a lookup table called SERVICE_ALGORITHM.

4.2.1.4. IR Middleware

IVA algorithms and services generate heterogeneous types of results in the cloud and lead to the
problem of big dimensionality. The TORNADO also demands a scale-out middleware to allow diverse
types of IVA algorithms and services to communicate with each other. The produced IR also needs
proper orchestration for reusability and to avoid recomputation. Against such diverse demands,
we design a unified middleware called IR Middleware and it is the heart of the TORNADO framework.
The IR Middleware is created on top of Hbase and is composed of two main parts, i.e., IRID, and IR
Column-families, as shown in Figure 7.

IRID Design: The IR Middleware persists the extracted IR over time from videos. It has been
optimized to support DateTime granularity-based queries of IR. This is accomplished through careful
design of the row-key called IRID, as shown in Figure 7 in hex-encoded form. HBase store rows
ordered by row-key, so the entire history for a single source is persisted as adjacent rows. Within the
run of rows for a user, they are ordered by timestamp. The IRID are byte arrays comprised of
the combination of < UID >< ΓID >< AID >< SID >< DTS >. The UID, ΓID, AID, and
SID are monotonically increasing unique identifiers, which represent an instance of a user, video
source, algorithms, and services, respectively. In the IRID, the DTS is a downsampled timestamp.
When IRID is prefixed by an optional salt to distribute data across multiple regions better, then it is
called SaltedIRID. In cryptography, a salt is random data that is utilized as an additional input to a
one-way function to secure data [36]. Here our aim is not security but to generate a random hash value
from an arbitrary argument. The timestamp is a Unix epoch four bytes encoded value in seconds. Rows
are broken up into hour increments, reflected by the timestamp in each row. Thus, each timestamp
will be downsampled to an hour value. This is to avoid stuffing too many IR in a single row as that
would affect region distribution. Also, since HBase sorts on the row-key, data for the same user and
time bucket, but either with different algorithms or services are grouped for efficient queries.

Column Families: The IR Middleware is composed of two types of column families, i.e., ir f ,
and ird. The ir f is utilized to persist the frame-level IR being extracted by an algorithm or service.
The number of frames per second depends on the specifications of a video stream source. Let Fn

are the number of frames per second, then the total number of frames a bucket can accommodate
will become Fn ∗ Seconds ∗Minutes. The ir f uses 12 bits rounded seconds as the column qualifier, as
shown in Figure 7. The actual IR is persisted in the form of an object. Likewise, the ird column family
is responsible for persisting spatiotemporal IR being extracted from a mini-batch by an algorithm or
service. The ir f uses a 24 bits column qualifier, which represents the time interval, i.e., first and last
12 bites are rounded seconds to identify the start and end of a mini-batch.

Distributed IR Middleware: By default, Hbase creates only one region for a table. Another split
is created automatically when a table with one region gets large enough. Thus the deployment of IR
Middleware will lead to the issues of hotspotting and load-balancing [37], which will straightaway affect
the performance of TORNADO. Resultantly, the IR Middleware demands custom region creation and rows
distribution across regions. To address these issues, let IR Middleware is split into Rmax regions over
Region Servers (RS). Each RS will get Rmax/RS regions if Rmax ≥ RS. When Rmax < RS, then Rmax of the
RS will be responsible for one R. Thus, some of the RS would not be used for IR Middleware. Additionally,
against multiple regions, we utilize SaltedIRID and it is vital in the distribution of the rows across Rmax.

Sensors 2020, 20, 3581 14 of 36

For a given maximum value of the region range (λIR
max), and a given number of Rmax, where λIR

max > Rmax,
the number of regions can be calculated as λIR

max/Rmax.
In the interest of having Rmax regions, we need to specify Rmax − 1 split-points

when creating the IR Middleware. For the proposed IR Middleware, the split-points can
be (λIR

max ∗ 1)/Rmax, (λIR
max ∗ 2)/Rmax, ...(λIR

max ∗ (i− 1))/Rmax, (λIR
max ∗ (Rmax− i))/Rmax, as shown in

Figure 8. With these split-points the i-th region, i = 1. . . Rmax, will handle the SaltedIRID in the range
(λIR

max ∗ (i− 1))/Rmax, (λIR
max ∗ (Rmax− i))/Rmax. Given that each R will handle exactly λIR

max/R prefixes,
it would be ideal if all regions are equally loaded. Aiming to achieve an even load on each R, we design
the SaltedIRID as (IRID%Rmax) + IRID.

Agent

MapReduce
based

DRW

IR
DRW

Master

Execution/Monitoring Jobs (Spark)

Developer (

Development &
Deployment

Service
Subscription

Users (

Worker Agents

DPB
Acc. Cnt

Agent

MapReduce
based

DRW

IR
DRW

Agent

MapReduce
based

DRW

IR
DRW

(HDFS) RAW Video Data store

IR
Acc. Cnt

IR
Middle
ware

DPB
Acc. Cnt

IR
Acc. Cnt

DPB
Acc. Cnt

IR
Acc. Cnt

IRID
Column Family: irf Column Family: ird

… …

[Salt] UID ΓID AID SID DTS Obj Obj Obj Obj Obj Obj Obj Obj

IRID
Column Family: irf Column Family: ird

… …

[Salt] UID ΓID AID SID DTS Obj Obj Obj Obj Obj Obj Obj Obj

+ : Obj

Irf Column Qualifier IR

+ : Obj

ird Column Qualifier IR

Figure 7. IR Middleware.

Agent-1

MapReduce
based IVA

Videos

DRW
IR

DRW

Agent-1

MapReduce
based IVA

Videos

DRW
IR

DRW

Worker Agents

DPB
Acc. Cnt.

Agent-2

MapReduce
based IVA

IR
DRW

0
λ λ λ λ

Agent-n

MapReduce
based IVA

IR
DRW

λ λ

(HDFS) RAW Video Data store

IR
Acc. Cnt.

IR
Middle
ware

DPB
Acc. Cnt.

IR
Acc. Cnt.

DPB
Acc. Cnt.

IR
Acc. Cnt.

Master

Execution/Monitoring IVA Jobs (Spark)

IVA Service

Developers

Ma

IVA Service
Development &

Deployment

IVA Service
Subscription

IVA Service
Consumers

Videos

DRW
Videos

DRW

Figure 8. Working of Distributed Persistent Big Data Store (DPBDS) and Immediate Structure Big Data
Store (ISBDS) Access Controllers in spark cluster environment.

Subscription Metastore

Finally, users are allowed to subscribe video stream sources to a RIVA service. The subscription
information are maintained through Subscription metastore.

Sensors 2020, 20, 3581 15 of 36

ISBDS Access Controller

This module is responsible for providing read-write access to the underlying data
securely according to the business logic of the TORNADO. This sub-module is composed of five
sub-modules, i.e., Connection Configurator, Schema Handler, Create, Read, Update, and Delete
(CRUD) Operator, Active and Passive Data Reader, and Writer.

Connection Configurator is used to maintain the configurations parameters such as cluster
configuration, connection information, drivers, and security protocol parameters. When a request is
made for data access, this sub-module is used to establish and maintain the connection session with
the distributed data store. The basic schema structure of the ISBDS is maintained through Schema
Manager, and the same can also be used for portability purposes.

CRUD is designed and provided for CRUD operations on data persisted in ISBDS. CRUD Operator
is primarily designed to provide low-latency real-time interactive CRUD operations over the
distributed storage. The instances of this sub-module are used by the distributed RIVA engines
and by TORNADO Business Logic. It hosts pre-defined generalized queries for CRUD operations.
Upon receiving the request for clients, CRUD Operator matches the request parameters with the
available set of queries. In the case of a parameter match, the selected query is executed with a
real-time response back to the client.

Furthermore, TORNADO is designed to support offline analytics over the bulk of videos while using
distributed in-memory processing engines like Apache Spark [5]. The Passive Data Reader and Writer
(PDRW) is provided to allow Apache Spark to load the bulk of data as RDDs (RDD is spark data
structure [38]) and persist the same to the distributed tables as required. Execution of PDRW is a
two-step process. First, the schema parameters are selected by the client application and then submit it
to the PDRW. The PDRW dynamically generates query upon receiving the parameters. Then the query
is executed over the NoSQL distributed data store, and the response is created and provided to the
client program. The PDRW is provided to meet the demands of the offline analytics, and the query
execution may take a longer time depending on the requested data size.

4.2.2. Distributed Persistent Big Data Store

The DPBDS component built on the top of HDFS and is responsible for providing permanent and
distributed big-data storage. The data are stored and mapped systematically according to the business
logic of the proposed system. The DPBDS component is designed to effectively and dynamically
manage the data workload in the life cycle of IVA algorithms. Upon new registration with the TORNADO,
a formal User Space is created on the top of HDFS. The User Space is managed through a proper
hierarchical directory structure, and special read and write access is granted to the owner. All the
directories are synchronized and mapped according to the user identification in the user profile logs.
In HDFS, under each User Space three types of distributed directories are created, i.e., Raw Video
Space, Model Space, and Project Space, as shown in Figure 9.

hdfs/user/tornado/

U-ID1

Raw Video Space

Batch Datasets

B-ID1 B-IDn

Streaming

S-ID1 S-IDn

Model Space Project Space

P-ID1 P-IDn

U-IDn

Figure 9. Realization of the hierarchical structure of user space in the Hadoop Distributed File
System (HDFS).

Sensors 2020, 20, 3581 16 of 36

Raw Video Space is used for the management of the video data. The Raw Video Space is further
divided into two types of videos. The first type is the batch video, which has been uploaded for batch
analytics, where the second type is acquired and persisted from the video stream sources. The entire
acquired stream is timestamped on persistence. The granularity level of raw streaming videos is maintained
through video data sources. The IVA life cycle may need different models for training and testing purposes.
The Model Space is provided to facilitate the users to manage the training and testing models according to
the deployed IVA algorithm. Similarly, the developer can develop a new algorithm or service. The Project
Space is provided to manage the source code of the respective developer.

To manage and operationalize the User Space, and the respective data in the DPBDS, we develop
a DPBDS Access Controller module and it consists of three sub-modules. These sub-modules are HDFS
Handler, Active DRW and Passive DRW. The former one is designed over low level APIs of HDFS
with the aim of managing the file operations and permission control according to the business logic of
TORNADO. The Active and Passive DRW are provided for real-time and offline read-write operations.

4.3. ISBDB Representation and Mapping

The ISBRM component works as a bridge between the TORNADO Business Logic component and
the Big Data Persistence (BDP). This component is responsible for mapping the contextual data to
the respective data stores according to the business logic of TORNADO. In Figure 3, the ISBDS module
is shown as a cross cutting because it serves the TORNADO Business Logic module. The ISBRM is
composed of three modules, i.e., ISBDS Model Selector, Instance Mapper, and Data Validator.

As stated in Section 4.2, the structure and unstructured data of the proposed framework are
maintained through BDP. The ISBDS data store is represented as an objected oriented abstraction called
ISBDS Model, which encapsulates the attributes of the respective ISBDS data stores. The ISBDS Model
is an implementation of Facade and Adopter Design Pattern [33]. The actual data mapping between
the TORNADO Business Logic and ISBDS is possible because of the ISBDS Model Selector.

TORNADO communicates with the external word over web by following standard data exchange
formats such as Extensible Markup Language (XML) [39] and JSON [40]. The Instance Mapper
sub-module extracts the structured attributes from the input XML/JSON data as resources which are
then mapped to the respective model instance. It identifies and maps the classes for the extracted
resources and places the instances accordingly using a deep copy method [41]. Similarly, an XML/JSON
object response is formed from the ISBDS dataset on retrieval and posted back to the client on request.
The Data Validator sub-module validates the data according to the ISBDS schema and also ensures
the compatibility with the defined constraints of the respective big-table in ISBDS.

4.4. TORNADO Business Logic

The BDP and RVSAS components are designed to support large-scale video data acquisition
and domain-specific IVA in the cloud while exploiting an advanced IVA algorithm. The TORNADO
Business Logic is a high-level abstraction on BDP and RVSAS and is provided to customize the data
access according to the design philosophy of TORNADO. TORNADO Business Logic APIs utilization can
be found in Appendix A.

In this context, the current version implements different modules in the TORNADO Business
Logic components. The TORNADO Business Logic is subject to extendibility depending upon
the future requirements. However, the current release implements and provide six types of
modules, i.e., User Manager, Source Manager, IVA Algorithm and Service Manager, IVA Service
Discovery and Subscription Manager, Ontology Data Manager, and Notification Manager.

The User Manager module encapsulates all the user-related operations such as new user account
creation, access role assignment, and session management. TORNADO provides role-based access to the user
and currently provides three types of user accounts, i.e., admin, developer, and consumer. The user roles
and access rights are shown in Figure 10. The user data access logic has been implemented in this module.

Sensors 2020, 20, 3581 17 of 36

Thorough Data Source Manager module, the user can manage the data in a TORNADO deployed
cloud. The users can manage three types of data sources, i.e., video stream sources, video datasets,
and models. The IVA Algorithm and Service Manager modules are built to manage, develop,
and deploy new IVA algorithms and services on the top of Spark. The former one is provided aaS, i.e.,
IVAAaaS to the developer, while the latter one is provided IVAaaS to the consumer. The developer can
create and publish new IVA algorithms. These IVA algorithms are then made available as IVAAaaS to
other developers for utilization. Once IVA services are created and published by the admin/developer,
then TORNADO users are allowed to subscribe to video sources against the provided IVA services.
The Ontology Manager allows the developer to get the IR for decision making. The Ontology Manager
provides a secure way of getting the IR and maps it according to the video ontology deployed by the
KCL. Similarly, Cluster Management are provided for administration purposes in order to allow the
system administrator to monitor the health and functionality of the system.

Admin

Register/Login

Service Discovery/

Subscription

Add Video Data Sources

Analytics &

Visualization

Developer

Consumers

Profile Management

Batch Video Dataset

Real-time Video Source

Cluster Management

Provide Distribtued Video

Analytics APIs

Create New Video

Analytics Service

<<include>>

<<include>>

Real-time Video

Services<<include>>

 Distribtued Video Analytics

APIs
<<extend>>

Batch Video Services

<<include>>

Create New Video

Analytics Algorithm

Manage Users
Offline Video Steam

Analytics Libs

Real-time Video Steam

Analytics Libs
<<include>>

<<include>>

<<extend>>

Data Management

Push Notification

Figure 10. TORNADO user roles and use case diagram.

Finally, to provide the functionality of the proposed TORNADO framework over the web, it incorporates
top-notch functionality into simple unified role-based web services. The TORNADO Web Service Curation
is built on the top of TORNADO Business Logic. The order and the intercommunication among different
components of the proposed system are shown in Figure 11 through sequence diagrams.

Sensors 2020, 20, 3581 18 of 36

ISBDSTWS/TBLUser: A, D RVSAS

POST

(VSDS-Data)

Request

DS-Service

VSAS.

detect(Obj)

VSAS.

config(Obj)

Video Stream Data Source Management

Batch Data Management

return (Obj)

return

DS-Service

return

(Obj)

DPBDS

if(detected)

DataSource.

create(Obj) DS.

create(Obj)return

DS(Obj)

if(created)

DPB.

create(

Stream

Space)

DPB.

create

(Space

Name)

if(created)return

(boolean)

POST

BatchDS-Data)

Request

DS-Service

return (Obj)

return

DS-Service

DataSource.

create(Obj) DS.

create(Obj)return

DS(Obj)

if(created)

DPB.

create(

Batch

Space)

DPB.

create

(Space

Name)
if(created)return

(boolean)

POST

(Batch-Data)
Persist

(Batch-Data)

DPB.

persist

(Batch-

Data)
if(uploaded)

return (Obj)

return

(boolean)

User.select

(Obj)

Validate

User

Request

LoginService

POST(eMail, PW)

User

.get

(Obj)

Success Login

Return

LoginService

return

UserObj

if(1) start

session

POST(logout)

User.

update

(session)

Redirect

Session Registration

return

(Obj)

if(updated)

Expire session

Session Termination

User.

update(Obj)

(a) (b)

ISBDSTWS/TBLUser: A, D DPBDS

POST(Algo)

Request

AlgoService

Algo

.create(Obj) Algo.Create

(AlgoObj)

DPB.

create

(Space

Name)

POST

(IVA-Service)

Request

IVA-Service

IVA-Service

.create(Obj)
IVAService.

Create(Obj)

Develop

IVAService

PiplineAlgos

IVA-Service

.Deploy()

Build

IVA-Service

IVA-Service

Deploy

if(created)

IVA Algorithm Creation

IVA Service Creation

POST

(Deploy Algo)

return

AlgoObj

return

AlgoService

return Algo

SDK

return

AlgoObj

return

IVA-Service

return

Service SDK

RVSAS

if(created)
DPB

.create

(AlgoObj)

Develop Algo

Build Algo

Algo

.deploy(Code)

DPB.

persist

(Algo)

return

AlgoObj

if(successful)
return

boolean

if(created)

return

ServiceObj

if(created)

return

AlgoObj

DPB

.create

(IVA-Service

Obj)

create

(IVA-Service

Space)

If RIVA TopicManager

.create

(ServiceObj) create

(ServiceObj)
return

AlgoObj

if(created)

IVA-Service.

update()

return

ServiceObj

if(success)
DPB.update

(IVA-Service

Obj)

update

(Service

Space)

return

IVA-

ServiceObj

return

(boolean)

Figure 11. The sequence diagram for session creation, video stream data source, and batch data
management are shown in (a). Similarly, the sequence diagram for the IVA algorithm and service
creation is shown in (b). In the Actor lifeline, A and D represent Admin and Developer, respectively.
These two roles are allowed to create a new video analytics algorithm and service.

5. Execution Scenarios

TORNADO allows the participating layer to register distributed RIVA and BIVA services.
The TORNADO follows the lambda architecture style [42] and the execution scenarios undergo two
types of execution scenarios, i.e., Speed Layer Execution Scenario, and Batch Layer Execution
Scenario. The data of both scenarios are managed through a common layer called BDP, also known as
Serving Layer [42]. Figure 12 illustrates these execution scenarios, and the explanation is given in the
following subsections.

Sensors 2020, 20, 3581 19 of 36

Pool of contextual RIVA services

Broker Cluster [K]

Queue: RIVA_ID
[Video Streams]

Queue: RIVA_IR_ID
[Int. Results]

Queue: RIVA_A_ID
[Anomalies]

Unstructured

Persistent

Data Store

Video Stream Analytics
Consumer Cluster [S]

Anomalies Notification
Cluster [N]

LVSM Subscriber

Sent to Client User

Video Stream
Acquisition Cluster [P]

Video Stream
Acquisition Service

Persist to ISDDS

Intermediate Result
Persistence Cluster [I]

Int. Result Subscriber

Persist to
ISDDS

Distributed File
System

Immediate
Structured
Distributed
Data Store

DFS Active & Passive DRW

Video Stream
Persistence Cluster [V]

Video Stream Consumer

Sent for Persistence

Active DRW

Passive DRW

Read

Passive
Data

Reader

Create

Sent for Per
Raw Video

Streams Metadata

Video Preprocessor

Passive
Data

Writer

Web Server [W]ISDDS Access Controller

Active DRW

Passive DRW

Scan

CRUD Operator

Bulk
Writer

Distributed
Structured DS

Video Big Data Mining LayerVideo Big Data Processing Layer

RIVA Subscription Manager

RIVA Service
Contractor

Video Data Model
Learners

Metadata Intermediate
Results

Anomalies

S
p

e
e

d
 L

a
ye

r
E

xe
cu

ti
o

n
 S

ce
n

a
ri

o
S

e
rv

in
g

 L
a

ye
r

Knowledge Curation Server [T]

(VidOnto)

Triple store

VidOnt

OntoMapper

Concept
based search

Data Source Manager

(R/B)IVA Services

User Management

Distributed Messaging
System

Cluster Manage

R
e

a
l-

ti
m

e
 v

id
e

o
 s

tr
e

a
m

 s
o

u
rc

e
s

Load the subscribed RIVA services

Send to
Mapper

RIVA Service

Knowledge Curation Layer

Batch Video Analytics
Cluster [B]

Data Loader

Raw Batch Video Data
Service Cluster [R]

Batch Video Acquisition
Service (PDRW)

Videos Preprocessor

Batch Video Data Persis.Batch Video Ba h Vide

Raw Video
Data

o Data Persiso DaDaDaDa

Video File
Metadata

Model Storage
Service Cluster [M]

Model Acquisition Service
(PDRW)

Model Persistence

Model

 Persistence

File
Metadata

Bulk Video Data Loader

Int. Result DRWInt. Result DRWt. Result DRt. Result DR

ScanSc

Write

Anomalies
Writer

Write

Pool of contextual BIVA services BIVA Subscription Manager

File Meta Data Extractor

BIVA Service
Contractor

B
a

tc
h

 L
a

ye
r

E
xe

cu
ti

o
n

 S
ce

n
a

ri
o

Data LoaderData Load

Model Loader

B
a

tc
h

 d
a

ta

Video Big Data Mining LayerVideo Big Data Mining Layer

BIVA Service

Load the subscribed BIVA services

Knowledge Curation Layer

Video Stream
Consumer Service

Intermediate Results
Producer/Subscriber

LVSM Producer

RIVA Service

Figure 12. TORNADO execution scenarios.

5.1. Speed Layer Execution Scenario

TORNADO deploys a pool of RIVA services that are made available to the user for subscription.
The IVA services are deployed by the supporting layers (VDPL, VDML, KCL). Once a video stream
source is subscribed to a RIVA service in the pool of IVA services then the life cycle of Speed Layer
Execution Scenario encompasses through different stages while using distinct TORNADO components.
For the ease of understandability, these components are deployed on six types of computing clusters
in the cloud, which are labeled explicitly as ‘P’, ‘V’, ‘K’, ‘S’, ‘N’, ‘I’, as shown in Figure 12.

The cluster ‘P’ hosts VSAS and provides interfaces to an external video stream source.
On configuration, the video streams are loaded to the respective RIVA_ID, in the cluster ‘K’. The cluster
‘K’ deploys Kafka, where the acquired video streams, IR, and anomalies produced by LVSM are
buffered. In this context, the cluster ‘K’ is composed of RIVA_ID, RIVA_IR_ID, and RIVA_A_ID,
as described in Section 4.1. These topics are replicated to access cluster ‘K’ to ensure high throughput.
The RF should be less than or equal to the number of workers in the cluster ‘K’ [43]. The mini-batches

Sensors 2020, 20, 3581 20 of 36

of video streams residing in the distributed broker’s topic RIVA_ID need to be persisted to the DPBDS
and ISBDS data stores. For this purpose, the cluster ‘V’ deploys three types of TORNADO’s modules, i.e.,
VSCS, Video Processor and Persistence. The first module allows the cluster ‘V’ to read the video
stream mini-batches from RIVA_ID topics in the cluster ‘K’. The cluster ‘V’ then processes, encode and
extract the metadata from the consumed video data. Finally, the video stream persistence module
saves the video data and the respective metadata to the DPBDS and ISBDS, respectively.

The cluster ‘S’ is responsible for processing video stream in near real-time while using RIVA
services. Different stream processing engines, for example, Apache Spark Stream, can be used for
the development of RIVA services. The cluster ‘S’ deploys four types of modules. The first module
is VSCS and is used to consume the video streams from the RIVA_ID in the cluster ‘K’. The second
type of module is the actual RIVA service that analyzes the video streams. The RIVA service is loaded
according to the RIVA services subscription contract made by a user. The IR producer/subscriber is
used to send and receive the IR according to the application logic to and from the topic IR in cluster
‘K’. The fourth type of module is the LVSM producer. A RIVA service instance deployed in the cluster
‘S’ should have some domain-specific goal and can produce anomalies if analyzed any. The TORNADO
supports a real-time anomalies delivery system. The RIVA service sent the anomalies continuously to
the LVSM producer and the LVSM producer to the respective anomalies topic RIVA_A_ID in the cluster
‘K’. The cluster group ‘I’ read the IR from the topic RIVA_A_ID in cluster ‘K’ continuously and sent
it to the ISBDS’s IR Middleware for indexing. The final type of cluster in the active view is cluster
‘N’ and is known as Anomalies Notification Cluster. This cluster aims to read anomalies from the
topic RIVA_A_ID in cluster ‘K’ and send the same to the ISBDS for persistence and also delivered in
real-time to the video stream source owner in the form of alerts.

5.2. Batch Layer Execution Scenario

The TORNADO framework is also equipped with BIVA services. These are available aaS for batch
video analytics. The batch video datasets are analyzed in an offline manner, where the execution time
is proportional to the video dataset size and to the subscribed BIVA services. The Passive Execution
life cycle undergoes three types of cluster, i.e., ‘R’, ‘M’, ‘B’. The cluster ‘R’ allows the user to upload
a batch video dataset to the TORNADO cloud and configure three types of TORNADO libraries. The first
type of service is Batch Video Acquisition Service, which is used to acquire a batch video dataset.
Once uploaded to the node buffer, the batch dataset is processed by the activated Video Processor to
extract the metadata from the batch videos. The batch video data and the extracted metadata are then
persisted to the DPBDS and ISBDS, respectively. Similarly, the cluster ‘M’ works the same way as that
of cluster ‘R’, but this one is responsible for model management.

In the batch video analytics, the supporting layers deploy BIVA services. This cluster loads
the instance of BIVA services as per user contract and processes the videos in an offline manner.
Once subscribed, this cluster loads the batch video dataset and model from the DPBDS. Similarly,
the IR and anomalies are maintained in the ISBDS. The acquired video stream residing in the DPBDS
is also illegible for offline analytics.

6. TORNADO Evaluation

TORNADO is a complex system and is composed of many components that are deployed over
different types of clusters. Thus we evaluate various aspects of the proposed system. Before the
evaluation, we explain the distributed cloud environment, which has been used for TORNADO evaluation.

6.1. Experimental Environment

For TORNADO, we set up an indoor distributed cloud environment called TORNADO Cluster while
deploying Hortonworks Data Platform (HDP) version 3.1.0 [44]. The TORNADO Cluster consists of
eleven nodes, as shown in Figure 13. Each node has five parameters. The top line parameter shows the
operating system version being used. The second line shows the processor model, number of cores,

Sensors 2020, 20, 3581 21 of 36

size of RAM in GBs, and size of Hard-disk in GB, respectively. For the networking purpose, we use the
ProSafe GSM7328S fully managed switches that deliver 24 and 48 ports of auto-sensing 1000 Mbps
interfaces for high-density copper connectivity.

Cento7.5: i7 | 20 | 128 | 3TB

TORNADO Server

Cento7.5

i5 | 4 | 32 | 1TB

Agent-9

Data Node

Cento7.5

i5 | 4 | 32 | 1TB

Agent-7

Hbase Region
Server

Phoenix Server

Cento7.5

i5 | 4 | 32 | 1TB

Agent-2

Clients

Cento7.5

i5 | 4 | 32 | 1TB

Agent-1

Zookeeper Src.

Yarn Res. Mgr.

Name Node
SName Node

Cento7.5

i5 | 8 | 32 | 1TB

Agent-8

Kafka Broker

Cento7.5

i5 | 4 | 32 | 1TB

Agent-6

Kafka Broker

Spark2 H. Ser.

Cento7.5: i7 | 20 | 128 | 3TB

TORNADO Web Server (TWSL)Ambari Server

Data Node

Cento7.5

i5 | 4 | 32 | 1TB

Agent-3

Cento7.5

i5 | 4 | 32 | 1TB

Agent-4

Data Node

Clients

Worker Agents (for distributed online and offline video analytics) HBase Server

ClientsClientsClie

TORNADO
Services

IVA Services IVA Services

TORNADO TORNADO

IVA Services

Clients

Data Node

IVA Services

ClientsClients

TORNADO
Services

ClientsClient

TORNADO
Services Phoenix ServerPhoenix Ph ni Server

TORNADO
(ISB Schema)

Hbase RegionHb

TORNADO
Topics

Kafk Brok

TORNADO
Topics

Kafk Brok

TORNADO
Topics

Cento7.5

i5 | 4 | 32 | 1TB

Agent-5

Data Node

Clients

IVA Services

ClientsClient

TORNADO
Services

ZK ClientZK Client Clients

HDFS Server TORNADO Broker Servers

Hbase Region &
Master Server

VSAS & VSP

Figure 13. TORNADO Cluster.

The TORNADO Cluster consists of five types of nodes, i.e., TORNADO Web Server, HDFS Server,
Worker Agents, TORNADO Broker Servers, and HBase Server. The TORNADO Server hosts TORNADO
Web Service, VSAS and video stream processing modules. This server also hosts Ambari Server [45].
The Agent-1 deploys HDFS Name Node [4], Zookeeper Server [46], Yarn Resource Manager [47]
and Spark2 History Server [5]. Worker Agents is composed of four types of agents which deploy
the TORNADO components (RVSAS, ISBDS, and DPBDS) and RIVA services (Face Detection and
Action Recognition service). These nodes perform the actual near real-time analytics. We configure
the TORNADO Broker Servers [32] on agent 6, 7, and 9 to buffer large-scale video stream, real-time
IR, and LVSM alerts. The Agent-9 deploy TORNADO ISBDS schema on the top of HBase.
Similarly, HBase Master has been configured on Agent-9 [37]. In Figure 13, Clients, and Data Node
services are configured on some nodes. Data Node is the HDFS node where Clients means the instances
of Spark, Yarn, Zookeeper, and HBase.

6.2. Services for Evaluation

We have developed two RIVA services, i.e., Face Detection and Action Recognition [29,48].
These applications are developed on top of Spark and the technical details of these services can be
found in our previous publications, i.e., [29,48]. These two applications are available aaS. A user can
expose real-time video stream sources for RIVA. On registration, these two services with TORNADO,
three types of topics are automatically created by the Topic Manager (sub-module of BCS) as shown
in Table 1. We set the RF to three (as we have three Broker server) and set the number of partitions to
140 per topic (to allow a maximum number of camera streams). Further, we set the value of different
parameters in the Cluster Configurator sub-module, ISBDS, and DPBDS, as shown in Table 2.

Table 1. Topics for Face Detection and Action Recognition services.

Topic Name Description RF Partitions

RIVA_1 Consumes the stream, subscribed to Face Detection service. 3 140

RIVA_IR_1 Consumes the IR of Face Detection service. 3 140

RIVA_A_1 Consumes the anomalies of service Face Detection. 3 140

RIVA_2 Consumes the streams, subscribed to Action Recognition. 3 140

RIVA_IR_2 Consumes the IR of Action Recognition service. 3 140

RIVA_A_2 Consumes the Anomalies of Action Recognition service. 3 140

Sensors 2020, 20, 3581 22 of 36

Table 2. Real-time video stream and acquisition component parameter settings.

Variable Value

Kafka

ACKS_CONFIG All
BATCH_SIZE_CONFIG 20,971,520 Bytes
COMPRESSION_TYPE_CONFIG Snappy
MAX_REQUEST_SIZE_CONFIG 2,097,152 Bytes
LINGER_MS_CONFIG 5
AUTO_COMMIT_INTERVAL_MS_CONFIG 1000

HDFS
Block replication 3
HDFS Block Size 64 MB
Java heap size 1 GB

HBase/Phoenix phoenix.query.timeoutMs 1,800,000
hbase.regionserver.lease.period 1,200,000
hbase.rpc.timeout 1,200,000

6.3. Performance Evaluation and Scalability Testing of VSAS and VSP

As the VSAS module is device-independent, we register different types of heterogeneous devices
and offline video stream sources. The heterogeneous video stream sources includes IP camera [49],
depth camera [50], RTSP [51], and IPhone6s Plus [52]. By default, the frame rate of the first three data
sources is 30, and the last one is 60 frames per second. In the case of an offline video stream source, a
video file residing on HDD (WDC WD10EZEX) has also been configured with VSAS sub-component.
The VSAS set the resolution of the acquired frame to 480 × 320 pixels. Resultantly, the size of each
acquired frame became 614.495 KB. The VSAS converts the acquired frame to a formal message at the
rate of 6 MS. The VSAS then forwards the message to VSP. The VSP compresses the size of the message
to 140.538 KB on average and forward to the TORNADO Broker Server at the rate of 12 MS. These two
modules are configured on TORNADO Server to acquire and send the stream to the TORNADO Broker
Servers (Agent-6, Agent-7, and Agent-8). The results of the performance testing are shown in Figure 14.
From the results, it is quite clear that, on average, we can acquire 34 and 54 frames per second from the
heterogeneous video stream sources and offline video stream sources, respectively. The achieved rate is
36% and 116% percent higher than the preferred, i.e., 25 frames per second for RIVA analytics.

To evaluate the ability of TORNADO to scale per system with the increase in video stream sources.
We increase the number of video stream sources on the TORNADO Server from 5 to 140. This test
case stresses the VSAS and VSP sub-components with an average of 54 messages per second per
video stream source. The respective results are shown in Figure 15, which shows that the VSAS
and VSP module can acquire and produce a stream from 70 devices successfully. It can acquire and
produce 40.42 messages per video stream source. As we add more devices, the performance degrades.
However, we recommend attaching up to 70 video stream sources per system. As we are using a
distributed messaging system, i.e., Kafka, which can scale out easily by adding more producers and
broker servers.

The TORNADO stream acquisition component is then tested in a production environment while
subscribing to the RIVA services. Initially, we register and subscribe 30 and 40 cameras with the
Face Detection and Action Recognition services, respectively. The VSAS and VSP successfully
acquire and sent the messages to topic RIVA_1 and RIVA_1 on TORNADO Broker servers. Furthermore,
after 1.5 h, we unsubscribe 10 cameras from Face Detection service and re-subscribe the same to Action
Recognition service. Up to three hours, we receive 95.63 million messages on the TORNADO Broker
servers as shown in Figure 16. On average, we receive 2952.16 messages per second.

Sensors 2020, 20, 3581 23 of 36

0

5000

10000

15000

20000

25000

0

3
0

0
0

6
0

0
0

9
0

0
0

1
2

0
0

0

1
5

0
0

0

1
8

0
0

0

2
1

0
0

0

2
4

0
0

0

2
7

0
0

0

3
0

0
0

0

3
3

0
0

0

3
6

0
0

0

3
9

0
0

0

4
2

0
0

0

4
5

0
0

0

4
8

0
0

0

5
1

0
0

0

5
4

0
0

0

5
7

0
0

0

6
0

0
0

0

6
3

0
0

0

6
6

0
0

0

6
9

0
0

0

7
2

0
0

0

7
5

0
0

0

7
8

0
0

0

8
1

0
0

0

8
4

0
0

0

8
7

0
0

0

9
0

0
0

0

9
3

0
0

0

9
6

0
0

0

9
9

0
0

0

N
u

m
b

e
r

o
f

m
e

ss
a

g
e

s

Time in millisecond

Actual Number of Frames (Expected
Heterogeneous live

video stream devices
Offline video stream

64

58

52

48

57

47

36

35

3437

64

52

484848

474747474747

Figure 14. Performance testing of Video Stream Acquisition Service (VSAS) and Video Stream
Producer (VSP).

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120 140

N
u

m
e

r
o

f
m

e
ss

a
g

e
s

Number of video stream data sources

1053, 52.65

1989, 49.72

2812, 46.86

2800, 400, 4040

1691, 12.092111, 21.11

1633, 13

Figure 15. Stress testing of scalability of VSAS and VSP.

22.06

34.92

40.81

15.01

39.85

54.82

0

10

20

30

40

50

60

7
:2

9
:0

0

7
:3

4
:0

0

7
:3

9
:0

0

7
:4

4
:0

0

7
:4

9
:0

0

7
:5

4
:0

0

7
:5

9
:0

0

8
:0

4
:0

0

8
:0

9
:0

0

8
:1

4
:0

0

8
:1

9
:0

0

8
:2

4
:0

0

8
:2

9
:0

0

8
:3

4
:0

0

8
:3

9
:0

0

8
:4

4
:0

0

8
:4

9
:0

0

8
:5

4
:0

0

8
:5

9
:0

0

9
:0

4
:0

0

9
:0

9
:0

0

9
:1

4
:0

0

9
:1

9
:0

0

9
:2

4
:0

0

9
:2

9
:0

0

9
:3

4
:0

0

9
:3

9
:0

0

9
:4

4
:0

0

9
:4

9
:0

0

9
:5

4
:0

0

9
:5

9
:0

0

1
0

:0
4

:0
0

1
0

:0
9

:0
0

1
0

:1
4

:0
0

1
0

:1
9

:0
0

1
0

:2
4

:0
0

1
0

:2
9

:0
0

M
e

ss
a

g
e

s
in

 m
il

li
o

n

Time

Messages in on RVAS_1 Messages in on RVAS_2

Cams = 40, M

Cams = 30, M

Cams = 40, M

Cams = 30, M

Cams = 40, M

Cams = 30, M
Cams = 40, M

Cams = 30, M

Cams = 40, M

Cams = 30, M

Cams = 40, M

Cams = 30, M

Messages out on RVAS_1 Messages out on RVAS_2

Figure 16. VSAS and VSP performance in production environment.

6.4. Performance Evaluation of Video Stream Consumer Service

In this section, we evaluate the performance of VSCS module. VSCS acquire the video streams
from the TORNADO Broker server in the form of mini-batches for analytics. The ∆ti size is significant
in the context of IVA service (especially in temporal IVA). The size of the mini-batch is dependent
on MAX_REQUEST_SIZE_CONF variable. For the evaluation, we set up four different cases, i.e.,
Case-1, Case-2, Case-3, and Case-4, as shown in Table 3, while setting the mini-batch size to 4, 6, 8,
and to 10 MB, respectively. With synchronous replication, a single thread on a single worker node

Sensors 2020, 20, 3581 24 of 36

achieves 50, 88, 101, and 166 messages per second on average. In each case, we initiate 22 threads to
receive mini-batches from the TORNADO Broker servers. In Case-1, we can achieve the best performance
in 20 threads while receiving 814 messages per second. Similarly, in Case-2, 3, and 4, the optimal
performance was achieved in 13, 9, and 7 Threads, as shown in Table 3. Adding more threads per
system does not increase performance, as shown in Figure 17. The effect of the VSCS in the production
environment is shown in Figure 16 where the messages out on RIVA_1 and RIVA_1 are almost
overlapping with that of the receiving. For message consumption, we use worker agents.

Table 3. Performance evaluation of Video Stream Consumer Services (VSCS).

MBS Size Avg. Msgs/Sec Max thread (Optimal) Avg. Msgs/Sec

Case-1 4 MB 50 20 814

Case-2 6 MB 88 13 791

Case-3 8 MB 101 9 744

Case-4 10 MB 166 7 808

814808 793 791

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

M
e

ss
a

g
e

s
 p

e
r

se
co

n
d

Number of threads

MBS(4 MB) MBS(6 MB) MBS(8 MB) MBS(10 MB)

Figure 17. Performance testing of VSCS.

6.5. Lifelong Video Stream Monitor

The LVSM component is responsible for notifying the TORNAOD’s user in near real-time after the
detection of some abnormal activity in the video stream by domain-specific RIVA service. We subscribe
Camera-1 and Camera-2 to Face Detection and Action Recognition services, respectively. The rules of
these anomalies are shown in Figure 18.

The monitored lifelong of Camera-2 is shown in Figure 19. In the figure, we can see that faces
have been detected in near real-time, and the respective notifications are generated.

Similarly, the Action Recognition service monitors the lifelong video stream of Camera-1
according to rules given in Figure 18. In Figure 20, we can see that various types of activities have been
generated with time.

The performance of LVSM is based on its timely generation of notification for the real-time
domain-specific video analytics service. For the LVSM evaluation, we introduce three types of
delay cases, i.e., Case-1, Case-2, and Case-3. The life cycle of Case-1 considers the total time from
frame acquisition to processing and then the notification. The delay of the notification, in this case,
is proportional to the execution time of the RIVA service. In Case-2, we exclude the execution time,
whereas in Case-3, only the delay between the occurrence of anomaly and publication of notification is

Sensors 2020, 20, 3581 25 of 36

evaluated. The LVSM services are configured on the agents of the work. For this evaluation, Camera-1
was subscribed to Face Detection service and Camera-2 to Action Recognition. In Case-1 the
notification delay, on average for Face Detection and Action Recognition, 73 and 113 milliseconds
were recorded. In Case-2, the average notification delay is 69, and 70 milliseconds was achieved.
Similarly, in Case-3, we get 36 and 38 milliseconds on average. The delay comparison of LVSM is
shown in Figure 21. From these statistics, it is clear that LVSM publishes notification with the highest
efficiency. During the video stream processing by worker nodes, the Face Detection and Action
Recognition generates 30,458 and 11,841 notifications and sends the same to the topic RIVA_A_1 and
RIVA_A_2, respectively, as shown in Figure 22.

Figure 18. Anomaly detection rules. (a) show rules for event type “Face Detection”, i.e., when a face in
a video stream is detected, then a notification is generated. Similarly, (b) show anomalies detection
rules for abnormal events, i.e., when an abnormal event like Fall Down, Push, or Kick is detected in a
video stream, then a notification is generated accordingly.

Figure 19. Camera 2 video stream monitor against the service Face Detection for three hours.

Figure 20. Camera 2 video stream monitor against the service Activity Recognition for three hours.

Sensors 2020, 20, 3581 26 of 36

Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max

Agent-1 Agent-2 Agent-3 Agent-4

Case-3 30 36 43 31 36 44 31 37 44 32 38 44

Case-2 60 69 84 60 69 84 60 70 86 60 70 87

Case-1 66 73 91 68 76 92 105 112 121 100 113 122

0
20
40
60
80

100
120
140

T
im

e
 i

n
 m

il
li

se
co

n
d

s

000

15000
20000
25000
30000
35000

Time

nomalies notification

Anomalies notification in on T-2 Anomalies notification in on T-1

Figure 21. Notification delay performance evaluation.

1,600

11,841

5540

30458

0

5000

10000

15000

20000

25000

30000

35000

0
:0

0
:0

0

0
:1

0
:0

0

0
:1

5
:0

0

0
:2

0
:0

0

0
:2

5
:0

0

0
:3

0
:0

0

0
:3

5
:0

0

0
:4

0
:0

0

0
:4

5
:0

0

0
:5

0
:0

0

0
:5

5
:0

0

1
:0

0
:0

0

1
:0

5
:0

0

1
:1

0
:0

0

1
:1

5
:0

0

1
:2

0
:0

0

1
:2

5
:0

0

1
:3

0
:0

0

1
:3

5
:0

0

1
:4

0
:0

0

1
:4

5
:0

0

1
:5

0
:0

0

1
:5

5
:0

0

2
:0

0
:0

0

2
:0

5
:0

0

2
:1

0
:0

0

2
:1

5
:0

0

2
:2

0
:0

0

2
:2

5
:0

0

2
:3

0
:0

0

2
:3

5
:0

0

2
:4

0
:0

0

2
:4

5
:0

0

2
:5

0
:0

0

2
:5

5
:0

0

3
:0

0
:0

0

N
U

M
B

E
R

 O
F

 A
N

O
M

A
LI

E
S

Time

Anomalies notification in on RVAS_A_2 Anomalies notification in on RVAS_A_1

Figure 22. Total number of anomalies produced by Face detection and Activity recognition.

6.6. Performance Evaluation of Intermediate Results Manager

As the TORNADO is supposed to provide support for the IVA life cycle and to manage the IR.
Once the features are extracted from the mini-batches of videos, the same is then produced for the
respective topic. Face Detection produces bounding boxes, whereas Action Recognition services
generate low-level features, i.e., VLBP [48]. These are sent to the RIVA_IR_1, and RIVA_IR_1,
respectively on the TORNADO Broker server. On average, each mini-batch of the video stream generates
a feature vector of 100 KB against the VLPB algorithm, which becomes 40 KB after compression while
using snappy compression. A single node using a single thread can process 80 messages per second.
When using four consumers and four producers with 25 threads each, we get up to 1645 messages
per second, as shown in Figure 23. During the experimental analysis, the Action Recognition service
generates 0.4 million VLPB features and sends it to the respective topic TORNADO Broker server
successfully. Finally, Figure 24 also shows the total data consumed (including video streams, anomalies,
and IR) by the Broker servers. As we are using the RF three; thus, the data are accurately replicated
to the three broker servers which ensure the fault-tolerance.

Sensors 2020, 20, 3581 27 of 36

80

395

800

1095

1475

1645
1616 1600

0

200

400

600

800

1000

1200

1400

1600

1800

1 5 10 15 20 25 30 35

In
te

rm
e

d
ia

t
R

e
su

lt
s

m
e

ss
a

g
e

s
p

e
r

se
co

n
d

Number of threads

Intermediat Results

in on RVAS_2

Intermediat Results

out of RVAS_2

Figure 23. Performance evaluation of Intermediate Results Manager.

0

20

40

60

80

100

120

7
:3

0

7
:3

5

7
:4

0

7
:4

5

7
:5

0

7
:5

5

8
:0

0

8
:0

5

8
:1

0

8
:1

5

8
:2

0

8
:2

5

8
:3

0

8
:3

5

8
:4

0

8
:4

5

8
:5

0

8
:5

5

9
:0

0

9
:0

5

9
:1

0

9
:1

5

9
:2

0

9
:2

5

9
:3

0

9
:3

5

9
:4

0

9
:4

5

9
:5

0

9
:5

5

1
0

:0
0

1
0

:0
5

1
0

:1
0

1
0

:1
5

1
0

:2
0

1
0

:2
5

1
0

:3
0

M
E

S
S

A
G

E
S

 P
R

O
D

U
C

E
D

 P
E

R
 S

E
C

O
N

D
 (

G
B

)

TIME

Agent-6 Agent-7 Agent-8

Figure 24. Total data consumed by the Broker Servers.

6.7. IR Middleware Evaluation

In this section, we evaluate the performance of IR Middleware. We utilize the IR-Manager to read the
IR from RIVA_IR_1 and RIVA_IR_2, and then call the IR Access Controller to persist the same to the IR
Middleware. To study the effect of the number of regions on the parallelism, based on the discussion in
Section 4.2.1.4, we pre-split the IR Middleware by setting Rmax = 12, and λIR

max to hex-encoded values for
the regions in the range ′00000000′ - ′FFFFFFFF′. These splits are distributed over four RS. The RS are
configured on Agent-2, 3, 4, and 5. Thus each RS servicing three regions of the IR Middleware.

The write performance of the IR Middleware is shown in Figure 25 while exploiting the proposed
SaltedIRID. It is clear from Figure 25 that the write operations are almost distributed equally over the
designed IR Middleware. In Figure 25, the dotted lines show that the utilization of IRID will persist the IR
to the Agent-2 first, then to 3, and so on. Through the IRID, it will lead to the issue of hotspotting.

Sensors 2020, 20, 3581 28 of 36

0

0.5

1

1.5

2

2.5

3

7
:3

0

7
:3

5

7
:4

0

7
:4

5

7
:5

0

7
:5

5

8
:0

0

8
:0

5

8
:1

0

8
:1

5

8
:2

0

8
:2

5

8
:3

0

8
:3

5

8
:4

0

8
:4

5

8
:5

0

8
:5

5

9
:0

0

9
:0

5

9
:1

0

9
:1

5

9
:2

0

9
:2

5

9
:3

0

9
:3

5

9
:4

0

9
:4

5

9
:5

0

9
:5

5

1
0

:0
0

1
0

:0
5

1
0

:1
0

1
0

:1
5

1
0

:2
0

1
0

:2
5

1
0

:3
0

N
o

d
e

 U
ti

li
za

ti
o

n
 (

R
e

q
u

e
st

in

 K
 /

 S
e

c)

Time

Intermediate Results Write Requests Per Region Server

Agent-2 Agent-3 Agent-4 Agent-5

Figure 25. Performance evaluation of Intermediate Results (IR) Middleware.

6.8. Distributed Persistent Big Data Store

To evaluate the DPBDS performance over HDFS, we have performed experimentation both on
Active and Passive Data Reader and Writer. The HDFS instances are configured on the worker agents
(Data Nodes) and HDFS Server (Name Node) as shown in Figure 13. Likewise, the Active and Passive
Data Reader and Writer are configured on the worker agents and TORNADO Server. The Active Data
Writer consumes the video stream from the topic RIVA_ID (TORNADO Broker server) and persists the
video stream to the HDFS. The performance result of the Active Data Writer, i.e., blocks that are written
to the data node, is shown in Figure 26. From the results, it is clear that the Active Data Writer ensures
the data locality and proper data distribution. Similarly, we evaluate the performances of Passive Data
Reader and Writer operations (illustrated in Figure 27 over batch video data). These operations have
been executed for five different batch video sizes, i.e., 1, 5, 10, 15 and 20 GB. The results show that
the write operation is faster than the read operation. The time difference for both read and write is
proportional to the volume of batch video data.

0

0.5

1

1.5

2

2.5

7
:3
0

7
:3
5

7
:4
0

7
:4
5

7
:5
0

7
:5
5

8
:0
0

8
:0
5

8
:1
0

8
:1
5

8
:2
0

8
:2
5

8
:3
0

8
:3
5

8
:4
0

8
:4
5

8
:5
0

8
:5
5

9
:0
0

9
:0
5

9
:1
0

9
:1
5

9
:2
0

9
:2
5

9
:3
0

9
:3
5

9
:4
0

9
:4
5

9
:5
0

9
:5
5

1
0
:0
0

1
0
:0
5

1
0
:1
0

1
0
:1
5

1
0
:2
0

1
0
:2
5

1
0
:3
0

N
U
M
B
E
R
O
F
B
LO

C
K
S

TIME

BLOCKS WRITTEN

Agent 5 Agent 4 Agent 3 Agent 2

Figure 26. Performance of Distributed Persistent Big Data Store (Active Data Writer).

Sensors 2020, 20, 3581 29 of 36

1.7

6

13

22

31

4

14

29

42

56

0

10

20

30

40

50

60

1 5 10 15 20

E
la

p
se

d
 t

im
e

 (
m

in
u

te
s)

Batch Size (GB)

Write Read

Figure 27. Performance evaluation of Passive Data Reader and Writer.

7. Discussion

This section discusses the features of the proposed TORNADO that are related to state-of-the-art
CVAS. Furthermore, it also highlights features of the proposed system that leverage it from existing
systems. The comparison of the proposed system with commercial and scholarly work is shown in
Table 4.

Table 4. Feature-wise comparison with state-of-the-art Cloud-based Video Analytics System (CVAS).

Role-Based
Secure
Access

Video Data
Acquisition

Data
Maintenance

& Management
IVA aaS

Processing
Engines
Support

D
ev

el
op

er

C
on

su
m

er

V
id

eo
St

re
am

B
at

ch
V

id
eo

M
od

el

A
PI

IR
M

id
d.

W
.

A
no

m
al

ie
s

R
IV

A
-a

aa
S

R
IV

A
-a

aS

B
IV

A
-a

aa
S

B
IV

A
-a

aS

Sp
ar

k
St

re
am

Sp
ar

kM
R

H
ad

oo
pM

R
Google vision [15] 3 3 7 3 3 7 7 7 7 7 7 7 7 7 7

Azure CVAS [53] 3 3 3 3 3 7 7 - 7 3 7 7 - - -

IBM CVAS 3 3 7 3 3 7 7 7 7 7 7 3 - - -

Citilog [54] 7 3 3 7 7 7 7 3 7 7 7 7 7 7 7

CheckVideo [13] 7 3 3 7 7 7 7 7 7 7 7 7 7 7 7

IntelliVision [14] 7 3 3 7 7 7 7 7 7 7 7 7 7 7 7

Liu, X. et al. [10] 7 7 7 3 7 7 7 7 7 7 7 7 7 7 3

Zhang, W. et al. [22] 7 7 3 3 7 7 7 7 7 7 7 7 7 7 3

Zhang, W. et al. [11] 7 7 3 3 7 7 7 7 7 3 3 7 7 7 3

Ganesh, A. et al.
[26,27] 7 7 3 7 7 7 7 7 3 3 7 7 - - -

TORNADO 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

7.1. Common Features with Existing Systems

Some of the features of the proposed system are similar to the existing commercial and scholarly
systems. Commercial CVAS like Google Vision [15], and IBM CVAS allows the users to subscribe to the
batch videos to the provided BIVA services. At maximum, the user can utilize their domain-specific

Sensors 2020, 20, 3581 30 of 36

models. The Azure Video Analytics [53], Citilog [54], CheckVideo [13], and IntelliVision [14] support
real-time IVA, and one can subscribe to the video stream to existing IVA services. The proposed system
shares some features of video data acquisition of the CVAS proposed in [10,11,22,27].

7.2. Differences with Existing Systems

The principal dissimilarities between the proposed CVAS and the state of the art solutions are
listed below.

• Unlike existing CVAS, the TORNADO framework is intended to provide a service-oriented
echo-system while utilizing open-source big data technologies to facilitate IVA developers and
scientists. Users can develop and deploy new IVA algorithms under IVAAaaS. The IVA algorithms
can then be pipelined to create a domain-specific IVA service. The users can then subscribe to
video sources to the available IVA services.

• In the context of IVA, the proposed system provides higher-level abstractions on the low-level
APIs on top of big data solutions, which assist users to focus more on the IVA solution.

• The proposed system is equipped with IR-Manager and LVSM to maintain and manage the IR
and anomalies.

• Unlike existing solutions, the proposed framework is facilitated with scale-out IR Middleware,
which addresses the issue of big dimensionality. The IR Middleware allow the integration of
diverse types of IVA services with TORNADO.

• The proposed system is based on the lambda architecture and can easily be extended to the fog
based solution, i.e., RIVA services can be deployed near to the video stream data sources and
BIVA service on the cloud resources.

8. Conclusions

In this paper, we presented the TORNADO framework, which focuses on curating large-scale video
data in the cloud environment while deploying IVA algorithms and services under an aaS model.
TORNADO is a pluggable and scale-out framework, which is designed to bridge the gap between IVA
algorithms and service developers. It provides high-level abstractions on top of big data stacks to
allow researchers/developers to focus more on the IVA services in the cloud. TORNADO efficiently
manages the IR during the IVA life cycle. Furthermore, IVA algorithms can easily be pipelined
to create a domain-specific IVA service. The data source-independent implementation of TORNADO
makes it more scalable and IoT compatible. TORNADO is also facilitated with LVSM, which monitors
the video stream against the rules defined in the IVA service by domain experts. Distributed Big
Data Persistence is provided to support a large volume of raw video data, models, structured data,
and the IR, which enables the TORNADO to support data-driven knowledge generation, descriptive and
predictive analysis, and visualization.

The TORNADO framework performance, accuracy, and scalability have been successfully evaluated
against the demands of the TORNADO for real-time and offline IVA. From the results, it is clear that the
proposed framework performs efficiently and effectively in the production environment.

The current version has been validated against RIVA services. In the future, we will evaluate
and optimize the IR Middleware against tree data structures, and will provide more IVA services,
i.e., offline video analytics, and deep-learning-based approaches. In the future, we are also investigating
to optimize the TORNADO against in-memory computing engines like Apache Spark.

Author Contributions: Y.-K.L. guided for improvement during the discussions; A.A. conceived the main idea,
performed implementation, and evaluation of the proposed system. A.A. was in charge of writing the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Institute for Information and Communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT) (No. 2016-0-00406, SIAT CCTV Cloud Platform).

Sensors 2020, 20, 3581 31 of 36

Acknowledgments: This work was supported by the Institute for Information and Communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2016-0-00406, SIAT CCTV Cloud Platform).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

aaS as-a-Service.
BCS Broker Client Services.
BDP Big Data Persistence.
BIVA Batch IVA.
C2C Customer-to-Customer.
CRUD Create, Read, Update, and Delete.
CVAS Cloud-based Video Analytics System.
DPBDS Distributed Persistent Big Data Storage.
DRW Data Reader and Writer.
HDFS Hadoop Distributed File System.
HDP Hortonworks Data Platform.
IoT Internet of things.
IR Intermediate Results.
IR-Manager Intermediate Results Manager.
ISBDS Immediate Structured Big Data Store.
ISBRM ISBDS Representation and Mapping.
IVA Intelligent Video Analytics.
IVAAaaS IVA-Algorithm-as-a-Service.
IVAaaS IVA-as-a-Service.
JSON JavaScript Object Notation.
KCL Knowledge Curation Layer.
LVSM Lifelong Video Stream Monitor.
PDRW Passive Data Reader and Writer.
RF Replication Factor.
RIVA Real-time IVA.
RS Region Servers.
RVSAS Real-time Video Stream Acquisition and

Synchronization.
VDML Video Data Mining Layer.
VDPL Video Data Processing Layer.
VSAS Video Stream Acquisition Service.
VSCS Video Stream Consumer Services.
VSP Video Stream Producer.
XML Extensible Markup Language.

Appendix A. TORNADO Business Logic APIs Utilization

The TORNADO Business Logic allows the user to communicate with TORNADO. The utilization of
the TORNADO Business Logic and the communication among different components are shown in the
sequence diagrams in Figure 11. Here in the following subsection, we demonstrate some real examples,
i.e., how to interact with TORNADO and how to utilize the high-level APIs of the TORNADO Business
Logic. Furthermore, TORNADO framework can be download from GitHub (https://github.com/angry-
bit/TORNADO).

https://github.com/angry-bit/TORNADO
https://github.com/angry-bit/TORNADO

Sensors 2020, 20, 3581 32 of 36

Appendix A.1. User Manager

/ / S e t new u s e r a t t r i b u t e s
/ / u s e r R o l e s : 0=Admin , 1= Deve l ope r , 2=Consumer
User user = new User () ;
user . setFirstName (" firstName ") . setLastName (" lastName ")
. setUserName (" userName ") . setEmai l (" email ")
. setUserRole (userRole) . setPassword (" password ") ;

/ / R e g i s t e r a new u s e r .
UserDAO userDAO = new UserDAO () ;
userDAO . c r e a t e (user) ;

/ / User Login , i f a l r e a d y r e g i s t e r e d .
userDAO . log in (" email " , " password ") ;

Appendix A.2. Video Stream Data Source Manager

/ / dsType : 0 = Video s t r e am s o u r c e , 1 = Batch d a t a s o u r c e , 2 = ML Model
DataSource dataSource = new DataSource () ;
dataSource . se tUserId (" userId ")
. setCameraUserName (" cameraUserName ")
. setCameraPassword (" cameraPassword ")
. setCameraLink (" cameraLink ")
. s e t D e s c r i p t i o n (" Camera Descr ipt ion i f requried ") ;

DataSourceDAO dataSourceDAO = new DataSourceDAO () ;
dataSourceDAO . c r e a t e (dataSource , dsType) ;

/ / A c c e s s a s i n g l e camera with a g i v e n ID
dataSourceDAO . get (ds_id , dsType) ;
/ / L i s t a l l camera o f a u s e r .
dataSourceDAO . ge tA l l (user_id , dsType) ;

Appendix A.3. Batch Data Source Management

/ / F i r s t c r e a t e a d a t a s e t d i r e c t o r y
dataSource . setDsName (dsName)
. se tUserId (userId)
. s e t D e s c r i p t i o n (d e s c r i p t i o n)
. setdsType (dsType) ;
dataSourceDAO . c r e a t e (dataSource) ;

/ / Upload Vi de o s
DataSourceDAO dataSourceDAO = new DataSourceDAO () ;
dataSourceDAO . upload (dsName , sourcePath) ;

/ / A c c e s s model
dataSourceDAO . get (videoDatasetName) ;

Sensors 2020, 20, 3581 33 of 36

Appendix A.4. Model Management

/ / Machine L e a rn i n g model management
dataSource . setDsName (modelName)
. s e t D e s c r i p t i o n (d e s c r i p t i o n)
. setdsType (dsType) ;

/ / Upload Model
dataSourceDAO . c r e a t e (dataSource) ;
dataSourceDAO . upload (modelName , sourcePath) ;

/ / A c c e s s model
dataSourceDAO . get (modelName) ;

Appendix A.5. RIVA Service Creation and Registration

Like RIVA service, BIVA services can be created, and registered with the TORNADO

/ / s e r v i c e T y p e : 0 = RIVA s e r v i c e , 1 = BIVA S e r v i c e
S e r v i c e s e r v i c e = new S e r v i c e () ;
s e r v i c e . setServiceName (" serviceName ") . se tServiceType (serviceType)
. se tUserId (userId) . s e t D e s c r i p t i o n (" S e r v i c e d e s c r i p t i o n ") ;

ServiceDAO serviceDAO = new ServiceDAO () ;
serviceDAO . c r e a t e (s e r v i c e) ;

/ / C r e a t e RIVA s e r v i c e a s p e r a l g o r i t h m 2 .
/ / Conver t t o J a r s and Upload t o t h e TORNADO.
serviceDAO . r e g i s t e r S e r v i c e (serviceName , pathToJars) ;

Appendix A.6. Service Discovery and Subscription

/ / L i s t RIVA s e r v i c e s
ServiceDAO . ge tA l l (serviceType) ;

/ / S e t s e r v i c e s u b s c r i p t i o n p r o p e r t i e s
S e r v i c e S u b s c r i p t i o n s e r v i c e S u b s c r i p t i o n = new S e r v i c e S u b s c r i p t i o n () ;
s e r v i c e S u b s c r i p t i o n . s e t S e r v i c e I d (s e r v i c e S u b s c r i p t i o n I d)
. s e r v i c e S u b s c r i p t i o n . setDsId (dsId)
. s e t S u b s c r i p t i o n S t a r t D a t e (s u b s c r i p t i o n S t a r t D a t e)
. se tSubscr ip t ionStopDate (subscr ipt ionStopDate) ;

/ / S u b s c r i b e a RIVA s e r v i c e .
ServiceSubscriptionDAO . c r e a t e (s e r v i c e S u b s c r i p t i o n) ;

Sensors 2020, 20, 3581 34 of 36

Appendix A.7. Ontology Data Manager

/ / E x p l o r e I n t e r m e d i a t e R e s u l t s o f an RIVA v i d e o a n n o t a t i o n s e r v i e c
/ / S e t t h e b a s i c a t t r i b u t e s
In termedia teResul t in te rmedia teResu l t = new In termedia teResul t () ;
in te rmedia teResul t . setdSID (videoStreamSourceID)
. setSID (videoAnalyt icsService ID) . setUID (userID)
. setStartTimestamp (startTimestamp) . setStartTimestamp (endTimestamp)

IntermediateResultDAO . getIR (In termedia teResul t) ;

Appendix A.8. Anomalies

/ / E x p l o r i n g Anomal i es
Anomaly anomaly = new Anomaly () ;
anomaly . setDsId (dsId) . s e t S e r v i c e I d (s e r v i c e I d) . setUID (userID)
. setStartTimestamp (Timestamp) . setEndTimestamp (Timestamp) ;

AnomalyDAO anomalyDAO = new AnomalyDAO () ;
anomalyDAO . get (anomaly) ;

References

1. Pouyanfar, S.; Yang, Y.; Chen, S.C.; Shyu, M.L.; Iyengar, S. Multimedia big data analytics: A survey.
ACM Comput. Surv. (CSUR) 2018, 51, 10. [CrossRef]

2. Olatunji, I.E.; Cheng, C.H. Dynamic Threshold for Resource Tracking in Observed Scenes. In Proceedings
of the 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA),
Zakynthos, Greece, 23–25 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

3. Corporation, I.D. The Growth in Connected IoT Devices. 2019. Available online: https://www.idc.com/
getdoc.jsp?containerId=prUS45213219 (accessed on 7 February 2020).

4. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The Hadoop Distributed File System. In Proceedings of the
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), Incline Village, NV, USA,
3–7 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–10. doi:10.1109/MSST.2010.5496972. [CrossRef]

5. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.;
Franklin, M.J.; et al. Apache spark: a unified engine for big data processing. Commun. ACM 2016, 59, 56–65.
[CrossRef]

6. Mell, P.; Grance, T. The NIST definition of cloud computing. NIST Spec. Publ. 2011, 800, 145.
7. Zikopoulos, P.; Deroos, D.; Parasuraman, K.; Deutsch, T.; Giles, J.; Corrigan, D. Harness the Power of Big Data

the IBM Big Data Platform; McGraw Hill Professional: Emeryville, CA, USA, 2012.
8. Amazon, E. Amazon Web Services. Available online: http://aws.amazon.com/es/ec2/ (accessed on

23 June 2020).
9. Ajiboye, S.O.; Birch, P.; Chatwin, C.; Young, R. Hierarchical video surveillance architecture: A chassis for

video big data analytics and exploration. In Video Surveillance and Transportation Imaging Applications 2015;
International Society for Optics and Photonics: San Francisco, CA, USA, 2015 ; Volume 9407, p. 94070K.

10. Liu, X.; Zhao, D.; Xu, L.; Zhang, W.; Yin, J.; Chen, X. A distributed video management cloud platform using
hadoop. IEEE Access 2015, 3, 2637–2643. [CrossRef]

11. Zhang, W.; Xu, L.; Duan, P.; Gong, W.; Lu, Q.; Yang, S. A video cloud platform combing online and offline
cloud computing technologies. Pers. Ubiquitous Comput. 2015, 19, 1099–1110. [CrossRef]

12. Freitas, A.; Curry, E. Big data curation. In New Horizons for a Data-Driven Economy; Springer: Cham,
Switzerland; 2016; pp. 87–118.

13. CheckVideo. CheckVideo, LLC Develops Video Security Systems. 1998. Available online: https://www.
checkvideo.com/ (accessed on 7 June 2020).

http://dx.doi.org/10.1145/3150226
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1145/2934664
http://aws.amazon.com/es/ec2/
http://dx.doi.org/10.1109/ACCESS.2015.2507788
http://dx.doi.org/10.1007/s00779-015-0879-3
https://www.checkvideo.com/
https://www.checkvideo.com/

Sensors 2020, 20, 3581 35 of 36

14. IntelliVision. IntelliVision LLC IntelliVision Now Inside 4 Million Smart Cameras—Leader in AI-Based Video
Analytics Software. 2002. Available online: https://www.intelli-vision.com/news/intellivision-now-inside-
4-million-smart-cameras-leader-in-ai-based-video-analytics-software/ (accessed on 7 February 2020).

15. Google Inc. Video AI. 2017. Available online: https://cloud.google.com/video-intelligence/ (accessed on
13 April 2020).

16. Mell, P.; Grance, T. The NIST definition of cloud computing. Natl. Inst. Stand. Technol. 2009, 53, 50.
17. Marr, B. The Emergence of the Algorithm as a Service Model. 2016. Available online: https://

medium.com/@jrodthoughts/the-emergence-of-the-algorithm-as-a-service-model-960755725592 (accessed on
7 February 2020).

18. Delen, D.; Demirkan, H. Data, Information and Analytics as Services. Decis. Support Syst. 2013, 55, 359–363
19. Pitta, D.A.; Fowler, D. Online consumer communities and their value to new product developers. J. Prod.

Brand Manag. 2005, 14, 283–291. [CrossRef]
20. Hossain, M.A. Framework for a cloud-based multimedia surveillance system. Int. J. Distrib. Sens. Netw.

2014, 10, 135257. [CrossRef]
21. Zhang, W.; Duan, P.; Li, Z.; Lu, Q.; Gong, W.; Yang, S. A Deep Awareness Framework for Pervasive Video

Cloud. IEEE Access 2015, 3, 2227–2237. [CrossRef]
22. Zhang, W.; Xu, L.; Li, Z.; Lu, Q.; Liu, Y. A deep-intelligence framework for online video processing.

IEEE Softw. 2016, 33, 44–51. [CrossRef]
23. Pereira, R.; Azambuja, M.; Breitman, K.; Endler, M. An architecture for distributed high performance video

processing in the cloud. In Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing,
Miami, FL, USA, 5–10 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 482–489.

24. Liu, C.; Fan, K.; Yang, Z.; Xiu, J. A distributed video share system based on Hadoop. In Proceedings of the
2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems, Shenzhen, China,
27–29 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 587–590.

25. Lin, C.F.; Yuan, S.M.; Leu, M.C.; Tsai, C.T. A framework for scalable cloud video recorder system in
surveillance environment. In Proceedings of the 2012 9th International Conference on Ubiquitous Intelligence
and Computing and 9th International Conference on Autonomic and Trusted Computing, Fukuoka, Japan,
4–7 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 655–660.

26. Ananthanarayanan, G.; Bahl, P.; Bodík, P.; Chintalapudi, K.; Philipose, M.; Ravindranath, L.; Sinha, S.
Real-time video analytics: The killer app for edge computing. Computer 2017, 50, 58–67. [CrossRef]

27. Ananthanarayanan, G.; Bahl, V.; Cox, L.; Crown, A.; Nogbahi, S.; Shu, Y. Demo: Video Analytics-Killer App
for Edge Computing. In Proceedings of the ACM MobiSys, Seoul, Korea, 18–20 June 2019.

28. Eagle Eye, C. Eagle Eye Cloud Based Video Surveillance Solutions for Every Circumstance. 2012.
Available online: https://www.een.com/ (accessed on 7 February 2020).

29. Uddin, M.A.; Alam, A.; Tu, N.A.; Islam, M.S.; Lee, Y.K. SIAT: A distributed video analytics framework for
intelligent video surveillance. Symmetry 2019, 11, 911. [CrossRef]

30. Khan, M.N.; Alam, A.; Lee, Y.K. FALKON: Large-Scale Content-Based Video Retrieval Utilizing
Deep-Features and Distributed In-memory Computing. In Proceedings of the 2020 IEEE International
Conference on Big Data and Smart Computing (BigComp), Busan, Korea, 19–22 February 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 36–43.

31. Alam, A.; Khan, M.N.; Khan, J.; Lee, Y.K. IntelliBVR-Intelligent Large-Scale Video Retrieval for Objects and
Events Utilizing Distributed Deep-Learning and Semantic Approaches. In Proceedings of the 2020 IEEE
International Conference on Big Data and Smart Computing (BigComp), Busan, Korea, 19–22 February 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 28–35.

32. Kreps, J.; Narkhede, N.; Rao, J. Kafka: A distributed messaging system for log processing. In Proceedings of
the NetDB; Association for Computing Machinery: Athens, Greece, 2011; pp. 1–7.

33. Gamma, E. Design Patterns: Elements of Reusable Object-Oriented Software; Pearson Education India: Bengaluru,
India, 1995.

34. Salesforce, I. Apache Phoenix: We Put the SQL Back in NoSQL. 2014. Available online: http://phoenix.
apache.org/presentations/HPTS.pdf (accessed on 7 June 2020).

35. Rivest, R. The MD5 Message-Digest Algorithm; Technical Report; RFC Editor: USA, 1992. Available online:
http://altronic-srl.com.ar/md5%20algoritmo.pdf (accessed on 7 June 2020).

https://www.intelli-vision.com/news/intellivision-now-inside-4-million-smart-cameras-leader-in-ai-based-video-analytics-software/
https://www.intelli-vision.com/news/intellivision-now-inside-4-million-smart-cameras-leader-in-ai-based-video-analytics-software/
https://cloud.google.com/video-intelligence/
https://medium.com/@jrodthoughts/the-emergence-of-the-algorithm-as-a-service-model-960755725592
https://medium.com/@jrodthoughts/the-emergence-of-the-algorithm-as-a-service-model-960755725592
http://dx.doi.org/10.1108/10610420510616313
http://dx.doi.org/10.1155/2014/135257
http://dx.doi.org/10.1109/ACCESS.2015.2497278
http://dx.doi.org/10.1109/MS.2016.31
http://dx.doi.org/10.1109/MC.2017.3641638
https://www.een.com/
http://dx.doi.org/10.3390/sym11070911
http://phoenix.apache.org/presentations/HPTS.pdf
http://phoenix.apache.org/presentations/HPTS.pdf
http://altronic-srl.com.ar/md5%20algoritmo.pdf

Sensors 2020, 20, 3581 36 of 36

36. Moriarty, K.; Kaliski, B.; Rusch, A. Pkcs# 5: Password-based cryptography specification version 2.1. Internet
Eng. Task Force (IETF) 2017, 8018, 1–40

37. George, L. HBase: The Definitive Guide: Random Access to Your Planet-Size Data; O’Reilly Media, Inc.: Newton,
MA, USA, 2011.

38. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley, M.; Franklin, M.J.; Shenker, S.; Stoica, I.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX Conference on Networked Systems Design and Implementation; USENIX Association: Berkeley,
CA, USA, 2012; p. 2.

39. Bray, T.; Paoli, J.; Sperberg-McQueen, C.M.; Maler, E.; Yergeau, F. Extensible markup language (XML). World
Wide Web J. 1997, 2, 27–66.

40. Crockford, D. The Application/Json Media Type for Javascript Object Notation (json). RFC 2006, 4627, 1–10.
41. Gong, L.; Schemers, R. Signing, Sealing, and Guarding JavaTM Objects. In Mobile Agents and Security;

Springer: Heidelberg, Germany, 1998; pp. 206–216.
42. Marz, N.; Warren, J. Big Data: Principles and Best Practices of Scalable Real-Time Data Systems; Manning

Publications Co.: New York, NY, USA, 2015.
43. Wang, G.; Koshy, J.; Subramanian, S.; Paramasivam, K.; Zadeh, M.; Narkhede, N.; Rao, J.; Kreps, J.; Stein, J.

Building a replicated logging system with Apache Kafka. Proc. VLDB Endow. 2015, 8, 1654–1655. [CrossRef]
44. Hortonworks. Hortonworks Data Platform. 2011. Available online: https://docs.hortonworks.com/

HDPDocuments/HDP3/HDP-3.1.0/index.html (accessed on 7 February 2020).
45. Wadkar, S.; Siddalingaiah, M. Apache ambari. In Pro Apache Hadoop; Springer: Berlin, Germany, 2014;

pp. 399–401.
46. Haloi, S. Apache ZooKeeper Essentials; Packt Publishing Ltd: Birmingham, UK, 2015.
47. Vavilapalli, V.K.; Murthy, A.C.; Douglas, C.; Agarwal, S.; Konar, M.; Evans, R.; Graves, T.; Lowe, J.; Shah, H.;

Seth, S.; et al. Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th annual
Symposium on Cloud Computing; ACM: New York, NY, USA, 2013; p. 5.

48. Uddin, M.A.; Joolee, J.B.; Alam, A.; Lee, Y.K. Human action recognition using adaptive local motion
descriptor in spark. IEEE Access 2017, 5, 21157–21167. [CrossRef]

49. Yang, M.J.; Tham, J.Y.; Wu, D.; Goh, K.H. Cost effective IP camera for video surveillance. In Proceedings
of the 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May 2009;
IEEE: Piscataway, NJ, USA, 2009; pp. 2432–2435.

50. Zhang, Z. Microsoft kinect sensor and its effect. IEEE Multimed. 2012, 19, 4–10. [CrossRef]
51. Schulzrinne, H.; Rao, A.; Lanphier, R. Real Time Streaming Protocol (RTSP). RFC 1998, 2326, 1–92.
52. Apple Support. Use 4K and 60 Frames per Second Video in iMovie. 24 April 2020. Available online:

https://support.apple.com/en-us/HT205345 (accessed on 23 June 2020).
53. Julia, K.; Craig Casey, J.H. Media Analytics on the Media Services Platform. 2019. Available online: https://

docs.microsoft.com/en-gb/azure/media-services/previous/media-services-analytics-overview (accessed
on 23 June 2020).

54. Citilog. 1997. Available online: http://www.citilog.com/ (accessed on 23 June 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14778/2824032.2824063
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/index.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/index.html
http://dx.doi.org/10.1109/ACCESS.2017.2759225
http://dx.doi.org/10.1109/MMUL.2012.24
https://support.apple.com/en-us/HT205345
https://docs.microsoft.com/en-gb/azure/media-services/previous/media-services-analytics-overview
https://docs.microsoft.com/en-gb/azure/media-services/previous/media-services-analytics-overview
http://www.citilog.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Background and Nomenclatures
	Proposed TORNADO Framework
	Real-Time Video Stream Acquisition and Synchronization
	Broker Client Services
	Video Stream Acquisition Service
	Video Stream Producer
	Video Stream Consumer Services
	Intermediate Results Manager
	Lifelong Video Stream Monitor

	Big Data Persistence
	Immediate Structured Big Data Store
	Distributed Persistent Big Data Store

	ISBDB Representation and Mapping
	TORNADO Business Logic

	Execution Scenarios
	Speed Layer Execution Scenario
	 Batch Layer Execution Scenario

	TORNADO Evaluation
	Experimental Environment
	Services for Evaluation
	Performance Evaluation and Scalability Testing of VSAS and VSP
	Performance Evaluation of Video Stream Consumer Service
	Lifelong Video Stream Monitor
	Performance Evaluation of Intermediate Results Manager
	IR Middleware Evaluation
	Distributed Persistent Big Data Store

	Discussion
	Common Features with Existing Systems
	Differences with Existing Systems

	Conclusions
	TORNADO Business Logic APIs Utilization
	User Manager
	Video Stream Data Source Manager
	Batch Data Source Management
	Model Management
	RIVA Service Creation and Registration
	Service Discovery and Subscription
	Ontology Data Manager
	Anomalies

	References

