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Abstract: Atrial fibrillation (AF) is a common cardiac disorder that can cause severe complications. 
AF diagnosis is typically based on the electrocardiogram (ECG) evaluation in hospitals or in clinical 
facilities. The aim of the present work is to propose a new artificial neural network for reliable AF 
identification in ECGs acquired through portable devices. A supervised fully connected artificial 
neural network (RSL_ANN), receiving 19 ECG features (11 morphological, 4 on F waves and 4 on 
heart-rate variability (HRV)) in input and discriminating between AF and non-AF classes in 
output, was created using the repeated structuring and learning (RSL) procedure. RSL_ANN was 
created and tested on 8028 (training: 4493; validation: 1125; testing: 2410) annotated ECGs 
belonging to the “AF Classification from a Short Single Lead ECG Recording” database and 
acquired with the portable KARDIA device by AliveCor. RSL_ANN performance was evaluated in 
terms of area under the curve (AUC) and confidence intervals (CIs) of the received operating 
characteristic. RSL_ANN performance was very good and very similar in training, validation and 
testing datasets. AUC was 91.1% (CI: 89.1%–93.0%), 90.2% (CI: 86.2%–94.3%) and 90.8% (CI: 
88.1%–93.5%) for the training, validation and testing datasets, respectively. Thus, RSL_ANN is a 
promising tool for reliable identification of AF in ECGs acquired by portable devices. 

Keywords: atrial fibrillation; machine learning algorithms; artificial neural networks; portable 
devices 

 

1. Introduction 

Arrhythmias are among the most common cardiac disorders that can cause severe and 
sometimes fatal complications, even when asymptomatic [1,2]. Among the different kinds of serious 
cardiac arrhythmias, atrial fibrillation (AF) is the most common, affecting 1–2% of the worldwide 
population [3]. AF is associated with a high morbidity (especially stroke and heart failure) and 
mortality. Mortality (per 100,000 population), in particular, has shown an increasing trend with time; 
from 1990 to 2010 it increased from 0.8 to 1.6 in men, and from 0.9 to 1.7 in women, with peaks in 
developed countries reaching 2.7 and 2.4, respectively [3]. Thus, AF represents, worldwide, a 
significant public health problem with huge socio-economic repercussions. 

AF is a supraventricular arrhythmia characterized by uncoordinated continuous atrial electrical 
activation, causing the deterioration of atrial functionality. In normal conditions, the contraction of 
the heart is initiated by an electrical impulse that, after having been generated by the sino-atrial 
node, propagates through all atrial myocardial cells, causing their electrical depolarization and 
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mechanical contraction followed by the electrical repolarization and mechanical relaxation. 
Successively, the electrical impulse reaches the atrioventricular node, in which it is slowly conducted 
before propagating through all ventricular myocytes, causing their ventricular depolarization and 
contraction and subsequent repolarization and relaxation. The electrical phenomena associated with 
the propagation of this impulse through the heart result in typical waves of the electrocardiogram 
(ECG) measured at the body surface. Normally, the ECG is a pseudo-periodic signal (Figure 1A) 
constituted by the repetition of a pattern showing a sequence of typical waves (Figure 1B): the P 
wave, which reflects the atrial depolarization; the QRS complex, which reflects the ventricular 
depolarization and hides the atrial repolarization; and the T wave, which reflects the ventricular 
repolarization. In AF, the sino-atrial node is overruled by the continuous fibrillatory activity and is 
no longer able to provide its pseudo-periodic impulse, so the heart rhythm becomes irregular 
(Figure 1C) and the impulse propagates though the atria following chaotic pathways [4]. However, 
once the impulse reaches the atrioventricular node and finds it not refractory, the impulse normally 
propagates through the ventricles. Combination of the AF random nature and the complex 
conduction/blocking properties of the atrioventricular node generates an irregular heart rate. These 
abnormalities of the electrical activity of the heart are reflected in the ECG that is no longer a 
pseudo-periodic signal but, rather, shows a high level of heart-rate variability (HRV) (Figure 1C). 
The P wave is no longer present; instead, continuous fibrillatory waves, also called F waves, are seen 
as rapid low amplitude oscillations that reflect the continuous uncoordinated atrial depolarization 
(Figure 1D).
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Figure 1. Panel A shows a normal pseudo-periodic electrocardiogram (ECG) tracing. Panel B shows a normal beat, constituted by a P wave (the smallest wave), a 
QRS complex (with R being the highest wave) and a T wave. Panel C shows an ECG tracing with atrial fibrillation (AF) and thus increased heart rate variability 
(HRV). Panel D shows a beat during AF with F waves but no P wave. 
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AF diagnosis is typically ECG-based and is usually made by a cardiologist, possibly supported 
by computerized applications [5–18], in hospitals or in clinical facilities. However, traditional 
medical ECG devices, even when used out-of-the-hospital (such as the Holter ECG recorders), are 
coupled to a limited amount of people, who are symptomatic or have cryptogenic stroke and, hence, 
for whom there is an indication for long-term monitoring. But, due to the sneaky and oftentimes 
asymptomatic way AF develops, a large-scale monitoring would be preferable, especially in the 
population above a certain age. The use of wearable devices (such as watches, patches and bands) 
and portable devices (such as smartphone and tablets) is becoming more and more common among 
the entire population worldwide. The modern devices are able to record the ECG and thus have 
opened the possibility to remotely monitor AF on a plethora of individuals. However, in order to be 
useful in the preventive diagnosis of AF, they have to be associated with a reliable diagnostic 
software. As a result, several algorithms for automatic detection of AF have been proposed in the 
literature [5–9], several of which are based on machine and deep learning approaches [10–18]. Most 
of them claim very high performances but, when critically analyzed, show some common 
limitations. Firstly, performances of some algorithms for AF identification have been tested only 
against sinus rhythm [5–11,13–15], without considering the main confounders that are the level of 
noise affecting ECGs and the presence of other kinds of arrhythmias [12,16–18]. Secondly, most 
algorithms only rely on HRV to identify AF [5–10,13,14], despite high HRV being also associated 
with many other arrhythmias (not AF-specific) [19,20] and AF being also associated with absence of 
electrocardiographic P wave and presence of electrocardiographic F waves. Finally, some algorithms 
have been tested only on ECGs recorded by traditional medical devices [11–16,18] and not by 
modern wearable or portable devices; thus, their applicability to the latter remains to be 
demonstrated. 

The aim of the present work is to propose a new artificial neural network (ANN) for a reliable 
identification of AF based on several input ECG features and to test it on ECG recordings acquired 
through portable devices, and thus typically affected by noise, made in healthy subjects and in 
cardiac patients exhibiting various types of abnormal cardiac rhythms. To this aim, a supervised 
fully connected artificial neural network was created using the repeated structuring and learning 
procedure [21] and tested on the “AF Classification from a Short Single Lead ECG Recording” 
database [19] by Physionet [22], consisting of thousands of short single-lead ECG recordings 
acquired with the portable KARDIA device by AliveCor [19]. 

2. Materials and Methods 

2.1. Study Datasets 

Data belong to the “AF Classification from a Short Single Lead ECG Recording” database by 
Physionet [19,22] (https://physionet.org). They include 8244 single lead ECGs (typically Einthoven 
lead I), collected with the portable KARDIA device by AliveCor (https://www.alivecor.com). ECG 
duration ranges from 9 s to 61 s (average: 33 s) and the sampling rate is 300 Hz. All ECG recordings 
were manually annotated by an expert as showing AF rhythms (738 recordings), normal rhythms 
(5050 recordings) or other rhythms (different from AF and normal rhythms, such as premature 
ventricular contraction; 2456 recordings) [19,22]. For the scope of this paper, these ECG recordings 
were classified into two reference classes, the AF class (738 recordings) and the non-AF class (7506 
recordings). 

All ECGs were characterized in terms of signal-to-noise ratio (SNR) (in dB, where the signal and 
noise amplitudes were defined as maximum signal amplitude and 4 times signal standard deviation, 
respectively) and submitted to an automatic algorithm for R-peak detection [23]. Only ECGs for 
which at least three consecutive R peaks could be identified were accepted for feature extraction and 
AF identification. Specifically, only the accepted ECGs were considered and grouped into three 
datasets, the training dataset, the validation dataset and the testing dataset. The training dataset and 
the validation dataset, including 55% and 15% of accepted ECGs, respectively, were used to create 
the ANN for AF identification, while the testing dataset, including the remaining 30% of accepted 
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ECGs, was used to evaluate the created ANN performance. In all datasets, the prevalence of subjects 
in AF and non-AF classes was maintained unaltered. 

2.2. ECG Processing and Feature Extraction 

Initially, each ECG was prefiltered with a 6th order bidirectional Butterworth bandpass filter 
(cutoff frequencies of 0.5 Hz and 45 Hz) and R-peak positions were identified [23]. Then, several 
different signal processing steps were applied to obtain a set of 19 features from each ECG, 11 
morphological features, 4 F-waves features and 4 HRV features. For an interpretive approach, the 
features were selected to include all those on which the criteria for AF diagnosis rely, namely P-wave 
disappearance, F-waves appearance and HRV increment, possibly quantified with different 
methods. 

The 11 morphological features were extracted from the median ECG beat (MECGB), obtained as 
the median of the n (with n being the number of beats in the recordings) ECG segments included 
between 250 ms and 450 ms before and after each R peak, respectively. Specifically, the following 6 
standard landmarks [24] were identified: Pp (position of the absolute maximum of │MECGB│ to the 
left of the R wave; it corresponds to the P-peak position in the presence of the P wave or to the 
highest oscillation position in the presence of F waves); Rp (position of the absolute maximum of 
│MECGB│; it corresponds to the R-peak position); Tp (position of the absolute maximum of 
│MECGB│ to the right of the R wave; it corresponds to the T-peak position); QRSon (position of the 
point where the MECGB derivative changes its sign for the second-to-last time before Rp; it 
corresponds to the QRS-onset position); QRSoff (position of the point where the MECGB derivative 
changes its sign for the second time after Rp; it corresponds to the QRS-offset position or J point); and 
Toff (position of the point where the MECGB derivative changes its sign for the first time after the Tp; 
it corresponds to the T-offset position). Using these 6 landmarks, 11 morphological features, 5 time 
intervals (namely PpRp, PpQRSoff, QRSonQRSoff, QRSonToff and QRSoffToff) and 6 amplitudes (namely 
AP, AQRSon, AQRS, AQRSoff, AT and AQRS/AP), are computed as described in Table 1. All 
amplitude features are computed with respect to baseline level identified 80 ms before Rp [25]. 

The 4 F-waves features are based on the power spectral density estimation of the residual ECG 
obtained by subtracting the dominant ECG waveform obtained using the segmented beat 
modulation method [26,27], from the original ECG. Specifically, the F-waves frequency ratio (FWFR) 
(dimensionless); was computed as the ratio between the spectral area in the F-waves frequency band 
(4–10 Hz) and the total spectral area [27]. Since four different methods were used to estimate the 
power spectral density, 4 FWFR values (namely FWFRFFT, FWFRWLC, FWFRYWK, and FWFRTHM,) were 
obtained as described in Table 1. 

Finally, 4 HRV features (namely MRR, SDRR, RMSRR, and PRR50) were obtained from the RR 
interval series [28] as described in Table 1. 
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Table 1. Summary of the 19 ECG features (11 on morphology, 4 on F waves and 4 on heart-rate 
variability) characterizing each ECG recording. 

Feature Type Feature 
Name Feature Unit  Feature Description 

Morphology 

PpRp  ms time interval between PP and RP 
PpQRSoff ms time interval between PP and QRSoff 

QRSonQRSoff ms time interval between QRSon and QRSoff 
QRSonToff ms time interval between QRSon and Toff 
QRSoffToff ms time interval between QRSoff and Toff 

AP µV amplitude of the MECGB at PP 

AQRSon µV amplitude of the MECGB at QRSon 

AQRS µV 
max-min of MECGB amplitude between QRSon and 

QRSoff 
AQRSoff µV amplitude of the MECGB at QRSoff 

AT µV amplitude of the MECGB at TP 
AQRS/AP dimensionless ratio between AQRS and AP 

Fwaves  

FWFRFFT % Fast Fourier Transform spectral ratio 
FWFRWLC % Welch’s method spectral ratio  
FWFRYWK % Yule-Walker’s method spectral ratio 
FWFRTHM % Thomson’s method spectral ratio 

Heart-rate 
variability 

MRR ms mean RR interval 
SDRR ms RR-interval standard deviation 

RMSRR ms Root mean square of RR interval 
PRR50 % % of RR > previous RR of more than 50 ms 

2.3. Artificial Neural Network Construction 

The iterative repeated structuring and learning (RSL) procedure [21] was used to create a 
supervised fully connected artificial neural network (RSL_ANN). Details about the RSL procedure 
can be found in [21]. In the present study, RSL_ANN was designed according to the following 
specifications: (a) the input layer consists of 19 neurons (one for each extracted feature), the output 
layer consists of one neuron that provides a value between 0 and 1, with 0 representing the non-AF 
class and 1 representing the AF class, and all other neurons had weights and biases between −1 and 
+1 and a sigmoid activation function; (b) optimization was done with the scaled-conjugate-gradient 
algorithm [29]; (c) to avoid overfitting, the validation-based early stopping criterion was used [30]; 
and (d) the AF and non-AF classes were weighted according to the inverse of their prevalence in 
order to compensate their disproportionality [31]. The procedure dynamically alternated structuring 
and learning phases. The primitive RSL_ANN (initially composed of a neuron in a hidden layer) was 
upgraded in different alternatives according to the following rules: each alternative presented only 
an additional neuron in an existing layer or in a new layer; the number of neurons in a layer could 
not be larger than the number of neurons in the previous layer; the maximal number of layers was 
three; and initialized weights and bias of the additional neuron had to improve RSL_ANN 
performance after only one epoch. If one rule was not fulfilled, the alternative was not acceptable. 
Then, all alternatives were learnt, and their validation errors were compared with the validation 
error of the primitive RSL_ANN. The RSL_ANN with the smallest validation error was considered 
as the new primitive RSL_ANN, and the procedure started anew. The stopping criteria were the 
following: there were no acceptable alternatives; the same alternative was confirmed as primitive for 
10 consecutive times; or there were no misclassifications in both training and validation datasets. 
When one of the stopping criteria occurred, the primitive RSL_ANN was also the final RSL_ANN. In 
order to avoid dependency from initialization, 100 different RSL_ANNs were created by considering 
100 different initializations. The optimal RSL_ANN was selected as the one showing the smallest 
validation error. 
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2.4. Statistics 

Feature distributions over classes were described in terms of 50th [25th;75th] percentiles in all 
datasets and compared using the Wilcoxon ranksum test for equal medians. Statistical significance 
(p-value) was set at 0.05. RSL_ANN performance was evaluated by computing the receiver operating 
characteristic (ROC) curve from which area under the curve (AUC) and associated 95% confidence 
intervals (CIs) were computed. Sensitivity (Se) and specificity (Sp) were eventually determined for 
two specific operating points on the ROC curve of the testing dataset. The first operating point (Case 
1) was that for which Se equals Sp; the second operating point (Case 2) was that for which Sp is set at 
75% and Se is computed accordingly. 

3. Results 

Out of 8244 ECGs available in the Physionet “AF Classification from a Short Single Lead ECG 
Recording” database, 8028 (97.4%) were accepted for the study while the remaining 216 (2.7%) were 
rejected. Accepted ECGs were characterized by a SNR significantly higher than rejected ones 
(3.7[1.2;4.3] dB vs. 0.1[−2.5;2.5] dB, respectively; p-value < 0.05). Table 2 shows accepted ECGs 
grouped into training, validation and testing datasets. 

Feature distributions over datasets are reported in Table 3. Most features (15 out of 19) were 
found to be significantly different when statistically comparing the subjects in the AF and non-AF 
classes in all datasets. 

The optimal RSL_ANN had a three hidden layer architecture with 6 neurons in the first hidden 
layer, 6 neurons in the second hidden layer and 5 neurons in the third hidden layer (Figure 2). The 
ROC curves for the testing dataset obtained with optimal RSL_ANN are depicted in Figure 3. The 
AUCs for the training, validation and testing datasets are 91.1% (CI: 89.1%–93.0%), 90.2% (CI: 
86.2%–94.3%), and 90.8% (CI: 88.1%–93.5%), respectively. Case 1 was characterized by values of Se 
and Sp both equal to 81.2% in the testing dataset. Eventually, Case 2 was characterized by a value of 
Sp equal to 75.0% and a value of Se equal to 88.7% in the testing dataset. 

Table 2. Data division into training dataset, validation dataset and testing dataset. 

 ALL TRAINING DATASET VALIDATION DATASET TESTING DATASET 
AF 707 395 99 213 

Non-AF 7321 4098 1026 2197 
TOTAL 8028 4493 1125 2410 
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Table 3. Feature distributions of both AF and non-AF of all data, training, validation and testing datasets. 

 ALL DATA TRAINING  
DATASET 

VALIDATION 
DATASET 

TESTING 
DATASET 

AF Non-AF AF Non-AF AF Non-AF AF Non-AF 

M
or

ph
ol

og
ic

al
 F

ea
tu

re
s 

PpRp 
(ms) 

207* 
[161;243] 

150 
[130;183] 

203* 
[157;240] 

150 
[130;180] 

197* 
[153;237] 

150 
[130;187] 

220* 
[183;247] 

150 
[130;183] 

PpQRSoff 
(ms) 

257* 
[210;287] 

200 
[177;233] 

250* 
[203;287] 

200 
[177;233] 

250* 
[203;286] 

200 
[177;240] 

267* 
[227;293] 

200 
[179;233] 

QRSonQRSoff 
(ms) 

103 
[93;113] 

103 
[93;113] 

100 
[93;113] 

103 
[93;113] 

103 
[90;113] 

103 
[93;113] 

103 
[93;113] 

103 
[93;113] 

QRSonToff 
(ms) 

333* 
[261;387] 

386 
[320;427] 

330* 
[260;383] 

387 
[323;427] 

337* 
[276;399] 

383 
[313;423] 

333* 
[259;407] 

383 
[317;427] 

QRSoffToff 
(ms) 

230* 
[157;283] 

283 
[217;320] 

223* 
[150;277] 

287 
[220;320] 

240* 
[178;290] 

280 
[213;320] 

230* 
[153;301] 

283 
[213;320] 

AP 
(µV) 

12* 
[−25;34] 

52 
[−34;82] 

13* 
[−25;37] 

52 
[−37;82] 

12* 
[−26;38] 

49 
[−36;80] 

−10* 
[−24;26] 

55 
[−27;83] 

AQRSon 
(µV) 

0* 
[−7;7] 

−5 
[−17;4] 

0* 
[−8;6] 

−5 
[−18;4] 

0* 
[−5;7] 

−4 
[−16;4] 

1* 
[−5;9] 

−4 
[−17;4] 

AQRS 
(µV) 

852* 
[637;1075] 

895 
[651;1158] 

852 
[664;1075] 

894 
[646;1533] 

873 
[615;1092] 

873 
[636;1140] 

836* 
[631;1062] 

905 
[670;1175] 

AQRSoff 
(µV) 

−27 
[−73;9] 

−24 
[−64;13] 

−29* 
[−75;8] 

−22 
[−63;13] 

−16 
[−55;16] 

−22 
[−62;15] 

−28 
[−76;9] 

−28 
[−67;11] 

AT 
(µV) 

185* 
[109;259] 

246 
[165;332] 

180* 
[109;253] 

248 
[167;334] 

195* 
[127;253] 

236 
[156;319] 

188* 
[105;269] 

247 
[167;336] 

AQRS/AP 
(dimension-less) 

−3* 
[−24;20] 

9 
[−1;13] 

−1* 
[−24;19] 

9 
[−2;13] 

−3* 
[−26;15] 

9 
[−1;13] 

−7* 
[−23;23] 

9 
[−1;14] 

F-
W

av
es

 F
ea

tu
re

s 

FWFRFFT 
(%) 

24* 
[16;31] 

14 
[9;21] 

23* 
[16;30] 

14 
[9;21] 

25* 
[16;31] 

14 
[9;21] 

23* 
[16;31] 

15 
[10;21] 

FWFRWLC 
(%) 

25* 
[17;32] 

14 
[9;21] 

25* 
[17;32] 

14 
[9;21] 

25* 
[16;32] 

14 
[10;22] 

24* 
[17;32] 

15 
[10;21] 

FWFRYWK 
(%) 

35* 
[25;45] 

23 
[17;31] 

35* 
[26;45] 

23 
[17;31] 

37* 
[25;44] 

22 
[16;31] 

34* 
[24;43] 

23 
[17;31] 

FWFRTHM 
(%) 

24* 
[16;31] 

14 
[9;21] 

24* 
[16;32] 

14 
[9;21] 

25* 
[16;31] 

14 
[9;21] 

23* 
[16;31] 

14 
[10;21] 

H
R

V
 

Fe
at

u MRR 
(ms) 

712* 
[580;860] 

864 
[758;976] 

692* 
[565;835] 

862 
[760;979] 

717* 
[577;878] 

869 
[751;980] 

755* 
[616;902] 

863 
[758;970] 
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SDRR 
(ms) 

157* 
[104;224] 

57 
[24;134] 

155* 
[101;208] 

58 
[25;136] 

157* 
[101;227] 

58 
[24;133] 

163* 
[112;242] 

54 
[22;129] 

RMSRR 
(ms) 

218* 
[144;309] 

57 
[19;172] 

215* 
[138;299] 

59 
[20;174] 

223* 
[142;319] 

56 
[19;170] 

223* 
[159;320] 

52 
[18;167] 

PRR50 
(%) 

92* 
[90;94] 

67 
[0;83] 

93* 
[90;94] 

67 
[0;83] 

93* 
[90;94] 

67 
[0;83] 

93* 
[89;94] 

67 
[0;80] 

*p-value < 0.05 when comparing corresponding feature in AF vs. non-AF classes, within a dataset. 
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Figure 2. The optimal artificial neural network obtained by the repeated structuring and learning 
procedure (RSL_ANN). It presents a three hidden layer architecture with 6 neurons in the first 
hidden layer, 6 neurons in the second hidden layer and 5 neurons in the third hidden layer. 

 
Figure 3. Receiving operating characteristic (ROC) for the testing dataset. The area under the curve 
(AUC) value is 90.8%. Operating points for Case 1 (blue dot), in which sensitivity (Se) and specificity 
(Sp) are both equal to 81.2%, and Case 2 (red dot), in which Sp is 75% and Se is 88.7%, are also 
reported. 

4. Discussion 

This work proposes RSL_ANN as a supervised fully connected artificial neural network created 
using the repeated structuring and learning procedure [21] for reliable AF identification in ECGs 
acquired with the portable KARDIA device by AliveCor, as those used here and available in the 
Physionet “AF Classification from a Short Single Lead ECG Recording” database [19,22]. The 
repeated structuring and learning procedure has to be considered as a general method to construct 
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ANNs and not in association with a specific clinical application. The used innovative repeated 
structuring and learning procedure [21] is indeed particularly suitable for applications of neural 
networks to relatively small databases (and not only to big data, as is usually done) since improving 
the loss function by iteratively alternating structuring and learning phases during the training 
(activation functions are standard). 

RSL_ANN was fed with a set of 19 input features automatically extracted from ECGs (Table 1). 
By considering the three criteria for AF diagnosis, the features set includes standard morphological 
features of ECG waves (to reflect possible P-wave disappearance) as well as ECG features that 
typically characterize AF, that are F-waves features (to reflect possible F-waves appearance) and 
HRV features (to reflect possible HRV increment). Statistical analysis of feature distributions (Table 
3) confirmed the known clinical observations that, in AF, the P wave disappears, F waves appear 
and HRV increases. P-wave disappearance and F-waves appearance are indicated by the finding 
that AP values are significantly higher in the non-AF class than the AF class. AP values in the AF 
class are not 0 (as one would expect in the absence of the P wave) because of representing F-waves 
amplitude and not the P -wave amplitude (see section 2.2). F-waves appearance in AF is also 
indicated by the fact that all FWFR features were significantly higher in the AF class than in the 
non-AF class. Finally, the HRV increment in AF is indicated by the fact that all HRV features were 
significantly higher in the AF class than in the non-AF class. These findings, together with the 
observation that only two morphological and not AF-specific features out of 19 (both related to the 
QRS complex) were not significantly different in AF vs. non-AF classes (Table 3), confirm the 
reliability of the automatic feature extraction and the appropriateness of the feature selection. 

RSL_ANN output is the ECG classification score, that is a value between 0 (indicating a subject 
not affected by AF) and 1 (indicating a subject affected by AF). No further stratification for cardiac 
rhythms other than AF was provided for the non-AF cases since optimal identification of a specific 
cardiac rhythm or pathology requires a specifically designed artificial neural network and proper 
selection of input ECG features (for example, in [21,32] optimal artificial neural networks for 
identification of heart failure in post-infarction patients and of ischemia in patients who underwent 
elective percutaneous coronary intervention are proposed, both obtained using the repeated 
structuring and learning procedure and a different set of 13 input ECG features). 

As said, use of ECG features instead of raw data (as sometimes done when using long 
short-term memory, 1D convolutional neural network and others [11,15,16,33,34]) at the input of 
RSL_ANN implies adding an ECG processing step for feature extraction before classification; 
however, it also allows the construction of a faster and simpler artificial neural network, since based 
on a reduced number of hidden layers, through a smaller training dataset. In addition, since each 
feature, if well selected, reflects a specific physiologic phenomenon, classification logic of a network 
is physiologically more understandable than when it is based on raw data, and this is very much 
appreciated in context in which interpretability of the model is desirable. 

RSL_ANN was constructed and tested on the “AF Classification from a Short Single Lead ECG 
Recording” database [19] by Physionet [22]; this database was selected for several reasons. First, it 
contains more than 8000 short single-lead ECG recordings and thus represents a suitable database 
for the design of a tool based on artificial neural networks. Additionally, these ECGs were acquired 
using the KARDIA [19], which is a portable device by AliveCor, in healthy subjects and patients 
showing several types of cardiac rhythm besides AF. These characteristics of the database allowed 
us to test the proposed algorithm in relation to the two main confounders in automatic AF 
identification, which are the level of noise affecting ECGs acquired using portable devices and the 
presence of arrhythmias other than AF. 

Less than 3% of the ECGs included in the database could not be used in this study due to high 
levels of noise that jeopardized R-peak detection, and thus not for issues related to feature extraction 
or RSL_ANN construction. Nevertheless, all the observations that can be done on RSL_ANN ability 
to identify AF hold for ECGs affected by various levels of noise but in which the signal is dominant 
with respect to noise. Reliability of RSL_ANN in very noisy conditions remains to be demonstrated 
and requires availability of an R-peak detector able to perform correctly in such adverse conditions. 
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Performance of RSL_ANN was very good and very similar in all datasets, with AUC over 90%. This 
result confirms the ability of RSL_ANN to correctly generalize the problem of AF identification. We 
made the choice to express RSL_ANN performance in terms of AUC in order to optimize Se and Sp 
(and thus working points in ROC and the threshold value of an output neuron) according to 
applications. When RSL_ANN is applied to a subject with no history of AF, errors in AF and non-AF 
classifications should be equally probable. Consequently, the threshold should be chosen to have 
equal values of Se and Sp. This case corresponds to Case 1, in which Se and Sp are 81.2% in the 
testing dataset. Instead, if RSL_ANN is applied to a subject with history of AF, AF occurrence is 
more likely and errors in AF identification should be minimized with respect to errors in non-AF 
identifications. Consequently, the threshold should be chosen to have the maximum Se obtainable 
by setting Sp at its minimum acceptable value. This case corresponds to Case 2 in which a Se of 
88.7% is obtained by setting Sp at 75.0%. 

Comparison of our RSL_ANN performance against that of other studies in the literature is not a 
straightforward task due to the many differences among them. Firstly, some studies used data 
acquired with traditional ECG recorders [11–16,18] and some others with portable devices [5–10,17]. 
Recorded signals included ECGs [11–18] but also photoplethysmograms [5–10]. Moreover, some 
studies performed intra-subject AF episodes identification within an ECG [11,15,18], others 
identified ECGs with at least one AF episode among patients [5–10,12–14,16,17]. Only a few studies 
took into account the main AF confounders, which are other abnormal rhythms [12,16–18] or noises 
[10,16]. All studies relied on their own selected features; most studies considered features related to 
HRV [5–10,13,14,18], few studies also included features related to ECG morphology [12,17], and no 
study but ours considered features related to Fwaves. Some studies directly considered ECG 
time-sequences (instead of features) as classifier input [11,15,16]. Different types of classifiers were 
proposed, among which the standard statistical comparison [5–9], the support vector machine 
[10,14,17], the convolutional neural network [11,15], the ANN [12,18], the XGBoost classifier [13], the 
modified Elman neural network [15] and the hierarchical extreme learning machine [16]. Finally, 
most studies reported only values of Se and Sp (higher than 90%) [5–7,9–16]; few of them also 
reported values of AUC [5,13]. Despite the several observed differences among studies, an 
attempted qualitative comparison is reported in Table 4. 

Our RSL_ANN uses the highest number of data acquired by a portable device, considers all 
main confounders in AF identification and uses all AF diagnosis features. Some studies report 
values of Se (>90%) or AUC (>90%) higher than ours but involved discrimination of clinical ECGs 
(acquired with medical machines such as electrocardiograph or Holter ECG) [11–16,18] showing AF 
rhythm from clinical ECGs showing normal sinus rhythm only [5–11,13–15]. These working 
conditions are much easier than those considered in this study, in which ECGs were acquired by a 
portable device and discrimination of AF rhythms is not only from normal sinus rhythm but also 
from other arrhythmias. One work [17] created a classifier able to detect AF using the same database 
of our paper and obtained values of Se and Sp equal to 77.5% and 97.9%, respectively; thus, 
differently from us, it made the choice to optimize Sp over Se. In any event, we believe that the ROC 
curve should always be provided since the choice of a threshold is for the specialists in medical 
decision making. Finally, some proceedings from Computing in Cardiology 2017 used the same 
database as training dataset, but then validated their methods in another dataset, which however is 
not open-source available. Considering this discrepancy, a comparison between these studies and 
our work would be biased. 

Eventually, reliable identification of AF in ECG acquired by portable or wearable devices is 
important for large scale preventive screening among the entire worldwide population [35]. In this 
context, our RSL_ANN represents a reliable software application to be associated to one of them to 
contrast the socio-economic repercussions related to AF due to its usual late diagnosis. Future 
studies are needed to definitely validate the use of the RSL_ANN for large scale AF screening. 
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Table 4. Comparison between our work and the literature. 

Reference Data 
acquisition 

Confounders Input Classifier AUC Se Sp 

[5] 

Portable 
devices 

(iPhone 4S);  
120 PPGs 

Not 
considered 

HRV features 
Statistical 

comparison 
93.1 95.0 95.0 

[6] 
Portable 

devices; 242 
PPGs 

Not 
considered 

HRV features 
Statistical 

comparison 
Not 

reported 
98.0 88.0 

[7] 

Portable 
devices 

(iPhone); 97 
PPGs 

Not 
considered 

HRV features 
Statistical 

comparison 
Not 

reported 
93.1 90.1 

[8] 

Portable 
devices 

(iPhone); 88 
PPGs 

Not 
considered 

HRV features 
Statistical 

comparison 
Not 

reported 
66.6 78.9 

[9] 

Portable 
devices 

(iPhone 4S); 
25 PPGs 

Not 
considered 

HRV features 
Statistical 

comparison 
Not 

reported 
97.6 99.6 

[10] 

Portable 
devices (Sony 

Xperia); 16 
PPGs 

Noise HRV features SVM 
Not 

reported 
93.8 100 

[11] 
Holter ECG 

recorders; 139 
ECGs 

Not 
considered 

ECG time 
sequence 

CNN 
Not 

reported 
99.2 98.7 

[12] 
ECG 

recorders; 
2363 ECGs 

Other 
abnormal 
rhythms 

Morphological 
and HRV 
features 

ANN 
Not 

reported 
89.9 92.8 

[13] 
Holter ECG 
recorders; 
1656 ECGs 

Not 
considered 

HRV features XGB 98.9 98.4 99.5 

[14] 
Atrial ECG 

recorder; 113 
ECGs 

Not 
considered 

HRV features SVM 
Not 

reported 
99.9 96.6 

[15] 
Holter ECG 
recorders; 23 

ECGs 

Not 
considered 

ECG time 
sequence 

CNN  
+ MENN 

Not 
reported 

97.9 97.1 

[16] 
ECG 

recorders; 47 
ECGs 

Other 
abnormal 
rhythms 

ECG time 
sequence 

HELM 
Not 

reported 
98.77 100 

[17] 

Portable 
Devices 

(KARDIA by 
AliveCor); 
8244 ECGs 

Other 
abnormal 

rhythms and 
noise 

Morphological 
and HRV 
features 

SVM 
Not 

reported 
77.5 97.9 

[18] 
ECG 

recorders; 12 
ECGs 

Other 
abnormal 
rhythms 

HRV features ANN 
Not 

reported 
84.9 75.4 

This 
work 

Portable 
Devices 

(KARDIA by 
AliveCor); 

Other 
abnormal 

rhythms and 
noise 

Morphological, 
F-waves and 
HRV features 

ANN 90.8 

Case1: 
81.2 

Case2: 
88.7 

Case1: 
81.2 

Case2: 
75.0  
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8244 ECGs 
ANN: artificial neural network; AUC: area under the curve; CNN: convolutional neural network; 
ECG: electrocardiogram; HELM: hierarchical extreme learning machine; HRV: heart-rate variability; 
MENN: modified Elman neural network; PPG: photoplethysmogram; Se: sensitivity; Sp: specificity; 
SVM: support vector machine; XGB: XGBoost classifier. 

5. Conclusions 

Our proposed supervised fully connected artificial neural network created using the repeated 
structuring and learning procedure was able to reliably identify atrial fibrillation from the data 
acquired with the portable KARDIA device by AliveCor available in the Physionet “AF 
Classification from a Short Single Lead ECG Recording” database. Thus, our proposed artificial 
neural network represents a promising tool for a reliable identification of atrial fibrillation from 
ECGs acquired by portable devices, even when affected by other abnormal rhythms and corrupted 
by noise. 
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