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Abstract: Simultaneous determination of linear and angular positions of rotating objects is a challenging
task for traditional sensor applications and a very limited set of solutions is available. The paper presents
a novel approach of replacing a set of traditional linear and rotational sensors by a small set of image
sensors. While the camera’s angle of view can be a limiting factor in the tracking of multiple objects,
the presented approach allows for a network of image sensors to extend the covered area. Furthermore,
rich image data allows for the application of different data processing algorithms to effectively and
accurately determine the object’s position. The proposed solution thus provides a set of smart visual
encoders emulated by an image sensor or a network of image sensors for more demanding spatially
distributed tasks. As a proof of concept, we present the results of the experiment in the target application,
where a 1.6 MP image sensor was used to obtain sub-degree angular resolution at 600 rpm and thus
exceeding the design parameters and requirements. The solution allows for a compact, cost-effective,
and robust integration into the final product.

Keywords: translation-rotation measurement; visual encoder; data fusion

1. Introduction

Linear and rotary position sensors are an essential part of different actuation systems and
there are not only numerous variations of the proposed solutions, but also several real-world
implementations. These rely on different physics principles, varying from being mechanical, electro-
magnetic (e.g., resistive, capacitive or magnetic) to optical. In most cases, linear and rotary position
sensors can not be combined directly to measure the linear and rotary position of an object—while
shaft rotation sensors are regarded as COTS (Common Off-The-Shelf) components, most types require
the shaft to have no or very limited linear play [1,2]. The limitation comes from the fact that the
sensor consists of two parts, one coupled to the rotating body and the other fixed to the housing.
Compliance of the rotating body in both the axial and radial axis can compromise the ability of the
system to provide accurate feedback [3]. Although most types rely on a disk-like feature installed on
the rotating body, certain optical, magnetic and capacitive sensor types allow the rotating features to be
extended in the axial direction over the length of the body and can thus tolerate linear play of the shaft
(Figure 1). Similarly, the linear position sensors operate by measuring the distance between two sensor
features and most of them can tolerate the rotational motion of the otherwise linearly displaced object.
Most common angular encoder types with corresponding mounting options have been summarized in
Table 1. Unfortunately, there is a very limited subset of available solutions that would be compatible
with rotational and linear motion and even more limited subset of solutions that support measurement
of position of both, the area we are proposing the solution for in this paper.
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Table 1. Comparison of common encoder types in terms of mounting types (as shown in Figure 1) and
translation compatibility.

Encoder Type Mounting Type Highlights Translation Compatibility

Standard (COTS) encoder a
Standard industrial components,
readily available

Medium, requires mechanical
telescopic coupling

Radially mounted
incremental encoder b Can be mounted along the shaft

Medium, requires shaft
features in axial direction

Radially mounted
absolute encoder b Can be mounted along the shaft Not compatible

Face mounted magnetic
or optical encoder d

No physical connection
needed with the shaft Low, only limited translation possible

Disk-feature
based encoders e Common implementation type Low, only limited translation possible

Resolvers a, c
Analog angular sensor,
mostly discontinued Low, only limited translation possible

Camera based solutions b, d, e
Highly flexible, but
complex implementation High, but requires target tracking

(a) Encoder
coupled to shaft

(b) Radially
mounted encoder

(c) Encoder
wrapped around
the shaft

(d) Face mounted
encoder

(e) Radially
mounted with
disk features on
shaft

Figure 1. Common encoder mounting types.

There are two main categories for the position sensors—relative and absolute. Relative sensors
provide information on positional displacement between two consecutive instances and the integration
step of these measurements is needed to produce the position itself. The result is ambiguous due to
the unknown starting position. This is partly solved with the use of absolute encoders that provide
information on the absolute position of the tracked object. Although some applications couple the
sensor itself with the processing logic and battery backup power to allow the relative encoders to
behave as absolute ones, we will focus on the sensor types that itself can determine the absolute
position. In the case of rotational absolute encoders, it is a common practice that term absolute position
relates to one rotation only, that is, an angle in the range of [0, 2π). In some cases, it is beneficial to use
other ranges, that is, for electronically commutated motors [4].

The most common implementations of the angular absolute encoders code the angular position
with binary values, defined by different sequences of features on the rotating component. The resolution
of such sensors is usually limited by the spacing of the features. On the other hand, interpolation-
based methods are not limited by the resolution of the features, but we find the application limited
to incremental sin/cos encoders, resolvers [5] and other niche applications [6]. The prevailing data
encoding approach of binary-features based solutions is in the use of single-distance codes, in reference
to the Hamming distance of 1 between adjacent codes. This results in well defined angular positions that
are mostly immune to switching delays of the sensing parts (historically, the encoders were mechanical
devices, where individual signal contacts were subjected to bouncing and other switching anomalies).
Gray code is a familiar term in absolute encoders and serves as a basis for a large set of encoder
implementations. Single track Gray code absolute encoders [7] allow for multiple sensing elements to
replace multiple tracks of the encoded data with a specially designed single track data. Although it
is not possible to distinguish 2n positions with n sensors on a single track, it is possible to distinguish
close to that many. This approach is similar to the one used in pseudorandom position encoder [8],
where the pseudorandom sequence uniquely defines each step of the position data. Another approach
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uses multiple tracks and multiple sensors, presented in Reference [9], where the resolution of the
position is still defined by the granularity of the coded pattern.

Increasing the number of (optical) sensing elements in such applications, naturally leads to
camera-based solutions. In Reference [10], the authors present the approach that closely resembles
idea from Reference [9], but with the use of a CCD sensor. As a slight modification, the authors
of Reference [11] present the absolute rotary encoder that uses a CMOS sensor and barcode-like
features radially arranged on a disk. Another subset of solutions employs fast feature tracking
capability of optical mouse sensor [12], while the authors of Reference [13] present an approach of
using the image acquisition capabilities of the optical mouse sensor to build an absolute rotary encoder.
However, the nature of camera-based solutions allows for more innovative approaches, freedom in
feature selection, and thus more flexible applications. Camera is often used in sensor fusion estimators
to improve localization results as in References [14,15]. In Reference [16] the term of a visual encoder
is presented, where authors describe the idea of robustly and precisely measuring the rotation angle
of an object by tracking an RGB color pattern aligned on the rotor and tracked via high-speed RGB
vision system. Similarly, the authors of Reference [17] employ different color gradients to determine
the rotational angle. The authors of Reference [18] present the solution for data processing to improve
on capture image contrast and thus improve both the low light and the high-speed performance.

Reference [19] presents the application of the aforementioned approaches using color gradients
and photoelectric sensors and introduces the capability of tracking the linear and angular rotor position
simultaneously. A specially designed color pattern allows for the distinction between axial and radial
patterns by color masking. Object tracking using the camera capture system traditionally allows for
a 2-D position and angle, which is usually limited to the angular axis that coincides with the plane
normal vector, as in Reference [20].

The solution in this paper combines these ideas into a novel solution for simultaneous tracking of
the object’s linear and angular position using a high-speed vision system. The system is capable
of contactless tracking of multiple objects and thus presents a cost-effective and very compact
solution. In this work we present the overall system design, components selection and placement,
image processing steps, and the target application. The performance of the system is evaluated and
presented in the final part of the paper.

2. Operating Principle

The underlying concept is in replacing physical sensors with a set of image-based ones,
smart sensors rendered by the image processing, and data fusion algorithms. This approach allows us
to combine the traditionally separated measurements of translation and rotation into a single smart
sensor unit. The suggested approach addresses tracking of an elongated cylindrical object’s (referred
to as a rod) bounded linear motion along the main principal axis of rotation (referred to as translation)
and unbounded rotation motion around the same axis (referred to as rotation). However, the approach
can also be generalized to any object that contains the noted cylindrical part and does not occlude it in
terms of the camera’s field of view. The object is outfitted with a marker, an artificially created pattern
that is wrapped around the object, which allows the image recognition system to locate its position
and orientation in the image, described in Section 2.2.

The translation of the target with the marker will result in a change of its apparent position in
the camera image, while the rotation of the target will only change the appearance of it. Moreover,
the translation is bounded to one axis and all possible apparent positions form a line along that axis.
The global camera image can thus be segmented into multiple areas of interest, each corresponding to
a tracked object. A particular area is then first analyzed to detect the position of the marker and thus
define the object’s translation. Second processing step positions the rotation decoder over the target
and the rotation is first estimated using the Gray code pattern, followed by the fine angular position
determination using the phase-detection over the least significant bit area of the Gray code.
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The presented idea is based on using a network of synchronized color video cameras, overlooking
the tracked objects, as will be presented in Section 3. In this paper we will focus on an application,
where the tracked object does not leave the field of view of a single camera. Multiple objects in the
global camera image can be tracked at the same time using the approach. Moreover, a network of image
sensors covers the larger area, containing a set of even more objects, allowing sensor fusion algorithms
to be employed to improve the accuracy of the results for the objects from the overlapping set.

The design requirements for the proposed system were governed by the target application, which
is presented in the final part of the paper. The required measurement accuracy was approximately
1 mm for the translation and 3 degrees for the rotation, while the capture frequency of at least 100 Hz
was determined to be necessary for the successful implementation of the control system in the target
application. It was seen beneficial if measurement resolution is better than the specified accuracy
figures. An important aspect of the usability of the solution is also its robustness to illumination
variations—loosing the tracked target data due to non-uniform lighting conditions is detrimental to
the application and thus unwanted. The proposed system uses a compact LED-based linear fixture
and can operate with or without additional lights in the environment.

To summarize, our approach requires a camera with image-capture frequency chosen based
on application specification. Its location needs to provide unobstructed view of the tracked object,
while its resolution is chosen to guarantee reliable recognition of the marker pattern (as stated in
Section 2.2). Specifications for the camera system used in this work are detailed in Section 3.

2.1. Camera Setup, Image Capture, and Processing

Each camera is processed individually in its own processing pipeline and the separate results are
joined in the common position filtering step. Processing in each pipeline starts with the image being
captured and converted from Bayer to RGB color space (a sample captured image in RGB color space
is shown below in Figure 2a). Synchronization of the image capture step among multiple cameras in
the network is accomplished via a hardware clock signal that is generated by one of the cameras.

Image-based object tracking is very active research field and different approaches to the solution have
been proposed. Most of these solutions propose a two-step approach, suggesting a more complex and slower
object detection for initialization of the object tracking algorithm. This results in improved performance
over constantly running object detection, but requires a reliable failure detection and recovery [21,22].
The reliability of the detector and tracker is of paramount importance for automotive applications [23],
where incorrect object position or the orientation can result in dangerous reaction of the automated driving
system. Other proposed solutions use object model for robust tracking in complex environments [24],
the idea that is used and enhanced in our approach. The highly predictable environment grants the use of
application-specific object model, that combines the object with the camera distortions.

Traditionally, camera lens distortion correction (Figure 2b) and perspective transform (Figure 2c)
would be applied to the image, but these two operations need to be applied to the whole image and
have a heavy computational footprint. In order to achieve target high update frequency (e.g., 100 Hz
or more) of the entire system, the approach must be optimized since the regular implementation of
these transformation algorithms in the OpenCV library takes roughly 20 ms to process a single image
on a desktop PC.

(a) Raw image captured by the
camera

(b) Lens distortion corrected
(c) Perspective distortion
corrected (d) Line fitting

Figure 2. Image processing chain
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Instead, we identify pixels of interest on the original image and extract only those for further
processing. Let us define the transform function fm(x, y) that will extract pixels from the original
two-dimensional color image Io into the one-dimensional set of color pixels (a line) Lm (each pixel is
represented with a 24-bit color value) for line m, written as fm(x, y) : Io → Lm. Let us first define the
parameter y′ as the position on the line Lm and the inverse function of gm(y′) that provides a look-up
relation for each pixel of the one-dimensional line pixel set in the original image (as illustrated in
Figure 3a). The inverse function gm(y′) describes the expected trajectory of the target in the image
during the translation. Let the working parameter t ∈ [0, h0] ∩Z be the height coordinate in the image
(h0 = 1080 pixels for camera used in our setup). We can then find a set of y′, x and y for each value
of the parameter t between 0 and the image vertical dimension h0. In order to emphasize speed over
accuracy at this step, no interpolation method will be used in the fm(x, y) or its reverse definition.

Camera

Tracked object

(x1, y1)

(y′1)

Image Io

t

Projected image of
tracked object

fm(x, y)

gm(y′)

xm(t) = am · t2 + bm · t + cm

(a) Illustration of defined transformation
functions

Camera

Tracked

t

y′

0
h0

h00

fα(t)

object
h0 tan fα(t)
2 tan α/2

h0
2

(b) Compensation for the distance variation
between tracked object and the camera

Figure 3. Ilustration of the described approach of converting data between pixel space of image Io and
line space of Lm

Since the target trajectory gets distorted by the effect of the camera lens, the mangled trajectory
will be estimated with a cubic function in the distorted image. We can define the function
xm(t) = am · t2 + bm · t + cm, where parameters am, bm and cm are selected during the camera
calibration process by fitting a cubic curve xm(t) to the distorted appearance of a straight target
object in the original image (Figure 2d). Since we assume that there is no rotation around camera
viewing axis, that is, the camera’s x-axis is always perpendicular to the reference (horizontal) surface
normal vector, we will define an additional function fα(t) as

fα(t) =
t− ho/2

ho
· α, (1)

where α defines the camera’s view angle (53.2 deg for the camera used in the setup) and ho = 1080
(the image height in pixels). The function fα(t) compensates for the projection error (as shown in
Figure 3b). The reverse function gm is then defined as a map

gm

(⌊
h0

2

(
1 +

tan fα(t)
tan α/2

)⌋)
← Io [xm(t), t] . (2)

The map from Equation (2) can be calculated in advance for each target object m = 1 . . . 8 and
then used as a very fast look-up table operation.
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2.2. Selecting Marker Pattern

A unique marker pattern was selected to achieve two main functions of the system—determination
of linear and angular positions. It is one of the most important components of the proposed system
since it enables efficient and accurate detection by the computer vision system in order to determine
the 2-D positional data. The marker (Figure 4a) is wrapped around the target as shown in Figure 4b
and comprises two distinct parts—a 1-D barcode (left 6 stripes) and a pattern based on Gray-code
(right, branch-like structure). The two parts can be positioned next to each other or separated by a fixed
distance (not affected by the translation of the target).

The stripped barcode section was selected to comply with multiple criteria, mostly dealing
with the complexity and reliability of the detection algorithm in various camera angles and lighting
conditions. Relatively large dimensions of the stripes support the operation under various camera
angles and distances, while high-contrast enhances reliability under various lighting conditions.
The important part of the barcode is in a non-repeating sequence of bars and spaces, which can be
represented by a 16-bit code kernel M(i) with a binary value of 1001101010000101 (illustrated in
Figure 5a). In comparison with a periodic sequence of stripes and spaces, the position of the coded
sequence in the line data Lm can be decisively detected, which is due to the more distinctive peak in
the data correlation result [25] (as shown with the auto-correlation power of the coded and periodic
barcode signals). Although different code sequences can be used with the same effect, the code pattern
is fixed in the presented application for all targets. This is due to the fact that the target trajectories
in regards to the camera are known in advance and there is no ambiguity in target identification that
would need to be addressed.

(a) Marker pattern graphics with illustrated
Lm line data (red) and bit spaces sampling
points (intersection of blue and red lines)

(b) Marker, as installed on the playing rod

Figure 4. Marker pattern.

The second part of the marker is based on the Gray-code pattern and is intended for determining
the rotation angle of the target. A Gray code is a code assigned to each of a contiguous set of angular
positions a combination of symbols (coded value) such that no two coded values are identical and each
two adjacent coded values differ by exactly one symbol (bit).

The pattern consists of 5 bit spaces, each of them defined by a specific frequency of black and
white stripes—bit space 0 contains 8 black and 8 white bars, with each next bit space containing half
of the stripes and shifted by 90 degrees in pattern phase (Figure 4a). Bit spaces 3 and 4 have both
one pair of black and white stripes. When the pattern is sampled in each bit space along the line
data Lm, a digital, 5-bit angular code is generated. There are 32 distinct values for the obtained result,
which corresponds to 360/32 ≈ 11 degrees. That does not meet the specified resolution in the project
requirements yet, however, this will be later addressed using the phase-detection step (explained in
Section 2.5) with sub-degree resolution.
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(a) Code signal kernel (b) Periodic signal kernel

(c) Autocorrelation power for code signal (d) Autocorrelation power for periodic signal

Figure 5. Code signal kernel and its autocorrelation power in comparison to a periodic/repetitive
signal. Selected unique code can be robustly detected using correlation because of distinctive peak
obtained in its autocorrelation result.

2.3. Correlation Step

In order to successfully apply the correlation function in various lighting conditions, the extracted
line data Lm(j) must first be filtered with a high-pass filter. High-pass filter removes the lightness
gradients across the data due to uneven lighting, which is impossible to control outside the synthetic
environment. Additionally, a low-pass filter is applied to the image to reduce the pixel noise. Since high-
pass filter can be constructed using the low-pass filter with the use of the analogy, we have implemented
the filtering system with two low-pass filters as shown in Figure 6.

H2

H1
-Lm Lm
F

Figure 6. Line data filtering with two low-pass filters.

Filters H1 and H2 are discrete IIR (Ininite Impulse Response) first-order low-pass filters with the
following equation

H(z) =
(1− f )z−1

1− f z−1 , (3)

where f = −T/(T + 1) and the value of T is selected for each of the filters separately, as TH1 = 0.5
for high roll-off frequency and TH2 = 10 for low roll-off frequency. The resulting signal LF

m is then
binarized using hysteresis thresholding operation (results are shown in third and the forth line of
Figure 7). This operation processes element by element from the filtered line data LF

m to produce
thresholded line data LT

m with the following rule

LT
m(i) =

{
0, if LF

m(i) < Plow or
[

LT
m(i− 1) = 0 and LF

m(i) < Phigh

]
1, if LF

m(i) > Phigh or
[
LT

m(i− 1) = 1 and LF
m(i) > Plow

] , (4)
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where thresholds Phigh = −Plow = 8 are affected mostly by the amount of noise in the filtered line
signal and were selected based on manual optimization. The result of this operation is cleaner binary
signal generated from the high-pass filtered pixel data.

Input image

0 200 400 600 800 1000
0

50
100
150
200
250

Grayscale value

0 200 400 600 800 1000
-150
-100

-50
0

50
100
150

High-pass filtered value

0 200 400 600 800 1000
-10

-5
0
5

10

Thresholded value

0 200 400 600 800 1000
0

50

100

150

200

Correlation result

Figure 7. Results of line data analysis and correlation.

In the next step the linear position of the marker sequence M(i) is found in the line data LT
m(j) for

the target m. This is accomplished by evaluating the cross-correlation function between the signals

C(k) = (M ? LT
m)(k) = ∑

i

1
σMσL

(M(i)− µM)(LT
m(i + k)− µL), (5)

where σM, σL are the standard deviations of signals M and LT
m and µM, µL are averages of M and

L, respectively. We are interested in the position of the peak in the correlation result, the value of
pm = arg maxk (C(k))

2, which defines the position of the marker sequence in the image (as illustrated
by the fifth line in Figure 7).

2.4. Angular Position

The sampling of the marker pattern, that is containing the Gray-code encoded angular position,
is defined by a set of parameters Om (offset distance in pixels between the origin of the marker
sequence M(i) and the origin of the angular code pattern), Nb = 5 (number of decoded bits) and Sm

(spacing between bit spaces in pixels). Parameters Om and Sm are camera-position dependent and
are determined for each target individually during camera calibration procedure. Once the linear
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position of the target pm is determined, a subset of line data Bm ⊂ Lm is extracted from Lm(j) for
j = pm + Om, . . . , pm + Om + Nb · Sm.

Since the Gray code decoder expects a binary sequence, the pattern data must be sampled and
binarized. Sampled data is first analyzed to determine the lower and upper values of grayscale
intensity for sampled data in Bm, Tmin = min {30, Bm} and Tmax = max {100, Bm}. An adaptive
binarization is then employed using the threshold set to (Tmin + Tmax)/2 and result sampled from
Bm in the center of each bit space at i = 3Sm/2, 5Sm/2, . . . , (Nb + 0.5)Sm and the sample’s grayscale
value (B(i)) is binarized to obtain the binary code value Cm. The absolute angular position αm is then
obtained using the look-up table for the Gray code decoder (decoding table is provided in Table 2).

Table 2. Gray code decoder table for 5-bit code.

Cm αm Cm αm Cm αm Cm αm

00000 0 (0◦) 01100 8 (90◦) 11000 16 (180◦) 10100 24 (270◦)
00001 1 (11.25◦) 01101 9 (101.25◦) 11001 17 (191.25◦) 10101 25 (281.25◦)
00011 2 (22.5◦) 01111 10 (112.5◦) 11011 18 (202.5◦) 10111 26 (292.5◦)
00010 3 (33.75◦) 01110 11 (123.75◦) 11010 19 (213.75◦) 10110 27 (303.75◦)
00110 4 (45◦) 01010 12 (135◦) 11110 20 (225◦) 10010 28 (315◦)
00111 5 (56.25◦) 01011 13 (146.25◦) 11111 21 (236.25◦) 10011 29 (326.25◦)
00101 6 (67.5◦) 01001 14 (157.5◦) 11101 22 (247.5◦) 10001 30 (337.5◦)
00100 7 (78.75◦) 01000 15 (168.75◦) 11100 23 (258.75◦) 10000 31 (348.75◦)

As noted, the resolution of the results obtained using this method (11.25 degrees) does not yet
meet the initial project requirements and additional refinement of the results is necessary by the use of
phase detection, explained in Section 2.5.

2.5. Angular Position Interpolation

The proposed approach combines the idea of interpolation used in the sin/cos resolvers [26]
and Gray code absolute encoders with the aim to increase the encoder resolution and improve its
performance in the presence of the noise in the captured image. We analyze the area of the first bit of
the Gray code and convert the pixel series domain into a frequency domain. Then, we observe the
phase at the expected frequency of the data (defined by a distance between black and white stripes in
the image).

First, additional image data Dm(i) needs to be extracted from Io—if the Lm data is primarily
extracted in the horizontal direction in the image data, the phase data is extracted perpendicular to that
(vertical axis), as shown in Figure 8a and marked with a red rectangle. Since the diameter of the target
in the captured image is approx. 25 pixels, we take Np = 10 pixels in each direction from rod-central
line (Figure 8a). Grayscale values of the extracted pixels are shown in Figure 8b. Because only the
signal phase φm must be determined at one specific frequency (defined by signal period T̂), the discrete
Fourier transform can be simplified into expression

φm = arctan2

 Np

∑
i=−Np

Dm(i) · sin 2πi/T̂,
Np

∑
i=−Np

Dm(i) · cos 2πi/T̂

 , (6)

where T̂ was determined from the data in the image, estimated at T̂ = 7.1 pixels.
Figure 9 illustrates the pattern changing over time (due to the rotation of the object) and the

decoded phase value. The period of the extracted signal T̂ is defined by a sequence of white and black
stripe, which in terms of the target object rotation, equals to a period of 4 for the Gray code (there are
two changes per each stripe detected, as shown in Table 2). The main idea is to replace the last two bits
of the digitally encoded position αm (4 discrete values) with a continuous value, obtained from φm.
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As a result, we get the measurement resolution defined by the phase data signal and avoid ambiguous
angle position with the help of Gray code data.

To successfully fuse the data of both sources, we need to align the results—phase data φm must be
shifted slightly by φo f f set to assure that φm − φo f f set equals 0 at the rotation angle, where the third bit
of the αm changes value. To emulate the encoder, we then rescale the range of φm from [0, 2π) to [0, 4)
and combine it with the αm that has been stripped of lower two bits (bits set to 0). Considering the
φm and αm are both affected by the signal noise, we can expect the discrepancy of the two due to the
modular nature of the angles. We address that by comparing the resulting combined angle to the
position αm—since the difference cannot be more than ±2, we can add or subtract 4 to the result to
meet the condition.

(a) Phase data extraction

-80 -60 -40 -20 0 20 40 60
-10

-5

0

5

10

S
am

pl
e

Grayscale pixel value

Phase data

sin

cos

(b) Grayscale values and sin, cos of expected frequency
Figure 8. Phase data analysis.

Figure 9. Phase data extracted over time (top) with decoded phase value in radian (bottom).

The described data fusion is performed by executing these steps:

1. φm is adjusted with the offset of the Gray code start phase angle and rescaled to have the period
of 4: φ′m = 4

2π

[
φm − φo f f set

]
,

2. we strip 2 bits from αm (binary AND operation with mask b11100), α′m = αm AND b11100,
3. difference φ′m + α′m + 4j− αm is wrapped to interval [−2, 2] by adjusting the value of j ∈ Z,
4. final angular position θm ∈ [0, 32) ∩R is produced: θm = φ′m + α′m + 4j.

2.6. Final Resolution of the Measurement Results

Since the resolution of the phase data is not explicitly limited, we can estimate it from the noise
level in the data. The standard deviation obtained from the experimental measurements for the phase
data is limited to σφ < 0.1 (radian), which results in a final angular resolution of 0.7◦.

The comparable angular resolution would be obtained by a 9-bit digital encoder, which would
require 128 black and white bars in the finest bit space of the pattern. The standard application of
Gray code decoder using the same camera setup would allow only for 7-bit code (resolution of 2.8◦),
as shown in the resolution test sheet in Figure 10. It can be seen that although 7th bit data still can
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be regarded as the pattern, the code area with 8th bit data is practically unreadable. Moreover, it is
expected that only 6 bits (5.6◦ resolution) would be decodable during dynamic object tracking due to
motion blur. The proposed solution therefore provides 4- to 8-fold improvement in angular resolution.
This result not only matches but also greatly exceeds the initial requirements.

Figure 10. Resolution test sheet.

The linear resolution of the proposed system is also linked to the resolution of the camera—
depending on the location of the object in the camera view, it was estimated to the interval between 0.6
and 0.9 mm for the presented application.

2.7. System Calibration

In any visual sensing applications, the camera and system calibration is an important step that can
not be omitted. In the presented system, it is assumed that the camera is statically mounted in regards to
the plane with tracked objects. Therefore, our system requires only two major calibration steps—manual
location of three points along paths of tracked objects and determination of marker offsets.

Unlike traditional camera-based object tracking, our approach does not require estimation of
extrinsic parameters of the camera. Instead, the effects of lens distortion and projection transformation
are integrated into the presented data extraction algorithm. During calibration, the operator is
instructed to select 3 well-spaced points along paths of tracked objects. This can either be achieved
by moving the tracked object and recording its position or by selecting points along the path directly
(if visible to the camera).

Second step deals with determining how the marker pattern was attached to the tracked object.
There are three parameters that need to be defined: two linear offsets (marker start offset and maker
spacing offset Om) and angular offset. These parameters are measured in the actual implementation of
the system.

3. Application

Over the past few years, the team of Laboratory of Control Systems and Cybernetics organizes
competitions (e.g., robot soccer, Lego Mindstorms, drones, SCADA and other automation related tasks)
for high school, bachelor and graduate students, where students are given a task that they need to
execute better and faster than the other teams (homepage at https://lego-masters.si/). The goal of
the tasks is usually more focused on automation and control aspects and less on the mechanics itself,
although the best designs are a combination of very good solutions in both of the areas.

Recently, we have decided that a new competition will be organized, presenting a new and
attractive task for the competing teams. It is bringing together ideas of the student competitions over
the past years and the laboratory’s engagement in FIRA championships years ago [27]. The new sport
features a table football and a mixed set of players—creating a cybernetic match with both human and
computer players. In order to allow for a competitive play with play strategies extending simple block
and kick steps, we think that knowledge of the full system state (ball position, position and angles of
the players) is necessary. Multiple teams have already worked on an automated table football game

https://lego-masters.si/
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platforms in the past, even resulting in a commercial product [28,29], while other solutions are mostly
Master thesis or research platforms [30]. In most cases, the authors focused on realtime ball tracking and
omitted the player rods [31], while others did also include partial [32,33] or full player position tracking,
as in Reference [34]. While solution presented in [32] relies solely on camera image, authors used no
additional markers on the players and were thus limited to measuring only the linear position of them.
The solution of the EPFL’s team [34] enables measurement of both the rotation and linear position, but
relies on pairs of expensive laser distance sensors in addition to the camera. Our solution relies on using
a pair of cameras to track both the ball and the player positions—the system can thus be realized in a
compact and unobtrusive fashion.

The automated table football system requires fully-functional actuator, sensor, and processing
sub-systems. The task appears to be simple at first but turns out a real challenge, because it requires
robust and accurate tracking of a colored ball and 8 playing rods with players in the field (illustrated
in Figure 11) and move the computer-controlled playing rods according to the game rules and strategy.
Since we plan to leverage the capabilities of humans and computers on both the perception and
actuation, all playing rods (played by human and computer players) need to be tracked.

Figure 11. Table football.

Therefore, the original intent and requirements for the sensor system introduced in this paper
were based on the goal of implementing the described automated table football system. What does
seem like a tool for the entertainment, quickly gets a more serious note as soon as the system needs
to be implemented in an affordable and robust way. The problem calls for innovative approaches,
applicable also to other fields and applications. The paper has presented the approach to track the
playing rods, cylindrical targets—each being a 2-DOF (degree of freedom) object, that can be translated
(within boundaries) and rotated.

A pair of Basler acA1440-220uc USB 3.0 color video cameras with 1.6 MP resolution (resulting in an
image of 1440 by 1080 pixels) and f4mm lenses was positioned over the playing area as shown in Figure 12
(only one of the two cameras is show due to higher intelligibility and transparency of the illustration).
A network of video cameras enables us to cover the complete playing area and keep reasonable requirements
for the image sensor resolution. Moreover, a multitude of cameras provides additional viewing angles,
leveraging the tracking problem in case of mild obstructions. The height and pitch angle of the cameras
were determined by manual optimization, where we searched for the low height over the area (to optimize
the spatial resolution for object detection and tracking) and improved coverage of the field from multiple
angles (e.g., to improve the accuracy of objects recognition due to the overlapping set and the uncertainty of
the results in case of partial occlusion of the tracked objects).
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The image processing system that is implemented in C++ runs on a desktop PC and uses the
Pylon library for capturing images taken by the two cameras. It features the implementation of the
presented target tracking approach that is able to track 7 playing rods at a time from a single camera
at the frame rate of 200 frames per second. In the next section, we will be presenting the results of
only one of the playing rods to improve the readability. Further optimizations of the algorithms are
planned in order to extent them to the ball tracking as well.

Light source

Color camera

USB 3.0

Ethernet

PC with image processing and control

Table football 

Translation servo

Rotation servo Motion control

Belt drive

Marker

Figure 12. Test setup.

3.1. Experiments

The proposed method was evaluated by conducting experiments in the target application
environment. Three tests were executed, the first focusing on the performance of the linear position,
the second to the performance of the angular position determination, and the third tests, where both
linear and angular positions were tracked. In all cases, the playing rod was actuated in both linear
and rotational axis by a closed-loop servo system, shown in Figure 12. A belt-driven linear axis is
used as the base platform, moving an additional servo motor, which is coupled to the playing rod
via a bi-directional thrust bearing. Both servo motors are controlled via motion control interface
PoKeys57CNC, connected to the test PC via Ethernet. The task of the motion control system
is to generate control signals for the servo motors in the form of the step and direction pulses.
The PoKeys57CNC device is commanded a target position for both motors and built-in motion planner
generates motion signals using a trapezoidal velocity curve (constant acceleration and deceleration),
which smoothens the motion of the servo motors. The servo motors themselves were separately tuned
using the automated self-tuning algorithms. The current commanded position is periodically obtained
from the motion control device and compared with the results of the image processing system.

3.1.1. Experiment 1: Tracking Linear Position

The aim of the first experiment is to validate the system for tracking the linear position of the target.
This step tests the tracking of the marker pattern using the correlation technique described in Section 2.3.
Steps of the increasing sizes were programmed for the servo motor on the linear axis, as shown in
Figure 13 (left).

The results of the experiment show very good tracking of the linear position of the playing rod.
Furthermore, we are observing a response of a non-minimum phase type in the tracked position, which is
the side effect of the servo closed-loop system. This effect is shown in the enlarged part of the right graph,
where the position, obtained by the proposed system, changes immediately with the commanded motion,
but in the opposite direction. After that initial anomaly, the servo motor tracks the commanded position
with a relatively constant delay of approx. 25 ms. Since the change (albeit in the opposite direction)



Sensors 2020, 20, 3552 14 of 18

immediately follows the commanded position, we can estimate the visual system delay to 1 sample or
less (less than 10 ms). Furthermore, the standard deviation of the position error excluding the data with
the actual motion was estimated at 0.5 mm, which correlates with the expected resolution of the system.
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Figure 13. Experiment 1—tracking linear position of the object, 7 step changes were executed (left),
with a close-up provided on the (right).

3.1.2. Experiment 2: Tracking Angular Position

The second experiment targeted tracking of the angular position via the proposed method.
The rotation servo was commanded 5 rotations (angle of 10π) in one direction and back at an angular
velocity of 1.2 rad/s. The results are shown in Figure 14. For the illustration purposes, the displayed
angle was unwrapped (steps of±2π due to the results being wrapped to interval [0, 2π}were ignored).

We can observe the angular error to be bound to {−0.1, 0.1} interval with a distinctive direction-related
offset, which can be contributed to the motion system delay of 25 ms (resulting in the expected offset in
the angular error of 1.2 rad/s · 0.025 s = 0.03 rad). By adjusting for this offset, we can assume the angular
error of the tested system to be bound to interval {−0.03, 0.03} (less than 2◦). The standard deviation of
the error was estimated at 0.013 rad in each direction, which corresponds to less than 1◦.

Periodic nature (and sawtooth shape) of the angular error indicates a possible improvement by
adjusting the position of the marker on the tracked target (there might be a slight discrepancy between
the actual marker size and the target circumference).

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

Angle ramp-up and ramp-down (unwrapped)

A
ng

le
 [r

ad
]

Time [s]

0 10 20 30 40 50 60

-0.1

-0.05

0

0.05

0.1

Angle error

A
ng

le
 e

rr
or

 [r
ad

]

Time [s]

Camera
Motion

26 26.2 26.4
31

31.1

31.2

31.3

31.4

31.5

Figure 14. Experiment 2—tracking angular position of the object by observing it rotating 5 revolutions
in one direction and 5 revolutions back to initial position (top) with resulting angular error (bottom).
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3.1.3. Experiment 3: Tracking Both Linear and Angular Position

The third experiment’s objective was the validation of all algorithms of the proposed system.
While the linear axis was commanded to move in 17 steps between two extreme positions, the rotation
axis was commanded to the angle 2π and back to 0 at each step of the linear axis (as shown in Figure 15).
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Figure 15. Experiment 3—tracking both linear (top) and angular position (bottom).

The results show the correct tracking of motion in both axes over the complete range.
Moreover, there were no issues detected while tracking fast rotation motion with over 60 rad/s
(approx. 600 revolutions per minute) under normal lighting conditions. The system’s capability of
tracking even faster motion depends mostly on the illumination system for the cameras—the camera
exposure time is namely dictated by the amount of light in the scene. If motion bluring would start
presenting itself as a problem, we plan to decrease the exposure time either on the account of noise
or adding more lights. However, the system is currently capable of tracking the game played by
our fastest student players with no interruptions due to motion blurring. We expect that the slightly
lower impulsive velocities of the implemented actuator system in comparison to human players will
be compensated with perfect tracking over the complete playground and repeatable and accurate
player manipulation.

3.1.4. Tracking Gameplay

The system was put into test during a test gameplay between human players and one computer
player (on rod 2), which was programmed with a simple block and kick algorithm. The tracking results are
shown in Figure 16, where the rods positions and angles are shown. Increased noise level and occasional
spikes in the angle results are the result of the system running only with office ceiling luminaries and
with frequent obstructions due to human players intervening in the camera’s field of view.
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Figure 16. Tracking gameplay—rods positions and angles during a test gameplay.

4. Conclusions

In this paper, we proposed a novel application of a computer vision system for accurate and fast
tracking of the target object’s motion in both the rotation and translation. The non-contact nature
allows the sensing element (camera) to be positioned away from the tracked objects, thus covering
a wider area for object tracking. This results in not only cleaner implementation in the final application,
but also allow multiple objects to be tracked by a single camera, further simplifying the sensory
system design. We have provided the results of the experiments, that clearly show the proposed
system meeting and even exceeding the design requirements. Further development will focus on
improving the computational footprint of the presented system and incorporating the tracking of
other objects in the final design, which will allow a single camera system to track all objects needed
to support a cyber table football game. The ball tracking is a separate process and is one of the most
important ones for a successful automation of the game. In this paper, we focused on determining
the rotary-linear transformations of objects (the player positioning system) and omit ball tracking
due to the complexity of the latter. Similarly as in player positions, the computer will have the
advantage of having real-time overview of the complete state of the system. We expect that computer
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system with 5–10 ms sampling time will be superior to human (with reaction times in hundredths of
milliseconds) in terms of tracking and actuation, but will fail short to unpredictability of human players.
A camera-based sensing system, integrated into a unobtrusive overhead pillar, paired with a compact
actuator system, and a competitively behaved computer-based player will result in a cost-effective and
thus commercially-attractive application of the proposed idea.
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