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Abstract: Recent advances in the field of electronic noses (e-noses) have led to new developments in
both sensors and feature extraction as well as data processing techniques, providing an increased
amount of information. Therefore, feature selection has become essential in the development
of e-nose applications. Sophisticated computation techniques can be applied for solving the old
problem of sensor number optimization and feature selections. In this way, one can find an optimal
application-specific sensor array and reduce the potential cost associated with designing new e-nose
devices. In this paper, we examine a procedure to extract and select modeling features for optimal
e-nose performance. The usefulness of this approach is demonstrated in detail. We calculated the
model’s performance using cross-validation with the standard leave-one-group-out and group shuffle
validation methods. Our analysis of wine spoilage data from the sensor array shows when a transient
sensor response is considered, both from gas adsorption and desorption phases, it is possible to
obtain a reasonable level of odor detection even with data coming from a single sensor. This requires
adequate extraction of modeling features and then selection of features used in the final model.

Keywords: electronic nose; features selection; odor classification; sensor array reduction; wine spoilage

1. Introduction

Detection and analysis of smells among specified applications can be assessed by many analytical
techniques. Classical methods of chemical analysis, such as gas and liquid chromatography, mass
spectrometry, nuclear magnetic resonance, and spectrophotometry, are highly reliable, although
they are expensive, time-consuming, and unsuitable for on-site monitoring. Over the last two
decades, one can observe a rapid expansion in the development of artificial organoleptic systems [1],
so called electronic noses (e-noses). Various sensing methods based on thermal, optical, gravimetric,
and electrochemical techniques have been developed since the introduction of the e-nose concept.
Particularly promising is surface plasmon resonance imaging [2] and its successful application for
gas-phase detection of volatile organic compounds [3].

These new electronic instrumentations are capable of imitating the remarkable abilities of
the human nose, and they have proved their feasibility and effectiveness in odor recognition,
environmental monitoring [4], medical diagnosis [5], as well as food quality monitoring [6–9].
Numerous important papers regarding wine odor recognition by electronic nose have also
appeared [9–18]. In the present paper, we will focus on data concerning wine quality [19,20].
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An e-nose is a rapid, noninvasive, and intelligent on-line instrument. It comprises an array
of carefully chosen sensors and an appropriate pattern recognition system capable of identifying
particular smells. There are distinct types of e-noses in different application fields based on
commercially available sensors. Nevertheless, numerous challenging questions arise related to
performance enhancement including improvement of classification rate, rapidity of on-line detection,
and recognition and prediction accuracy [21]. Each system has its own advantages and disadvantages
in improving the performance of e-noses. However, there exists another possibility for increasing
the sensitivity, selectivity, response and recovery time, and detection and operating range, which is
instrumentation independent. The issue has appeared in the context of false classifications due to
sensor signal drift, temperature, humidity, and other factors [22]. The sensitivity and signal-to-noise
ratio (S/N) are fundamental features of individual sensors used in e-noses. They are determined by
the current state of technology. On the other hand, the optimal number and types of sensors in a given
detection system are still open to debate. In practice, the answers depend mainly on the experience
and intuition of researchers involved in the implementation, as no general rule exists. Verification of
various sensor combinations leading to the best classification performance is employed. In general,
it is best to use as few variables as possible to develop a model, as this results in a higher ratio of
data points to variables [22]. In this paper, we employed a simple procedure that assures adequate
extraction and selection of modeling features and determines the optimal number of sensors.

An e-nose is both a sensing and data analysis system designed to discriminate between different
odors. Recent advances in the field of e-noses have led to new developments in both sensors and
feature extraction as well as data processing techniques. Consequently, users of a multiple sensor
instrument are provided with an increased amount of information. Therefore, for the development of
e-nose applications it is essential to deeply examine problems related feature selection, by removing
redundant sensors that are possibly adding noise into the system, instead of improving discrimination.
Evolutionary computation techniques can be applied to optimize sensor selection, feature selection,
and classification stages [23]. In this way, one can find an optimal subset of sensors for a particular
application while choosing sensing devices from a larger database of sensors. These techniques help
to create smaller application-specific sensor arrays and help to reduce the potential cost associated
with new sensor developments to solve complex olfactory problems. Optimization of electronic
nose sensor arrays and the choice of the appropriate subset of sensors have been reported by many
researchers [24–30].

We would like to consider the particular application of using a reduced sensor array in odor
recognition. It is known that replacement of faulty sensors requires device recalibration [31], which is
often associated with new data collection and model retraining. There is some research on mitigating
this problem [32] by using dedicated algorithms with a smaller number of sensors. One can ask how
far such a procedure can be continued and how small an array of sensors could be to maintain correct
classification of odors by an electronic nose. Some authors [33–37] reported the possibility to recognize
odors using data collected by only one sensor. They proposed experimental set-ups, which exploited
transient responses to the measured gas exposure in both adsorption and desorption phases and
also explored larger regions of the sensor response characteristics, taking advantage of temperature
modulation [36,37] or disturbances in sensor exposure to gas conditions [35]. In our paper, we explore
the feasibility of odor recognition using single-sensor data coming from a simple experimental setup.

This paper is organized as follows. In Section 2 we describe the electronic nose device constructed
by Rodrigues Gamboa [19] and co-workers as well as measurements they performed. In the following
Section 3, modeling techniques implemented in our method are introduced. Then, the results of our
modeling are discussed in Section 4. We summarize our findings in Section 5.
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2. Odor Measurements by Electronic Nose

In this paper, we used publicly available data sets [20] of wine quality measured via e-nose. Results
focused on rapid detection of wine spoilage have been published by Rodriguez Gamboa et al. [19].
The authors demonstrated that the support vector machine model is able to correctly classify four types
of studied odors with an accuracy up to 97%. The published results of another machine learning model,
which applied a multi-layer perceptron neural network, demonstrated the ability to rapidly classify
odors using only initial points of e-nose measurements a few seconds after sensor were exposed to
the odor.

In the present paper, we focus on different feature selection issues used in modeling, especially
when data from a reduced number of sensors are used. Even though details of electronic
nose construction and measurements have already been published by Rodriguez Gamboa and
co-workers [19,20], for the reader’s convenience we would like to present here a short summary.

2.1. Electronic Nose

The e-nose developed at Universidade Federal Rural de Pernambuco [20] consists of six
commercially available metal-oxide gas sensors produced by Hanwei Sensors (www.hwsensor.com).
Two sensors of each type were used in the presented construction: (i) MQ-3, highly sensitive to
alcohol, with low sensitivity to benzine (sensors 1 and 4); (ii) MQ-4, highly sensitive to CH4 and
natural gas (sensors 2 and 5); and (iii) MQ-6, highly sensitive to LPG, iso-butane, and propane
(sensors 3 and 6). Metal-oxide sensor responses vary between individual devices, which can be
observed by the differences in resistance values of measured gases as well as in differences between
transient sensor characteristics. Such differences can be exploited in e-nose construction when several
sensors of the same series are used for odor recognition tasks.

The following data collection procedure was applied. At the beginning of measurements,
a small amount (1 mL) of wine sample was put in a concentration chamber, and the volatile
compounds were collected for 30 s. The first stage of measurement, lasting 10 s, was used to
collect the baseline sensor response when the e-nose was exposed to pure air. Then, prepared
gas with the sample odor was pumped into the sensor chamber for 80 s to measure the response
during the adsorption phase. After that, pure air was again pumped to the sensor chamber, and the
response during the gas desorption phase was also collected for 90 s. The sampling rate was set to
18.5 Hz, and transient sensor resistance values were collected. After that, the set-up was exposed to
pure air for 600 s to purge volatile residues and relax the sensors.

In Figure 1 we present the typical response of all sensors in the sensor array. First, in Figure 1a
the resistances of individual sensors as a function of time are displayed. The same information is
contained in sensor conductance curves Figure 1b, but such transformation may be useful to reveal
more patterns in the data, so these values were also used in data analysis. As expressed by metal-oxide
sensors, meaningful measurements include responses relative to pure air, so they are presented in
Figure 1c,d. As mentioned above, sensor discreetness can be easily noticed. Even if pairs of sensors
from the same series are used, the difference in response is distinguishable when exposed to the same
gas conditions.

www.hwsensor.com
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Figure 1. Typical sensor array response: (a) sensor resistance and (b) sensor conductance.
Sensor responses standardized to the baseline measurements (c) R/R0 and (d) G/G0. Vertical lines
indicate various phases of the measurement process: baseline collection, gas adsorption, gas desorption.
To not overload charts, assignment of all lines to the sensor numbers is indicated only in chart (a);
line styles are consistent in all charts. Data measured by sensor pairs of the same type are plotted using
the same color with different line styles. Measurements of average-quality wine (AQ_Wine02_B04_R01)
were used in this figure.

2.2. Measurement of Wine Odor

Rodriguez Gamboa and co-workers [19] measured wine odors at various stages of spoilage.
The experiments were performed with 22 bottles of commercially available wines, of different varieties
and vintages, elaborated in four wineries of the São Francisco valley (Pernambuco, Brazil). Of these
bottles, 13 were randomly selected and left open for 6 months, which gave the population of low-quality
wines (LQ). Another four randomly selected bottles were left open for 2 weeks before measurement,
and they were labeled as average-quality wines (AQ). The remaining five bottles were considered
high-quality wines (HQ). Besides wine samples, six different concentrations of ethanol diluted
in distilled water were also used, which may be considered as six additionally measured bottles.
Between 10 and 11 samples from each bottle of wine and between 10 and 12 samples from each bottle
of diluted ethanol were taken for measurements. The number of measured samples in each category is
graphically presented in Figure 2.

Figure 2. Number of examined samples/number of bottles for various studied wines categories.
LQ—low quality, AQ—average quality, HQ—high quality, and Ea—diluted ethanol. Number of
samples from each bottle is represented by bar segments.
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3. Classification Modeling

Odor recognition using electronic noses, from the data processing point of view, is a classification
task using machine learning models. In this section, we describe various elements of our approach
including extraction of features used for modeling (Section 3.1), validation of classification model
performance (Section 3.2), employed modeling technique (Section 3.3), and feature selection by wrapper
and filter methods (Section 3.4).

For the calculations presented in this paper we developed programs in Python 3.7 language using
the scikit-learn module [38] .

3.1. Extraction of Modeling Features

One series of gas measurements using the electronic nose consisted of hundreds or thousands
of individual sensor response points over time. In Figure 1, we present the entirety of sensor
measurements for a single sample, which consisted of 3300 measurement points for each sensor
in addition to the baseline measurement. Summing up, for all sensors, there was a space of
19,000 dimensions. This is impractical for model building, so a smaller number of features
characterizing response curves was extracted.

The most basic feature that can be used for classification is the final steady-state value of the
response curve after sensors are exposed to the studied odor: Gmax/G0 in the case of conductance
and Rmin/R0 in the case of resistance. However, this means that in such a case only one value
in the whole response curve is extracted, and information of the transient response is not used in
modeling. Other features [39] include basic statistics calculated from the response characteristics
such as the average value (which, in the case of keeping the same data collection frequency and
time span for all measurements, is equivalent to the integral or area below the response curve),
standard deviation, skewness, and kurtosis. In some research, sensor response values in selected
moments of time are used. They are usually evaluated after smoothing the curve in order to remove
measurement noise. In a similar spirit, capturing data in a moving window function [40,41] is applied.
In several studies [19,42,43] the exponential moving average (emaα) of the response curve is used,
and its maximum/minimum values for several smoothing parameters α are extracted as modeling
features. Related to these are features used in other works such as extreme values of the response
curve derivative [44–46]. The response curve can also be approximated by analytical functions such
as polynomial, sigmoid, or exponential, and the fitted parameters can be used as the modeling
features [44,45]. Additionally, characteristic times, such as the time to reach maximum/minimum of
the curve derivative or time to reach, for example, 10%, 25%, or 50% of the sensor response range,
can be used as modeling features. Yan et al. [47] reviewed applications of various feature extraction
methods in the odor detection domain using an electronic nose. All features extracted from the
responses curves, which are used in the present work, are listed in the Appendix A.

Frequently, another approach is used to reduce the dimensionality of the modeling problem.
The measurement data or extracted features are projected to a lower-dimensionality space as linear
or nonlinear transformations of the original data. After that, only a few most relevant, transformed
variables, containing most of the information without noise, are used for model training. Probably the
most often used method for such a task is Principal Components Analysis (PCA), but other methods
can also be used.

It should be noted that this type of dimensionality reduction is often used for other purposes.
Even if the model is trained on the original features, the transformed feature space by PCA can be
used to visualize data patterns and clusters that appear in various categories. In this spirit, in Figure 3
we demonstrate that the selected features were able to discriminate the studied categories of wine
odors. As one can notice, the high-quality and low-quality wines were clearly separated; however,
there was noticeable overlap between average-quality wines and ethanol sample measurements.
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Figure 3. Example of transformed feature characteristics extracted from the sensors by Principal
Components Analysis (PCA). Features from all sensors are considered, and the best five features
selected by the forward selection method are used as input to PCA. The four studied wine categories are
marked by colors: LQ–low quality, AQ—average quality, HQ—high quality, and Ea—diluted ethanol.

3.2. Model Validation

An important part of the machine learning modeling process is validating the model’s
performance, which should be done on a dataset independent from the dataset used for model training.
As one might notice in the description of examined odors in Section 2.2, there can be correlation between
the studied wine samples because they come from the same bottle. Rodriguez Gamboa et al. [19]
proposed to use a cross-validation procedure with the “leave-one-group-out” scheme. Measurements
performed on samples coming from one bottle were kept apart for testing the model performance,
and the rest of the data were used for model training. This procedure was performed in a loop over all
bottles, and the performance results were averaged.

In our modeling, we opted for another validation scheme and implemented the “group shuffle
split” method. In this case, the available dataset is split into training and validation sets in a 75/25%
proportion, with a restriction that all samples coming from a particular bottle should be in either
training or validation sets. This was based on random selection; thus, in order to obtain more reliable
metrics of the model performance, the procedure was repeated 100 times and the results were averaged.
We verified that the results were not affected by increasing the number of repetitions. We also verified
various proportions of the training/validation split, and the chosen value gave optimal results in terms
of the spread of individual model performance.

The reason to chose different approaches is as follows: The model’s performance calculated by
the leave-one-group-out method was about 2–3 percent points higher than the one obtained by the
group shuffle split approach. However, the standard deviation of the performance metrics by the
group shuffle split approach was significantly lower. The difference between results of the considered
cross-validation methods was smaller than the standard deviation. We argue that the chosen approach
gives more reliable results.

3.3. Modeling Technique

Various machine learning techniques can be used [48] for the task of odor recognition using an
electronic nose. In the studies from Reference [19] we refer to, classical methods of support vector
machine and multilayer perceptron deep neural network were applied. Results in this paper were
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obtained using a multinomial logistic regression model. We performed a few tests using other modeling
techniques such as support vector machine, decision tree, and k-nearest neighbors. The model
performances were not superior to those obtained by logistic regression. However, for the other
methods we did not perform so many tests as presented in this paper.

3.4. Feature Selection

The features used for the model are correlated, and the information contained in a set is redundant
or often irrelevant to the considered classification task. If the subset of features is discriminated well,
the studied classification categories a model trained on such subset usually exhibit better performances
compared to the model in which all prepared features are used.

There are two main groups [49] of methods commonly used to select the most relevant features:
wrapper and filter methods. Wrapper methods rely on the machine learning classification model in
order to estimate the predictive performance of a subset of features. Several feature subsets are used
for model training, then their performances are compared and used to select the best representation of
the modeling features. A variant of the wrapper method is to select features by the model training
algorithm itself, as it is, for example, in the case of decision tree [50]. Filter methods are independent
of any predictive modeling algorithms. They rely on data characteristics to assess feature importance.
These methods are typically more computationally efficient, but on the other hand, the selection of
features by wrapper methods usually leads to better performance [24,25] of odor recognition and
classification by electronic noses.

The main results in this paper were obtained with the wrapper-based approach. In many works,
the recursive backward selection method has been applied [19,51], in which, first, a model based on all
N features is created. Second, models based on N − 1 features are also trained, and their performances
are compared with the aim to choose which variable is the least important and upon removal will lead
to the best model among all models based on N − 1 features. Such a procedure is repeated recursively.

In our work, we implemented the recursive forward selection scheme. At the beginning,
we compared models built just on a single feature, and the best of them was selected. In the next step,
we compared models built on all combinations of two features in which the best feature from the first
step was included and the best model determined which feature should be selected. This procedure
was repeated recursively. We opted for this method as it is computationally less expensive compared
to the backward selection method. The total set of modeling features consisted of several hundred
items, and the expected number of features, for which models exhibited the best performance, was in
the range of a dozen or so. Thus, the number of trained and compared models in the forward selection
method was much smaller. As a metric for model comparison we used accuracy statistics (number
of properly classified records/all number of records) calculated on the validation dataset. It should
be mentioned that the variant of the forward feature selection method, specifically designed for the
support vector machine model, has been used for electronic nose data by Gualdrón et al. [52].

We should keep in mind that both the backward selection and forward selection methods do not
guarantee that the optimal subset of modeling features, leading to the best possible model performance,
is found. The fulfillment of such a hard task would require comparisons of all possible subsets of the
whole set of features (exhaustive search), which, even for moderate values of N, is computationally
prohibitive and requires training and comparison of 2N performance models. Some authors propose
to use genetic algorithms to select the features subset [23,24,53], but this approach is beyond the scope
of the present research.

We also implemented feature selection methods according to the filter approach [49]. This procedure
consists of two steps: first, feature importance is ranked according to selected evaluation criteria,
and second, the desired number of highly ranked features is chosen to train the model. In our
research we used univariate methods, which means that each feature is ranked individually regardless
of other features. We disregarded multivariate methods, in which several features are evaluated
together in a batch. In our opinion, their potential advantage in the particular case of electronic
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nose data is not as important as in the case of big data problems. The size of the usually available
training datasets is in the range of hundreds or thousands. In such a case, the time to train the model
required for wrapper methods, which usually provides a better selection of features in terms of model
performance, is acceptable on modern computer hardware.In our work, the Mutual Information,
Fisher Score, and RelfiefF methods [49] were used for comparisons with recursive forward selection
method described above.

We would like to emphasize works of other authors in which the application of filter feature
selection methods relevant to electronic nose data have been reported. Mutual Information was applied,
for example, by Wang and co-workers [54,55]. Nowotny et al. [56], Yin et al. [57], and Sun et al. [30]
used multivariate Wilks’ Λ statistics and Mahalonobis distance to optimize the sensor array.

As a final remark in the description of the modeling procedure, we would like to add that all
the above-described calculations were repeated five times, with different random number generator
seeds, and the final results were averaged. It should be explained that this is not equivalent to
the group shuffling cross-validation method described above, which works “inside” the recursive
forward selection algorithm. Our averaging was performed “outside” of the cross-validation algorithm.
As many modeling features are strongly correlated and there is some randomness in each repetition of
the forward selection, different sets of features can be chosen, even if the overall model performance
is similar.

4. Results

Model performance was studied using the standard leave-one-group-out cross-validation method.
We obtained an average model accuracy equal to 96.6%, but for such a validation scheme, the standard
deviation of the model was equal to approximately 11% (percent points). When the chosen validation
scheme was group shuffle, with the proportion of training and validation datasets of 75/25% and
100 repetitions, the estimated model performance was smaller, equal to 94.3%, with a standard
deviation of 7.5%. We performed both these calculations on all extracted features without selecting the
best ones. In our opinion, the group shuffle method more reliably estimated the model’s performance,
and the remaining results were obtained in this way.

In Figure 4 we present results when only part of the data is used for training the classification
model, namely the data collected by a smaller number of sensors. We performed calculations for all
combinations of sensors. Then, the optimal value for each number of sensors was selected. In these
calculations all types of modeling features were used without feature selection. The results in this
figure indicate that the optimal sensor matrix consisted of three sensors. However, it has to be
mentioned that the difference between the choice of three and four sensors was very small (0.2%).
Comparing this to the total number of measured samples equal to 300, this means that it was below the
misclassification for just the measurement of one sample. We performed the same modeling several
times, using different seeds of the random number generator, and in some of them the optimal choice
of the sensor matrix consisted of four sensors.

Figure 4. Accuracy of odor classification for various numbers of sensors from which data are used for
model training. All training variables for these sensors listed in Appendix A are used. Above the bars,
the average model accuracy and standard deviation (in brackets) are indicated.
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In Figure 5a, we present the comparison of model accuracy obtained with various numbers of
features chosen by the recursive forward selection method. First of all, the case when all types of
features listed in the Appendix A are available for selection is presented. We can notice that the
accuracy of the model built on only five features reached a value of 96.0%. Further increasing the
number of features can still improve the model performance: when 10 features were used it reached
96.9%, and for 15 features it was 97.1%. Importantly, the performance obtained on reduced numbers
of features, even when only five were used, was better than the best model accuracy obtained on the
whole set of features as we presented in Figure 4. For machine learning models we would rather
prefer models trained on a smaller number of features, as they will be more stable and less prone to
overfitting. For such a reason, we insist that no more than 10 features is the optimal choice in this case.
In Figure 5b, we also present the standard deviation of model accuracy obtained by the cross-validation
procedure. What is more, the results demonstrated that the choice of more than 10 modeling features
did not improve model stability.

Figure 5. Average model accuracy (a) and standard deviation σAcc (b) versus the number of features
selected by the recursive forward selection method. Comparisons of models built on data from all
sensors (S1–S6) with models trained on data from a single sensor (S1, . . . , S6). Lines are drawn as a
guide for the eye.

Looking at the results presented in Figure 4, we can observe that the employment of a smaller
number of features not only led to better model performance in terms of accuracy, but it also led to a
significant improvement in model stability, with a cross-validation standard deviation of 5.6%. In turn,
this means we can expect such a model will exhibit better performance on new, unseen data.

In the final remark of Section 3.4, we noted that we repeated the recursive forward selection
procedure five times using different seeds of the random number generator and then averaged the
results. Due to randomness, in each repetition the selected list of best features can be different. In our
tests, the model with best choice of features gave an accuracy of 98.4% with a cross-validation standard
deviation of 3.4%. This result is better than that reported in [19]. However, to present other results
we used a more conservative approach when averaging the cross-validation estimations of model
performance. The list of features selected by the modeling algorithm is presented in Appendix B.

In Figure 5 we also present the performance of models trained on subsets of available features
when, for the recursive forward selection method, only features extracted from a single sensor were
used. Parts of these data are present in another form in Figure 6, where the average model performance
and its standard deviation are plotted for the cases when 5, 10, and 15 features are used. We can
notice that for the case of data extracted from just one sensor, namely, the 2nd, 3rd, and 5th sensors,
the model accuracy was about 95.5%, which is very close to the performance of models trained on
features extracted from all sensors. In Figure 6b we can also observe that, for the models trained on
data extracted from only the 2nd sensor, the standard deviation, which can be interpreted as a kind of
model stability, was comparable to the one obtained for the model trained on all data coming from
all sensors.
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Figure 6. Average accuracy (a) and standard deviation σAcc (b) of models trained on features extracted
from all six sensor signals and from each individual sensor (1 to 6), respectively. Individual bars from
left to right in each group display values obtained for 5, 10, and 15 features, respectively. A horizontal
line is drawn to guide the eye and indicates the best performing model obtained with data extracted
from responses of all sensors.

Another instructive observation from that figure is the influence of individual sensor
characteristics. As described in Section 2.1, there were three pairs of sensors of the same type. Sensors 2
and 5 were MQ-4 sensors designed to be highly sensible to CH4 and natural gas. The features extracted
from both gave some of the best results. Yet, the difference between these sensors was distinguishable.
When data from only the 2nd sensor were used, the models exhibited a significantly better stability
than models trained on the data obtained from other sensors. On the contrary, sensors 3 and 6 were
also of the same type, but as one can notice, the models trained on features extracted only from the 3rd
sensor had good performances, but for the 6th sensor this was not the case.

In Figure 7 we present results with the aim to address two other issues concerning data
transformation and selection. As was already mentioned, we extracted modeling features from
sensor response characteristics. The original measurements provide information in terms of sensor
resistance R, but in our work we extracted features not only from the resistance but also using sensor
conductance G, which is just the inverse of R. This means in the prepared set of features there are
always pairs that are strongly correlated by this transformation. Of course, we can expect that the
implemented features selection method will choose the most appropriate ones. Our intention was to
verify if there was any important difference between models trained on features extracted from only R,
only G, and both R and G.

The second issue we wanted to address is the possibility to use only part of the measurement
characteristics from which the modeling features were extracted, precisely only the gas adsorption
part of the measurement.

One can observe in Figure 7a that when data from all sensors were used for model training,
the model accuracy did not depend on the choice of features extracted from G, R, or both. Additionally,
only the adsorption part of the characteristics was sufficient; however, in such a case to achieve good
model performance, it is required to use features extracted from sensors conductance.

When we examine in Figure 7b–g, which is related to models trained on data extracted from a
single sensor response, we can notice that the best performing models were trained on the whole
response curve (adsorption + desorption). In addition, transformation of the sensor resistance, in order
to use sensor conductance to extract the features, leads to improved model performance, which can
be especially noticed in sub-figures related to the 2nd and 5th sensors. These observations confirm
that information contained in the desorption curve is valuable and can improve the odor recognition
capability of an electronic nose. Additionally, using nonlinear transformations of both R and G related
features can be helpful.
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Figure 7. Accuracy of models trained on various subsets of features available for the recursive forward
selection method: ALL—all prepared types of features, ALL-G—only features extracted from the
conductance, ALL-R—only features extracted from the resistance, and ON, ON-G, ON-R—only features
extracted from the gas adsorption part of the response. (a) Data from all sensors are used, (b–g) data
from individual sensors are used for model training; sensors are indicated in sub-figures. Individual
bars from left to right in each group display values obtained for 5, 10, and 15 features, respectively.
Ticks above bars in figures (b–g) indicate the level of model accuracy obtained with all sensor data,
as presented in figure (a). Charts (b–g) are ordered such that data from the same type of sensor are
presented by row.
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Goodner et al. [22] investigated the dependency of the classification model on the number of used
sensors signals and especially on the relation between them and number of observations used to train
the model. They performed numerical experiments when artificial noise had been added to the signal
and came to the conclusion that, in general, a 1:6 ratio or higher is desirable. As one can notice, in the
case when variable selection was used in our calculations, such a relation is fulfilled. However, it may
be interesting to notice that even if all created features were used to train the classification model, the
classification accuracy was still acceptable. That may seem to contradict the mentioned guidelines.
This can be explained by the fact that, in the case of modeling features that we used, their values
as well as noise that they included were strongly correlated. The best example was the correlation
between features calculated as an integral of the response curve (area under the curve) with adsorption
and desorption integral parts of the curve. Notably, the former is just a sum of the two latter. In the
analysis presented in [22], the noise contained in all features was independent.

Finally, the results presented in Figure 8 demonstrate the advantage of choosing the wrapper
feature selection method (recursive forward selection) over filter selection. We present here the model
performance only for the case when data from all sensors were used. We performed calculations also
for the cases of models built on individual sensor responses, and the characteristics of the results
were similar.

Figure 8. Average accuracy of models versus number of features used for training. Comparison of
the recursive forward selection (RFS) method with filter selection methods: Mutual Information (MI),
Fisher Score (FS), and ReliefF Score (RS). (a) average accuracy, (b) standard deviation of accuracy σAcc.
Lines are drawn as a guide for the eye.

5. Conclusions

In this paper, different issues concerning features selection associated with electronic nose
applications have been considered. Particular attention has been devoted to data reduction by
eliminating excessive numbers of sensors employed in the electronic instrumentation of a given
e-nose. From the data processing point of view, odor recognition by using an e-nose is a classification
task assisted by machine learning models. A number of approaches have been used for examining
extraction of features, validation of model performance, modeling technique, and feature selection by
wrapper and filter methods. The usefulness of the approaches has been assessed using a multisensor
system database created by Rodriguez Gamboa et al. [19] and gathering measurements of wine quality.

Interesting results concerning model performance have been obtained. We calculated model
performance using the standard leave-one-group-out and group shuffle cross-validation methods.
The obtained results led us to the conclusion that the latter method more reliably estimated model
performance; thus, it was used in our current calculations. We believe such a comparison and indication,
that the model accuracy estimated by the standard leave-one-group-out cross-validation results is
sometimes too optimistic, can be interesting to other researchers, especially newcomers in the field of
e-nose data analysis.
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As an important part of the results, we present details of cross-validation, including standard
deviation of the cross-validated model accuracy, which allows us to more deeply understand the
expected performance of the models when new data are used. This also gives an important perspective
when accuracy improvements are compared. Unfortunately, such results are rarely presented in
other reports.

All sensor choice combinations were included in the computations, and all types of modeling
features were employed. The results presented in Figure 4 indicate the optimal sensor matrix consists of
only three sensors. A comparison of model accuracy obtained with various numbers of features, listed
in the Appendix A, chosen by the recursive forward selection method can be seen in Figure 5. We can
notice that the accuracy of the model built on only five features reached a value of 96.0%. Further
increasing the number of features can still improve the model’s performance, and for 15 features it
reached an accuracy of 97.1%. What is significant is the performance obtained on a reduced number of
features, even as little as five, which was better than the best obtained model accuracy on the whole set
of 828 features. Models trained on a smaller number of features will be more stable and less susceptible
to overfitting. For such a reason, no more than 10 features would be the optimal choice. We also present
the standard deviation of model accuracy obtained by the cross-validation procedure. Similarly, at this
point, one can observe that the choice of more than 10 modeling features did not improve model
stability. Therefore, a smaller number of features leads not only to better model performance in terms
of accuracy, but it also improves the stability, as noted by the standard deviation of 5.6%. This means
that we can expect a better performance of such a model on new, unseen data.

In our tests the model with the best choice of features had an accuracy of 98.4% with a
cross-validation standard deviation of 3.4%. This result is better than the best one reported by
Rodriguez Gamboa [19] (97.7%). One has to keep in mind that our estimates were obtained with
a different cross-validation scheme, which, as we demonstrated, gave less optimistic estimates of
classification accuracy. We believe that such a result may be encouraging to re-examine some publicly
available datasets.

Looking at the data extracted from just one sensor, such as the 2nd, 3rd, or 5th sensors, we can
see from Figure 6 that the model accuracy was about 95.5%, which is very close to the performance of
models trained on features extracted from all sensors. We can also observe that for the models trained
on data extracted from only the 2nd sensor, the standard deviation of accuracy, interpreted as a kind
of model stability, was comparable to that obtained for the model trained on all data coming from
all sensors. In our opinion, this result may be especially interesting from the potential applications
perspective. The possibility of constructing e-noses for special purposes, based on single sensor, and to
detect odors, which were not targeted by sensors producers, is sometimes overlooked.

Another purpose was to verify if there were any important differences between models trained
on features extracted from resistance R or conductance G alone, or both. The second issue that we
addressed was the possibility to use only part of the measurement characteristics, for example only
the gas adsorption part of the measurement. One can observe that when data from all sensors were
used, the model accuracy did not depend on the choice of features extracted from G, R, or both.
The adsorption part of the characteristics appears to be sufficient, but in such a case to achieve a good
model performance, it is required to use features extracted from sensor conductance. When we examine
models trained on the data extracted from a single sensor response, the best performing models were
trained on the whole adsorption and desorption parts of the response curve. These observations
confirm the importance of the information contained in the desorption curve that can improve the
odor recognition capability of e-noses.

Finally, one should mention the demonstrated advantage of wrapper selection over filter selection
methods, visible in Figure 8. Even if such an observation has been already reported, we believe that
detailed demonstrations of differences between the two methods can be interesting guidance for
other research.
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Appendix A. List of aLl Features Used for Modeling

As we explained in Section 3.1 above, the first step in reducing the dimensions consists of extracting
several features that describe the sensor response curve. Below we present a list of these features. In the
feature names we used the following convention; the first character indicates if this feature is calculated
based on resistance or conductance characteristics, and the second character indicates the sensor number
(in this case, 1 to 6). Thus, a total of 828 features were extracted from the original sensor response curves.

Basic statistics calculated from the whole response curve
R1.Sum/G1.Sum Sum of sensor responses, which is equivalent to integral of the response curve.
R1.Median/G1.Median Median
R1.Kurt/G1.Kurt Kurtosis
R1.Skew/G1.Skew Skewness

Basic statistics calculated from the adsorption phase of the response curve.
R1.SumOn/G1.SumOn Sum of sensor responses.
R1.MedOn/G1.MedOn Median
R1.MinOn/G1.MaxOn Extreme value reached by the response curve, which is equivalent to the value

of the response at the end of the adsorption phase.
Basic statistics calculated from the desorption phase of the response curve.

R1.SumOff/G1.SumOff Sum of sensor responses.
R1.MedOff/G1.MedOff Median
R1.MaxOff/G1.MinOff Extreme value reached by the response curve, which is equivalent to the value

of the response at the end of measurement.
Time needed to reach the indicated percent change of the sensor response value during the adsorption
phase (from baseline to extreme).

R1.On10/G1.On10 10%
R1.On25/G1.On25 25%
R1.On50/G1.On50 50%
R1.On75/G1.On75 75%

Time needed to reach the indicated percent change of the sensor response value during the desorption
phase (from start of desorption to end of the measurement).

R1.Off10/G1.Off10 10%
R1.Off25/G1.Off25 25%
R1.Off50/G1.Off50 50%
R1.Off75/G1.Off75 75%

Extreme value of exponential moving average filter (emaα) for indicated values of the α parameter.
Calculated for adsorption phase.

R1.PMin1/G1.PMax1 α = 0.1
R1.PMin2/G1.PMax2 α = 0.01
R1.PMin3/G1.PMax3 α = 0.001

Time needed to reach extreme values of the exponential moving average filter (emaα) of the α parameter.
Calculated for adsorption phase.

R1.PTime1/G1.PTime1 α = 0.1
R1.PTime2/G1.PTime2 α = 0.01
R1.PTime3/G1.PTime3 α = 0.1
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Basic statistics calculated for the exponential moving average filter (emaα) for indicated values of the α

parameter. Calculated for the adsorption phase.
R1.PStd1/G1.PStd1 Standard deviation, α = 0.1
R1.PStd2/G1.PStd2 Standard deviation, α = 0.01
R1.PStd3/G1.PSkew3 Standard deviation, α = 0.001
R1.PSkew1/G1.PSkew1 Skewness, α = 0.1
R1.PSkew2/G1.PSkew2 Skewness, α = 0.01
R1.PSkew3/G1.PSkew3 Skewness, α = 0.001
R1.PKurt1/G1.PKurt1 Kurtosis, α = 0.1
R1.PKurt2/G1.PKurt2 Kurtosis, α = 0.01
R1.PKurt3/G1.PKurt3 Kurtosis, α = 0.001

Extreme value of exponential moving average filter (emaα) for indicated values of the α parameter.
Calculated for the desorption phase.

R1.QMax1/G1.QMin1 α = 0.1
R1.QMax2/G1.QMin2 α = 0.01
R1.QMax3/G1.QMin3 α = 0.001

Time needed to reach the extreme value of the exponential moving average filter (emaα) for indicated
values of the α parameter. Calculated for the desorption phase.

R1.QTime1/G1.QTime1 α = 0.1
R1.QTime2/G1.QTime2 α = 0.01
R1.QTime3/G1.QTime3 α = 0.001

Basic statistics calculated for the exponential moving average filter (emaα) for indicated values of the α

parameter. Calculated for the adsorption phase.
R1.QStd1/G1.Qtd1 Standard deviation, α = 0.1
R1.QStd2/G1.QStd2 Standard deviation, α = 0.01
R1.QStd3/G3.QStd3 Standard deviation, α = 0.001
R1.QSkew1/G1.QSkew1 Skewness, α = 0.1
R1.QSkew2/G1.QSkew2 Skewness, α = 0.01
R1.QSkew3/G1.QSkew3 Skewness, α = 0.001
R1.QKurt1/G1.QKurt1 Kurtosis, α = 0.1
R1.QKurt2/G1.QKurt2 Kurtosis, α = 0.01
R1.QKurt3/G1.QKurt3 Kurtosis, α = 0.001

Value reached by the sensor response at time when the exponential moving average filter (emaα) reached
its extreme. For indicated value of the α parameter.
Calculated for the desorption phase.

R1.ValPMin1/G1.ValPMax1 α = 0.1
R1.ValPMin2/G1.ValPMax2 α = 0.01
R1.ValPMin3/G1.ValPMax3 α = 0.001

Parameters of sensor response curve fitting by polynomial function y = A3x3 + A2x2 + A1x + A0.
R1.Poly3/G1.Poly3 A3

R1.Poly2/G1.Poly2 A2

R1.Poly1/G1.Poly1 A1
R1.Poly0/G1.Poly0 A0

Values of the response curve at the 100 × N-th sampling point. To avoid measurement noise, the median
of ±5 points is taken.

R1.v01 . . . R1.v15/G1.v01 .. G1.v15

Appendix B. Features Selected by the Modeling Algorithm

In the table below, we present the best subset of features selected by the recursive forward
selection method, for all types of subsets of features for which the results were described in the paper.
The features are in order of selection by the algorithm. The first 10 features are listed.
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Data Range Sensor Features
ALL S1–S6 G6.Poly3, G4.PSkew3, R1.Std, G3.Poly2, G2.Kurt, G4.Poly3, G6.PStd1,

G5.Kurt, G4.Poly2, R3.PSkew1
S1 R1.Std, G1.QSkew1, R1.Off50, R1.QMax1, R1.PStd1, R1.ValPMin1,

G1.QTime1, G1.Poly2, G1.QTime3, R1.On10
S2 R2.PKurt1, G2.Off75, R2.PKurt3, G2.Kurt, G2.Off50, G2.QTime2, G2.Poly0,

G2.Off25, R2.PSkew2, G2.On75,
S3 G3.Off50, R3.Kurt, R3.PKurt2, R3.Off10, G3.PKurt3, G3.Poly3, G3.MinOff,

G3.QTime3, G3.Off75, R3.PSkew1
S4 G4.PSkew3, G4.Poly0, G4.QKurt3, G4.On10, G4.QStd1, G4.PSkew2,

G4.QMmin1, G4.On25, G4.QSkew3, G4.PTime3
S5 G5.Kurt, G5.ValPMax3, G5.PSkew1, G5.MinOff, G5.PKurt2, G5.QStd1,

G5.Skew, G5.QKurt2, R5.Kurt, G5.On50
S6 G6.Poly3, G6.QSkew1, G6.MinOff, G6.PSkew1, G6.QTime1, G6.PStd1,

R6.PKurt3, G6.QKurt1, R6.ValPMin1, G6.PMax1
ALL-G S1–S6 G6.Poly3, G4.PSkew3, G2.PTime3, G2.Kurt, G2.PKurt3, G5.PKurt2, G5.Off75,

G4.PSkew2, G4.Poly3, G6.Kurt
S1 G1.Poly0, G1.QKurt2, G1.QKurt3, G1.PSkew1, G1.QKurt1, G1.MinOff,

G1.Off50, G1.QSkew1, G1.v02, G1.QSkew2
S2 G2.PTime3, G2.Kurt, G2.PKurt2, G2.Skew, G2.QTime2, G2.QStd1, G2.MinOff,

G2.On75, G2.PSkew2, G2.Off75
S3 G3.Off25, G3.MinOff, G3.PStd1, G3.QSkew1, G3.PKurt2, G3.Poly2,

G3.PKurt3, G3.Poly3, G3.PKurt1, G3.QKurt1
S4 G4.PSkew3, G4.Poly0, G4.QKurt3, G4.On10, G4.QStd1, G4.PSkew2,

G4.QMmin1, G4.On25, G4.QSkew3, G4.PTime3
S5 G5.Kurt, G5.ValPMax3, G5.PSkew1, G5.MinOff, G5.PKurt2, G5.QStd1,

G5.Skew, G5.QKurt2, G5.On50, G5.PSkew2
S6 G6.Poly3, G6.QSkew1, G6.MinOff, G6.PSkew1, G6.QTime1, G6.PStd1,

G6.QKurt1, G6.v04, G6.PSkew3, G6.PMax1
ALL-R S1–S6 R1.Std, R5.Off25, R2.Kurt, R5.On10, R3.PMin1, R6.Off50, R6.PKurt3, R2.Skew,

R6.Off10, R1.SumOff
S1 R1.Std, R1.QMax1, R1.PTime1, R1.ValPMin1, R1.SumOff, R1.v05, R1.QTime1,

R1.PStd1, R1.Kurt, R1.MedOff
S2 R2.PKurt1, R2.Kurt, R2.PKurt3, R2.QMax3, R2.Off75, R2.QKurt3, R2.Skew,

R2.PMin1, R2.On75, R2.PSkew2
S3 R3.Kurt, R3.PKurt2, R3.Off10, R3.Std, R3.Skew, R3.QKurt2, R3.PKurt3,

R3.PSkew2, R3.QKurt3, R3.QSkew2
S4 R4.Std, R4.MinOn, R4.ValPMin3, R4.v08, R4.PStd2, R4.SumOff, R4.v02,

R4.MedOn, R4.PStd1, R4.PStd3
S5 R5.Std, R5.Skew, R5.PTime3, R5.Off10, R5.PMin1, R5.Off75, R5.Kurt,

R5.On75, R5.MedOff, R5.SumOff
S6 R6.Std, R6.On10, R6.SumOff, R6.On25, R6.Off25, R6.ValPMin1, R6.v01,

R6.MedOff, R6.Off75, R6.Off50
ON S1–S6 G6.Poly3, G4.PSkew3, G2.PTime3, G5.PKurt2, G3.PStd1, G4.v15, G2.PKurt2,

R3.PMin1, G1.v01, G5.PSkew3
S1 R1.PTime1, G1.PKurt1, R1.PStd1, R1.PTime3, R1.ValPMin2, R1.PTime2,

G1.v02, R1.On10, R1.On25, G1.PKurt2
S2 R2.PKurt1, G2.PSkew1, G2.PKurt3, G2.On75, R2.PKurt3, G2.PTime3,

G2.PKurt2, G2.PSkew2, R2.ValPMin2, G2.PSkew3
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S3 G3.v01, G3.On50, G3.PSkew1, R3.PKurt3, G3.On75, G3.PKurt1, G3.Poly3,
R3.On10, R3.PKurt1, G3.PKurt2

S4 G4.PSkew3, G4.Poly0, G4.On75, G4.PTime3, G4.PKurt1, G4.PSkew2,
G4.On25, G4.PKurt2, G4.On10, G4.On50

S5 G5.On75, G5.ValPMax3, G5.PSkew1, G5.PSkew3, G5.ValPMax1, G5.Poly0,
G5.Poly1, G5.PStd1, R5.ValPMin1, G5.v10

S6 G6.Poly3, G6.PSkew1, G6.On25, G6.On50, G6.On75, G6.On10, G6.PTime1,
G6.Poly2, G6.PTime3, R6.PTime1

ON-G S1–S6 G6.Poly3, G4.PSkew3, G2.PTime3, G5.PKurt2, G3.PStd1, G4.v15, G2.PKurt2,
G6.PMax1, G5.PSkew3, G1.v02

S1 G1.Poly0, G1.On75, G1.PKurt1, G1.PKurt2, G1.Poly3, G1.On10,
G1.ValPMax3, G1.v01, G1.PStd1, G1.On50

S2 G2.PTime3, G2.PSkew1, G2.On75, G2.PKurt2, G2.ValPMax2, G2.On50,
G2.PSkew2, G2.PTime2, G2.PKurt1, G2.PSkew3

S3 G3.v01, G3.On50, G3.PSkew1, G3.Poly3, G3.On75, G3.PKurt1, G3.PTime1,
G3.PTime3, G3.v02, G3.On25

S4 G4.PSkew3, G4.Poly0, G4.On75, G4.PTime3, G4.PKurt1, G4.PSkew2,
G4.On25, G4.PKurt2, G4.On10, G4.On50

S5 G5.On75, G5.ValPMax3, G5.PSkew1, G5.PSkew3, G5.ValPMax1, G5.Poly0,
G5.Poly1, G5.PStd1, G5.PStd2, G5.PStd3

S6 G6.Poly3, G6.PSkew1, G6.On25, G6.On50, G6.On75, G6.On10, G6.PTime1,
G6.Poly2, G6.PTime3, G6.PSkew3, G6.PStd1

ON-R S1–S6 R2.PKurt1, R6.PTime1, R5.ValPMin3, R1.v08, R4.MinOn, R1.PTime1, R4.v03,
R1.PMin2, R4.ValPMin1, R2.PSkew2

S1 R1.PTime1, R1.PStd1, R1.ValPMin2, R1.PTime2, R1.MedOn, R1.On10,
R1.PTime3, R1.PMin2, R1.v03, R1.v02

S2 R2.PKurt1, R2.v01, R2.PKurt3, R2.PSkew3, R2.On75, R2.PSkew2, R2.PSkew1,
R2.PKurt2, R2.PMin3, R2.PMin1

S3 R3.v01, R3.PKurt3, R3.PKurt1, R3.v15, R3.On10, R3.PSkew2, R3.PTime2,
R3.PMin1, R3.PSkew3, R3.PStd3

S4 R4.PKurt1, R4.MedOn, R4.ValPMin3, R4.PSkew3, R4.v14, R4.v02, R4.PStd3,
R4.PMin1, R4.PMin3, R4.v15

S5 R5.ValPMin3, R5.On75, R5.ValPMin2, R5.v15, R5.On10, R5.MedOn,
R5.PMin1, R5.v09, R5.v03, R5.v07

S6 R6.PStd2, R6.PSkew2, R6.On10, R6.v07, R6.On75, R6.MinOn, R6.v01, R6.v06,
R6.PSkew3, R6.v15
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