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Abstract: The aim of this review is to summarize that most relevant technologies used to evaluate
gait features and the associated algorithms that have shown promise to aid diagnosis and symptom
monitoring in Parkinson’s disease (PD) patients. We searched PubMed for studies published between
1 January 2005, and 30 August 2019 on gait analysis in PD. We selected studies that have either used
technologies to distinguish PD patients from healthy subjects or stratified PD patients according to
motor status or disease stages. Only those studies that reported at least 80% sensitivity and specificity
were included. Gait analysis algorithms used for diagnosis showed a balanced accuracy range of
83.5–100%, sensitivity of 83.3–100% and specificity of 82–100%. For motor status discrimination the
gait analysis algorithms showed a balanced accuracy range of 90.8–100%, sensitivity of 92.5–100%
and specificity of 88–100%. Despite a large number of studies on the topic of objective gait analysis in
PD, only a limited number of studies reported algorithms that were accurate enough deemed to be
useful for diagnosis and symptoms monitoring. In addition, none of the reported algorithms and
technologies has been validated in large scale, independent studies.

Keywords: Parkinson’s disease; gait analysis; diagnosis; symptoms monitoring; wearable;
home-monitoring; machine learning

1. Introduction

Parkinson’s’ disease (PD) gold standard for diagnosis and symptoms monitoring is based on
clinical evaluation, which includes several subjective components. The lack of objective and quantitative
biomarkers for diagnosis and symptoms monitoring leads to significant direct and indirect healthcare
cost. Based on the current diagnostic criteria [1], the diagnostic error rate is around 20% [2]. In addition,
PD is a dynamic disease (i.e., symptoms changes during the disease course) that requires continuous
adjustment of therapy.

In the early stages of PD, the most effective treatment to alleviate motor symptoms is oral
L-DOPA [3]. However, during moderate and advanced stages, in addition to cardinal motor symptoms,
the patient may show motor fluctuations and dyskinesia. During this stage, the brain becomes very
sensitive to dopamine level fluctuations, and a continuous stimulation (instead of pulsatile drugs
administration) may help in controlling motor fluctuations, dyskinesias and cardinal motor symptoms.
This stimulation may be pharmacological with levodopa [4–6] or dopamine agonists [7], or provided
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by DBS (deep brain stimulation) [8–12]. During moderate and advanced stages, gait problems, like
freezing of gait and reduced balance and postural control, become more evident and unlike cardinal
motor symptoms, PD patients respond less to conventional therapy (i.e., oral L-DOPA).

In line with cardinal motor symptoms, to date, gait problems are evaluated with semiquantitative
rating scales like the unified Parkinson’s disease rating scale (UPDRS) [13] or the movement disorders
society unified Parkinson’s disease rating scale (MDS-UPDRS) [14]. In an effort to improve PD
management and move towards a quantitative and home-oriented assessment and recognition
of PD motor symptoms, different technologies have been used to evaluate bradykinesia [15–17],
rigidity [17–20], tremor [21–23] and axial symptoms [24–27].

Gait impairment is an evolving condition and different patterns of gait disturbances can be
detected throughout the progression of the disease [28]: reduced amplitude of arm swing, reduced
smoothness of locomotion, increased interlimb asymmetry [29], low speed, reduced step length [29],
shuffling steps, increased double-limb support, increased cadence [28], defragmentation of turns (i.e.,
turning en block), problems with gait initiation [30], freezing of gait and reduced balance and postural
control [28].

Some gait features in PD are specific, and get worse during the disease course. An objective
and quantitative gait analysis system could, therefore, potentially improve the current practice
(semiquantitative gait evaluation) that may aid in diagnosis, symptom monitoring, therapy
management, rehabilitation and fall risk assessment and prevention in Parkinson’s disease patients.
Among all these promising applications of gait analysis in Parkinson’s disease, we have confined
the scope of our review to two main unmet needs in this disorder: the diagnostic error, and the lack
of objective biomarkers for motor status discrimination. Therefore, the main aim of this overview
is to summarize the most important technologies used to evaluate gait features and the associated
algorithms that have shown promise in using gait analysis to aid diagnosis and symptom monitoring
in Parkinson’s disease (PD) patients. The scope of the review was confined to studies that showed any
promise of being clinically useful (i.e., are both highly sensitive and specific defined as those with at
least 80% sensitivity and 80% specificity) for diagnosis or motor status discrimination.

1.1. Gait Features

Human gait is a sequence of involuntary movements, cyclically repeated and triggered by
voluntary movement. Several components could be used to objectively measure and analyze gait
cycle. These components are typically categorized into spatiotemporal, kinematics and kinetics
features [31,32].

1.2. Spatiotemporal Features

Several spatiotemporal features can be used for gait analysis (Table 1). These features are the
more commonly used types of features to objectively describe the gait pattern in healthy subjects and
patients with several diseases. Spatiotemporal features could refer to the global gait cycle or to the
stride cycle.
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Table 1. Spatiotemporal gait and stride features.

Gait Cycle
The time from initial contact to initial

contact on the same foot including both the
stance phase and swing phase.

Stance Phase
The period during which the foot is in

contact with the support surface during one
gait cycle.

Swing Phase The period during which the foot is airborne
during one gait cycle.

Double Limb Support
The period during which both feet are in

contact with the support surface during one
gait cycle.

Single Limb Support
The period during which only one foot is in
contact with the support surface during one

gait cycle.

Step Duration The period between 2 successive events of
the same type on opposite limbs.

Stride Length The linear distance between 2 successive
events (initial contact) on the same limb.

Step Length The linear distance between 2 successive
events of same type on opposite limbs.

Step Width The horizontal distance between 2 points on
opposite limbs.

Foot Progression Angle The angle between the longitudinal axis of
the foot and the line of gait progression.

Each gait cycle starts with the initial contact of one foot and ends with a new initial contact of the
same foot (Figure 1). One single cycle is composed of a stance and a swing phase: the stance phase is
the period during which the foot is in contact with a support surface, and the swing phase is the period
during which the same foot is airborne in preparation for the next gait cycle. During the gait cycle, the
legs can be individually or simultaneously placed on the ground, so it is possible to identify a single
limb support stage, that is the phase during which only one foot is on the surface, and a double limbs
support stage during which both legs are on the support surface during a one step cycle (Table 1).
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The step and the stride are defined as the length/duration between 2 successive events of same
type on opposite limbs, and on the same limb, respectively (Table 1; Figure 2).
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Figure 2. Stride analysis of a single gait cycle.

The step width represents the horizontal distance measured between the position of the feet on
the same event. Finally, foot progression angle can be measured, this represents the angle between the
longitudinal axis of the foot and the line of gait progression (Table 1).

1.3. Kinetics Features

The kinetics analysis (or dynamics of gait) is the study of the forces and their effect on motion. The
dynamics forces are the causes of the motion that result in the kinematic movements. Commonly, these
forces are represented by the ground reaction force (GRF) on the hip, knee and ankle joints calculated
on the sagittal plane. GRF is described only when feet are in contact with the ground (stance phase)
and represents the effect of gravity on a body area counterbalanced by the contact with ground and the
limb muscular activation [31,32] (Figure 3). GRF refers to a center of pressure (CoP) that is the point of
force application.
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1.4. Kinematics Features

Kinematics features describe the movements without taking the forces causing the movements
into account [31,32]. Kinematics analysis could describe gait features based on the sagittal, horizontal
or frontal plane for several body areas and joints such as the ankle, knee, hip and pelvis. Kinematics
features could be extrapolated both from the stance and swing phases. The kinematic analysis of the
position, velocity and acceleration of a body part can be determined. Angular kinematics objectively
quantify (as degrees) the joint’s motion around axes in different gait phases (Figure 4).
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1.5. Gait Analysis Technologies

Several technologies can be used for quantitative gait analysis. Technologies can be divided into
two main subtypes: wearables and non-wearables [33]. Wearable sensors used for gait analysis are
inertial sensors [34], goniometer [35], pressure and force sensors [36], electromyography (EMG) [37,38],
IR-UWB (impulse radio ultra-wideband) [39] and ultrasound [40]. Among non-wearable sensors, the
most common types are floor sensors [41,42] and image processing-based technologies (such as a single
or multiple cameras [43–45], time of flight [46–48], stereoscopic vision [49,50], structured light [51] and
IR thermography [52]).

Accelerometers, gyroscopes and magnetometers can be the component of the same inertial
measurement unit (IMU) device (Figure 5), one of the most widely used type of sensors in gait analysis
especially in PD [33,53]. It can measure velocity, acceleration, orientation and gravitational forces and
can be used to study gait initiation [54], assess standing balance [55] and quantify bradykinesia [56].
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Figure 5. The same inertial measurement unit (IMU) device composed by accelerometers (A), a
gyroscope (B) and a magnetometer (C). Legend: (A) ax, ay and az = linear acceleration on the three axis
x, y and z; (B) αx, αy and αz = angular acceleration on the three axis x, y and z and (C) µx, µy and µz =

magnetic moment on the three axis x, y and z.

Accelerometers are composed of a mechanical sensing element with a proof mass attached to a
mechanical suspension system, with respect to a reference frame, that can be forced to deflect by the
inertial force according to the acceleration of gravity. The acceleration can be measured electrically
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using the physical changes in the displacement of the proof mass with respect to the reference frame [34].
Accelerometer can be attached to the feet, legs or waist [33]. Gyroscope is based on the property that
all body that revolves around an axis develop rotational inertia determined by the body’s moment
of inertia [33]. Basically, a gyroscope is an angular velocity sensor. Magnetometer is based on the
magneto resistive effect and can estimate changes in the orientation of a body segment in relation to
the magnetic north. It can provide information that cannot be determined by both an accelerometer
and gyroscope [34].

Goniometers work with resistance that changes depending on how flexed the sensors is. When
flexed, the resistance increases proportionally to the flex angle. Goniometers are easy to set up and use
a simple algorithm [33]. Goniometers are commonly used to study the angles for ankles, knees, hips
and metatarsals [35].

Pressure and force sensors measure the force applied on the sensor without considering the
components of this force on all other axes [33].

Force sensors measure the ground reaction force under the foot and return a current or voltage
proportional to the pressure measured. Usually this kind of sensor is easily integrated into instrumented
shoes [36]. Pressure and force sensors have been used to study stride length variability in PD patients
with freezing of gait (FOG) [57]. Electromyography is a neurophysiologic technique that registers the
electrical signals associated with motor unit activity, both voluntary and involuntary. The electrical
signal can be recorded with surface electrodes (non-invasively) or needle electrodes (invasively) [58].
Some EMG electrodes are commercialized in combination with wireless technology and play an
important role in evaluating walking performance during gait [38]. EMG can be used to study postural
disorders in Parkinson’s disease patients, like exploring muscular activity in the Pisa syndrome [59].

The impulse radio ultra-wideband (IR-UWB) technique can detect and track movements
non-invasively with high resolution and accuracy through emitting impulse radio waves of very short
duration, and receiving the reflected waves from the target body [60]. It has been used to quantify
activity measurement in movement disorders [61]. This technology also shows a good penetrating
power able to detect the motions of internal organs. This technique can also be used for a wearable
healthcare system to continuously estimate foot clearance due to its high temporal resolution, low
power consumption and multipath immunity [62]. This technology can be used for step and gait phase
detection [39].

Ultrasonic sensors can measure the time a sound takes to send and receive the wave produced as it
is reflected from an object. Knowing the time and the speed, we can estimate the distance between two
points [33]. This kind of technology is useful for step length measurement and gait phase detection [40]
to analyze bilateral gait symmetry and coordination [63].

Among non-wearable sensors, the single camera image processing system is composed of single
or multiple cameras that can be used to obtain information about gait in selected individuals. This
technique allows individual recognition and segment position localization. Image processing has been
used to identify people by the way they walk [44] and has several medical applications such as gait
recognition considering changes in the subject path [64], and study of the gait kinematic [65].

Time of flight (TOF) systems are based on cameras using signal modulation that measure distances
between the camera and the subject based on the phase-shift principle [46]. The TOF system can
detect the segment position, gait phase, foot plantar pressure distribution and are useful for individual
recognition [47]. TOF systems have been used to assess medication adherence in patients with
movement disorders [66].

Stereoscopic vision is used to determine the depth of points in the scene by using a model through
the calculation of similar triangles between the optical sensor, the light-emitter and the object in the
scene. This could be useful in gait phase detection, segment position and individual recognition [49].

Structured light is the projection of a light pattern under geometric calibration on an object
whose shape is to be recovered [33]. This technology is used for segment position study and gait
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phase detection. Kinetic sensor is one of the most common devices using this technology to create a
marker-based real-time biofeedback system for gait retraining [51].

Infrared thermography (IR) creates visual images based on surface temperatures. For studying
human gait, its functioning is based on skin emissivity. This method has been applied to recognize the
human gait pattern [52].

1.6. Machine Learning Algorithms Application for Gait Analysis

There has been increasing use of machine learning (ML) in medicine including neurology to aid
diagnosis, and patient management using risk stratification [67,68]. ML algorithms learn from data
(past experiences) by identifying underlying patterns and relationships. The field of ML can broadly
be categorized into supervised, unsupervised and reinforcement learning.

Supervised learning (SL) begins with the aim of predicting a known output or target. Indeed,
an SL algorithm takes a known set of input data (the training set) and known responses to the data
(output), and trains a model to generate reasonable predictions for the response to new input data. In
such algorithms, the artificial intelligence (AI) is approximating what a trained physician is already
able to perform with high accuracy. This approach means that the learning algorithm generalized the
training data to previously unobserved situations in a “reasonable” way.

All forms of SL algorithms can be classified as either classification or regression. Classification
techniques predict discrete responses. Regression techniques, instead, are used to predict continuous
responses. They can also be used for modeling the risk, meaning that the computer is doing more
than merely reproducing the physician skills. These algorithms are also capable of discovering new
associations not apparently evident to human’s preliminary interpretation.

Differently from SL, in the unsupervised learning (UL) algorithm, we were no longer interested in
predicting outputs. Instead, we aimed to discover naturally occurring patterns or groupings within the
data. It is important to emphasize that the examples given to learners were unlabeled; thus, there was
no error or reward signal to evaluate a potential solution. Common UL clustering algorithms could
broadly divided into three groups: hard clustering, where each data point belongs to only one cluster,
and soft clustering, where each data point can belong to more than one cluster; and dimensionality
reduction techniques.

Reinforcement learning (RL) is an approach in ML that states what actions an agent should take
in an environment to capitalize on the idea of an increasing reward. RL is different form standard SL in
that correct input/output pairs are never presented, nor are suboptimal actions explicitly corrected.
The primary goal is the direct performance, which involves finding a balance between exploration of
unknown datasets and exploitation of current knowledge [69].

The most widely used ML technique in gait analysis is SL, with varying levels of complexity and
interpretability. Table 2 describes the most used algorithms in this field.
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Table 2. Machine learning algorithm used for gait analysis.

Algorithm How It Works
Interpretability

(+): Min
(+++++): Max

k Nearest Neighbor (kNN):

Categorizes objects based on the classes of the
nearest neighbors in the dataset. The function is

estimated only locally and all of the calculations are
delayed up to the prediction or classification. The

kNN method is sensitive to the dataset [70].

+++

Linear Support Vector Machine
(SVM):

Classifies data by finding the linear decision
boundary (hyperplane) that separates all data points

of one class from those of the other class [71]. The
best hyperplane for an SVM is the one with the

largest margin between the two classes, when the
data is linearly separable [72,73].

+++

Kernel Support Vector Machine
(Kernel SVM):

Similar to SVM but additionally uses the “kernel
trick” to transform the input data (not linearly
separable) into a new feature space (linearly

separable)

++

Artificial Neural Networks
(ANNs)

Inspired by the connectivity of neurons in the human
brain, a neural network consists of highly connected

networks of neurons that relate the inputs to the
desired outputs [74]. Each nonlinear function in the

network can be used for the mapping from the
training inputs to the training outputs.

+

Naïve Bayes (NB)

A naïve Bayes classifier assumes that the presence of
a particular feature in a class is unrelated to the

presence of any other feature and uses the Bayes
theorem to determine the posterior probability

+++

Linear Discriminant Analysis
(LDA)

It classifies data by finding linear combinations of
features. Discriminant Analysis (DA) assumes that
different classes generate data based on Gaussian

distributions. The distributions parameters are used
to calculate boundaries, which can be linear or

quadratic functions.

++++

Decision Tree (DT)

It predicts responses to data by following the
decisions in the tree-algorithm from the root

(beginning) down to a leaf node. DTs can solve a
classification problem by continuously dividing the
input space to build a tree on which the nodes are as
pure as possible and contain points of a single class.
DTs are considered naïve algorithms; however, they

have great performances in prediction and
classification applications.

+++++

Random forest

An ensemble technique that uses a very large
number of decision trees, often resulting in improved

accuracy over DTs at the expense of
reduced interpretability

+

2. Materials and Methods

In line with the study of Sánchez-Ferro, et al. [75] we used a similar search string for axial
symptoms in Parkinson’s disease patients, in PubMed for articles published between 1 January 2005,
and 30 August 2019 (Table 3). We identified studies that used technologies to distinguish PD patients
from healthy subjects or to differentiate PD motor status or different disease stages. We only selected
studies that declared a sensitivity and specificity of at least 80% when using gait analysis for either
diagnosis or motor status discrimination. Additionally, further relevant articles based on the author’s
knowledge of the state of the art in this field were also added.



Sensors 2020, 20, 3529 9 of 22

Table 3. Search strategy.

Domain Search String

Disease
(“Parkinsonian Disorders” OR “Parkinson disease” OR “Parkinson
Disease, Secondary” OR “Basal Ganglia Diseases” OR “Parkinsonism”
OR “Parkinson’s Disease”) AND

Technology

(“Technology” OR “Technologies” OR “Diagnostic Techniques,
Neurological” OR “Assessment” OR “Patient Outcome Assessment” OR
“Symptom Assessment” OR “Evaluation” OR “Diagnostic Self
Evaluation” OR “Investigative Techniques” OR “Wireless Technology”
OR “Remote Sensing Technology” OR “Biomedical Technology” OR
“Technology Assessment, Biomedical” OR “Medical Informatics” OR
“Cloud Computing” OR “Point of Care systems” OR “Biomedical
Engineering” OR “Machine Learning” OR “Artificial Intelligence” OR
“Kinesis” OR “Mobile Applications” OR “Cell Phones” OR
“Smartphones” OR “Software” OR “Software Validation” OR “Platform”
OR “Accelerometer” OR “Gyroscope” OR “Magnetometer” OR
“Actigraph” OR “Wearable” OR “Device” OR “Big Data” OR “Sensor”
OR “Internet of Things” OR “Closed-loop System” OR “Hybrid” OR
“Home monitoring” OR “Quantitative” OR “Algorithm” OR
“Telemetry” OR “Instrumented” OR “Virtual Reality”) AND

Axial symptoms
(“Gait” OR “Gait Disorders, Neurologic” OR “Posture” OR “Posture
Balance” OR “Freezing of Gait” OR “Gait Disturbances” OR “Postural
Instability” OR “Falls” OR “Fall”) AND

Time range (“2005/01/01”[PDAT]: “2019/08/30”[PDAT])

For each selected study, we collected data about the technology, the algorithm used and its
performance metrics like accuracy, sensitivity and specificity. In addition for studies, which declares
only the regular accuracy ((true positives + true negatives)/(true positives + true negatives + false
positives + false negatives)), the balanced accuracy ((sensitivity + specificity)/2) was calculated. This
is because for unbalanced test sets, balanced accuracy is a better index for accuracy than regular
accuracy [76].

3. Results

3.1. Discrimination of Parkinson’s Disease from Healthy Subjects

According to the inclusion and exclusion criteria, after the literature search and studies screening,
10 studies were selected that focused on distinguishing Parkinson’s disease patients from healthy
subjects with gait analysis. To distinguish PD from healthy subjects, several technologies can be used
(Tables 4 and 5). One study used the data collected from wireless inertial sensors (Micro-attitude
and heading reference system (AHRS) model, MicroStrain, Inc, Williston, VT, USA) placed on the
foot in PD patients and healthy subjects to detect peculiar gait features and distinguish PD patients
from controls [77]. In particular, authors detected physical kinematic features of pitch, roll and yaw
rotations of the foot during walking and used principal component analysis (PCA) to select the best
features that were subsequently used for the SVM method to classify PD patients, with and without
gait impairment, and healthy subjects. From 67 collected features, they selected 15 kinematic features
divided in three categories: pitch, roll and yaw features. The proposed classification has very high
sensitivity, specificity and positive predict values (93.3%, 95.8% and 97.7% respectively) to distinguish
PD patients from healthy subjects [77].
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Table 4. Parkinson’s disease vs. healthy subjects discrimination.

Ref Algorithm N.
Features

N.
Patients/Healthy

Regular
Accuracy

Balanced
Accuracy Sensitivity (%) Specificity (%)

[77] SVM 15 NA 94.6% 93.3% 95.8%

[78] Decision
tree 13 25/45 95% 92.3% 88.8% 95.8%

[78] Neural
Network 13 25/45 99% 100.0% 100.0% 100.0%

[79] LDA 12 27/16 NA 87.0% 88.0% 86.0%

[80] NA 3 10/17 96.3 97.1% 100.0% 94.1%

[81] SVM 8 5/5 NA 90.0% 90.0% 90.0%

[82] Random
forest 23 10/10 NA 98.1% 98.5% 97.6%

[83] Bayesian
probability 2 18/33 92.2% 93.3% 94.4% 92.2%

[83] Bayesian
probability 2 18/33 94.1% 94.2% 94.4% 93.9%

[84] SVM 19 40/40 85.0% 83.5% 85.0% 82.0%

[85] SVM 13 29/18 95.7% 95.5% 94.4% 96.6%

[85] Random
forest 13 29/18 89.4% 89.3% 88.9% 89.7%

[85] kNN 13 29/18 85.1% 84.8% 83.3% 86.2%

[85] Decision
tree 13 29/18 87.2% 87.6% 88.9% 86.2%

[86] Tensor
decomposition 16 93/72 100.0% 100.0% 100.0% 100.0%

Abbreviations: CoP: center of pressure; CV: coefficient of variation; kNN: k-nearest neighbor, LDA: linear
discriminant analysis; NA: not available; SVM: support vector machine; VGRF: vertical ground reaction force.

Table 5. Parkinson’s disease vs. healthy subjects discrimination features selected.

Ref Algorithm Features

[77] SVM

Pitch

- Pitch range of motion
- Maximum angle of dorsiflexion
- Maximum angle of plantar flexion
- Plantar flexion SD
- Single-step maximum of maximum angle of

plantar flexion

Roll

- Roll range of motion
- Maximum positive roll angle
- Maximum negative roll angle

Yaw

- Yaw range of motion
- Maximum positive yaw angle
- Maximum negative yaw angle
- Overall 3D SD
- Maximum cadence

Additional

- Single-step maximum of maximum negative
roll angle

- Single-step minimum of maximum negative
roll angle
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Table 5. Cont.

Ref Algorithm Features

[78]
- Decision tree
- Neural Network

- Absolute difference between i) average distance
between right elbow and right hip and ii)
average distance between right wrist and
left hip.

- Average angle of the right elbow.
- Quotient between maximal angle of the left

knee and maximal angle of the right knee.
- Difference between maximal and minimal

angle of the right knee.
- Difference between maximal and minimal

height of the left shoulder.
- Difference between maximal and minimal

height of the right shoulder.
- Quotient between i) difference between

maximal and minimal height of left ankle and
ii) maximal and minimal height of right ankle.

- Absolute difference between i) difference
between maximal and minimal speed
(magnitude of velocity) of the left ankle and ii)
difference between maximal and minimal
speed of the right ankle.

- Absolute difference between i) average distance
between right shoulder and right elbow and ii)
average distance between left shoulder and
right wrist.

- Average speed (magnitude of velocity) of the
right wrist.

- Frequency of angle of the right elbow passing
average angle of the right elbow

- Average angle between (i) vector between right
shoulder and right hip and (ii) vector between
right shoulder and right wrist.

- Difference between average height of the right
shoulder and average height of the
left shoulder.

[79] LDA

Step features

- Step duration
- Rise gradient of swing phase
- Fall gradient of swing phase
- Standard deviation of minima
- Maxima minima difference

Signal sequence

- Variance
- Integral
- Entropy

Frequency analysis

- Dominant frequency
- Energy ratio
- Energy in band 0.5–3
- Energy in band 3–8

[80] NA

- High intensity,
- Periodicity,
- Biphasicity
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Table 5. Cont.

Ref Algorithm Features

[81] SVM

EMG statistics

- Variance
- Skewness
- Kurtosis
- RMS Energy

EMG frequency

- Dominant Frequency
- Mean Frequency
- Median Frequency
- Total Power

[82] Random forest

- Mean
- Standard deviation
- 25th percentile
- 75th percentile
- Inter-quartile range
- Median
- Mode
- Data range (maximum – minimum)
- Skewness
- Kurtosis
- Mean squared energy
- Entropy
- Cross-correlation between the acceleration in x

and y axis
- Mutual information between the acceleration in

x and y axis
- Cross-entropy between the acceleration in x

and y axis
- Extent of randomness in body motion
- Instantaneous changes in energy due to

body motion
- Autoregression coefficient at time lag1
- Zero-crossing rate
- Dominant frequency component
- Radial distance
- Polar angle
- Azimuth angle

[83] Bayesian probability
- Stride length,
- Gait speed

[83] Bayesian probability
- Stride length,
- Age
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Table 5. Cont.

Ref Algorithm Features

[84] SVM

- Step time
- Step time asymmetry
- Stance % of cycle
- Swing time
- Swing time CV
- Stride time
- Stride time CV
- Stride time asymmetry
- Single support time CV
- Heel off on time
- Heel off on std- deviation
- Double support time
- Double support time CV
- Double support load % of cycle
- Step length asymmetry
- Stride length
- Stride length CV
- Heel-to-heel support base
- Heel-to-heel support base CV

[85]

- SVM
- Random forest
- kNN
- Decision tree

- CV of swing time
- CV of stride time
- Mean CoP of x-coordinate
- Standard deviation CoP of x-coordinate
- Mean CoP of y-coordinate
- Standard deviation CoP of y-coordinate
- Mean peak force at heel strike
- Mean peak force at toe strike
- Standard deviation of peak forces at heel strike
- Standard deviation of peak forces at toe strike
- Mean kurtosis
- Mean skewness
- Mean Peak power of VGRF signal

[86] Tensor decomposition - VGRF measurements from 8 sensors for the foot

Another study compared two machine learning algorithms (decision-tree and neural networks)
to differentiate healthy subjects gait patterns in different disease conditions in an elderly population
(including patients affected by PD, hemiplegia, leg pain and back pain). Authors used movements
data obtained from 12 retroreflective tags placed on the body captured by an infrared camera (Smart
IR motion capture system) [78]. They studied 45 healthy controls and 25 PD patients. Predictors were
based on velocity and calculated body distances (i.e., difference between average distance between
right elbow and right hip and average distance between right wrist and left hip or the angle between
two body segments). Global classification accuracy was high for both systems and reached over 95%
for decision tree and more than 99% for neural network [78].

Moreover, Barth, et al. [79] demonstrated a good sensitivity and specificity (88% and 86%
respectively) to differentiate healthy subjects and early PD patients using only a single mobile inertial
sensor (gyroscope and accelerometer, integrated in the SHIMMER Company system) placed over the
shoes. The patients performed standardized gait tests and from this data step, signal sequence and
frequency features were extrapolated and used as predictors for the linear discriminant analysis (LDA).
Moreover, they demonstrated that this system was able to distinguish between mild and severe gait
pattern with high sensibility and specificity (100%).

Another approach was used by Yoneyama, et al. [80]: they used a single accelerometer placed
on the waist and performed gait analysis to compare a continuous 24-h assessment of 10 PD patients
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and 17 healthy controls [80]. They used a gait detection algorithm based on the gait cycle (i.e.,
stride-to-stride time interval) and gait-induced acceleration relationship using 3 features of gait (high
intensity, periodicity and biphasicity of gait) that introduced a set of indices in order to quantify
subject’s walking mode and to assess daily gait characteristics. All the calculated indices were smaller
in the PD group, and the proposed method was able to distinguish the PD gait from the normal gait with
100% sensitivity, 94.1% specificity and 96.3% accuracy. These results suggest that the afore-mentioned
systems could differentiate normal subjects from those with movement disorders [80].

To easily and objectively assess the difference between PD patients and healthy subjects, Kugler,
et al. [81] proposed a classification algorithm based on data collected from surface wireless EMG
(Delsys Trigno, Delsys Inc., Boston, MA, USA) positioned on two inferior limbs muscles during the
performance of standardized gait tests in five PD patients and five healthy subjects [81]. Furthermore,
data from accelerometers (Trigno sensor) placed on heels were collected and used for step segmentation.
Statistical and frequency features from EMG signals were used to train an SVM algorithm for step
detection. The proposed step detection method reached 98.9% sensitivity and 99.3% specificity and the
classification accuracy to distinguish between PD and healthy subjects reached 90% sensitivity and
90% specificity (average value).

Arora, et al. [82] investigated the feasibility and the accuracy of smartphones’ built-in tri-axial
accelerometer (in LG Optimus S) developing an app to objectively assess PD patients and distinguish
them from healthy subjects [82]. They studied 10 PD patients and 10 controls for 1 month and during
execution of the gait tests to extract 23 features of frequency and time domain from accelerometer
and subsequently used a random forest method to distinguish between PD and controls. This system
reached a 98% balanced accuracy, 98.5% sensitivity and 97.6% specificity.

Another study proposed the use of a Bayesian gait recognition method based on data acquisition
by video infrared camera system (Microsoft Kinect depth sensors) [83]. This system consisted of
an infrared projector and two infrared cameras (on left and right) that follow the structured light
principle. The collected data are converted in the depth frame matrix, depth frame contour, image frame
matrix and skeleton numbering. Then the acquired data were further analyzed through MATLAB
software. Eighteen PD patients, eighteen healthy subjects and fifteen healthy students were assessed
and probabilistically classified according to their detected gait featured (stride length and gait speed)
through skeletal tracking. This Bayesian system used the stride length, gait speed and age as features
and was able to distinguish between PD patients and controls with 92.2% accuracy combining stride
length and gait speed, and 94.1% accuracy combining stride length and patient/healthy subjects’ age.

Djurić-Jovičić, et al. [84] used an electronic walkaway to distinguish between the PD patient and
controls. Authors compared 40 de novo PD patients and 40 controls while walking selecting three
different tasks: normal pace walking, dual motor task (as walking and carrying a glass of water)
and walking during mental task execution. The most relevant predictor variables were selected (19
features) including the stride length, stride length coefficient of variation (CV), swing time, step time
asymmetry and heel-to-heel base support CV. These features were selected with the random forests
algorithm and the classification accuracy of these selected features was tested with the support vector
machine. The overall accuracy combining the three conditions was 85% to identify de novo PD patients
from healthy subjects, with a sensitivity of 85% and a specificity of 82%. Their study also found that
step time asymmetry and the support base CV are the most relevant factors that contribute to global
system accuracy.

Alam, et al. [85] proposed a novel mathematical method to assess the gait in PD patients and
controls using data from eight sensors below each foot and extrapolated features from vertical ground
reaction force (VGRF) data recorded during subjects walking [85]. Twenty-nine PD patients and
eighteen healthy subjects were enrolled in this study. Three different algorithms (sequential forward
selection, minimum redundancy maximum relevancy feature selection (MRMR) and the mutual
information-based feature ranking method) were applied to select the best features extracted from
VGRF data and 13 features (like CV swing time, CV stride time and centre of pression data) were
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chosen. Finally, four different machine learning classifiers (SVM, k-nearest neighbor-kNN, random
forest and decision trees) were compared to distinguish the gait pattern between healthy subjects and
PD patients. The accuracy of the machine learning methods ranged from 85.21% (kNN) to 95.7% (SVM
cubic kernel). SVM with cubic kernel showed a sensitivity of 94.4% and a specificity of 96.6%.

Finally, Pham and Yan [86] used a tensor decomposition algorithm called canonical polyadic
decomposition (CPD) also known as Parallel Factor Analysis (PARAFAC), a generalization of PCA, to
differentiate the multisensors time series of the gait between PD and controls in a previous published
dataset of 93 PD patients and 72 controls [86]. Data were collected from load sensors (Ultraflex
Computer Dyno Graphy, Infotronic Inc., Vriezenveen, NL, USA) placed on each shoe that recorded
force in a function of time. Tensor-decomposition factors of control and PD patients showed a distinct
relationship. This system used the full length of the VGRF time without considering the minimum
number of strides required for effective tensor decomposition analysis of the gait dynamics. This
system can be applied for very short time duration signals and can resolve the problem of obtaining
several trials for stable and trustable results. Authors showed 100% of accuracy, sensitivity and
specificity to distinguish PD and controls.

3.2. Parkinson’s Disease Motor Status Discrimination

According to the inclusion and exclusion criteria, after a literature search and studies screening,
only three studies were selected and these papers aimed at identifying different motor statuses in
Parkinson’s disease (Tables 6 and 7). Sensors can be used to discriminate the different motor status in
individual PD patients, in a single disease’s stage, monitoring the motor fluctuations, or can be used in
a longitudinal way to monitor the motor status changes during the disease evolution.

Table 6. Parkinson’s disease motor status discrimination.

Ref Algorithm N.
Features

N.
Patients

Regular
Accuracy

Balanced
Accuracy Sensitivity (%) Specificity (%)

[79] LDA 12 27 NA 100.00% 100.00% 100.00%

[87] SVM 1 12 91.81% 90.80% 92.52% 89.07%

[88] NA NA 41 NA 92.50% 97.00% 88.00%

Abbreviations: LDA: linear discriminant analysis; NA: not available; SVM: support vector machine.

Table 7. Parkinson’s disease motor status discrimination features selected.

Ref Algorithm Features

[79] LDA

Step features

- Step duration
- Rise gradient of swing phase
- Fall gradient of swing phase
- Standard deviation of minima
- Maxima minima difference

Signal sequence

- Variance
- Integral
- Entropy

Frequency analysis

- Dominant frequency
- Energy ratio
- Energy in band 0.5–3
- Energy in band 3–8

[87] SVM - Motion fluency value

[88] NA NA
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Samà, et al. [87] focused their research on automatic detection of bradykinesia, the cardinal
symptom of PD [87]. They proposed a mathematical algorithm to automatically identify bradykinesia
in PD patients at home using an SVM classifier (that detects strides) based on data collected from
a single accelerometer placed on the waist combined with a video-recording of the examination,
they correlated the stride frequency with the UPDRS bradykinesia score. Their methods showed a
high accuracy (>90%) to identify bradykinesia, a high sensitivity and specificity (92.52% and 89.07%,
respectively) and a good correlation with UPDRS specific items.

To objectively detect the motor on–off fluctuations, an integrated system like REMPARK (personal
health device for the remote and autonomous management of Parkinson’s disease, FP7 project
REMPARK ICT-287677) was used [88]. The REMPARK system consists of an algorithm added in an
app inside a smartphone that used the data from an accelerometer placed on the iliac crest. This system
was developed for longitudinal evaluation. In this study, 41 PD patients were enrolled for a 3-day
monitoring. For the on/off state discrimination, authors developed an algorithm, which analyzed
gait [89] and dyskinesias [90]. The algorithm responses were compared to a self-reported on–off diary.
The REMPARK system showed 97% sensitivity in detecting off states and 88% specificity in detecting
on phases compared to diaries.

Barth, et al. [79] demonstrated, in a cohort of 14 early stage PD patients and 13 intermediate PD
stage patients, that a mobile and light inertial sensor (gyroscope and accelerometer, integrated in the
SHIMMER system) placed over the shoes allows differentiation between the two groups with 100%
sensitivity and specificity with using a linear discriminant analysis (LDA) classifier that combines step,
signal sequence and frequency features as predictors [79].

4. Discussion

Several studies aimed at detecting specific patterns of gait alterations in Parkinson’s disease
by using a quantitative technology-based assessment [28,29,91,92]. Gait impairment is an evolving
condition throughout the progression of the disease and different patterns of gait disturbances can be
detected in early, mild to moderate and advanced stages [28].

Early specific alterations include reduced amplitude of arm swing, smoothness of locomotion and
increased interlimb asymmetry [29]. Impaired muscle contraction, rigidity and postural instability
contribute to reduced forward limb propulsion, which, in turn, can negatively affect spatiotemporal
gait parameters, such as speed and step length [29]. In particular, reduced step length seems to be a
specific feature of Parkinson’s disease gait [92]. Sensor-based observations showed that the increased
variability in gait reflects increased gait instability that can be detected early in the disease and can be
a useful marker of disease progression [91,93]. To carry out two tasks at the same time, a paradigm
known as dual-task interference, is particularly complex in PD patients because of two independent
effects influencing gait: the first is an age-associated reduction in gait performance unrelated to
pathology, and the second one is a PD-specific effect due to a dual-task coordination deficit interfering
with postural control. The latter suggests reduced stability and ability to adapt to PD patients under
dual-task conditions [93]. Arm swing outcomes provide a sensitive measure of decline in gait function
in PD under dual-task conditions [91]. On the other hand, one of the most representative early feature
of Parkinsonian gait, reduced speed, is not disease specific [28].

In the mild-to-moderate stage, symptoms spread bilaterally so that asymmetry might decrease [94].
Gait problems worsen and shuffling steps, increased double-limb support and increased cadence
become common [28]. Motor automaticity becomes further impaired, resulting in fragmented motor
function, such as defragmentation of turns (i.e., turning en block) and problems with gait initiation [30].

Further worsening in gait characterizes the advanced stage of the disease, with more frequent
freezing of gait (FOG) and motor blocks, reduced balance and postural control, motor fluctuations and
dyskinesia [28].

The use of several sensors technologies to objectively assess Parkinson’s disease (PD) symptoms
has exponentially increased in the last twenty years. Despite different features such as analysis
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of the face [95,96], speech [97,98], bradykinesia [15–17], rigidity [17–20] and tremor [21–23] being
explored for objective PD evaluation, gait analysis has received widespread attention as part of an
objective assessment for PD patient examination. Gait analysis is based on capturing movement
with a motion capture device that can be wearable or non-wearable. The analysis of the acquired
signals used different statistical or machine learning algorithms like the support vector machine (SVM),
dynamic neural network (DNN), naïve Bayes, random forests or decision tree. For machine learning
algorithms, the more complex the algorithm, the more likely it is able to determine an optimal decision
boundary and hence improved accuracy. However, this improvement in accuracy comes at the cost
of reduced interpretability. Among the algorithms included in this survey, decision trees are the
most interpretable. All the algorithms used data derived from several features of the gait pattern,
which can be grouped into three parameters groups: spatiotemporal, kinematic and kinetic [85].
Spatial parameters measure the physical distance between two steps (like strength length); temporal
parameters evaluate the time spent to complete a gait cycle (like the cadence, duration of swing and
stance phase) and kinematic parameters evaluate the movement of an object without consideration of
its cause while kinetic parameters measure the force that cause the movement (like the ground reaction
force during walking) [85].

The majority of these studies assessed if the motion capture device and associated algorithms can
distinguish between PD patients and healthy subjects. Other studies investigated if these tools could
help to classify different motor status of PD or identify various disease stages.

Among studies focused on discriminating PD vs. healthy subjects, various studies showed
high accuracy (more than 90%; Table 4). In addition, regarding studies focused on motor status
discrimination, Bayes, et al. [88] were able to discriminate the on/off state by merging an algorithm,
which analyzed gait and dyskinesia; instead Barth, et al. [79] were able to differentiate the early vs.
intermediate PD stage, with 100% sensitivity and specificity (Table 6). However, it should be considered
that all these algorithms need to be validated on larger and representative populations in order to avoid
overfitting the problem, which makes the algorithm valid only for the analyzed sample. In addition,
the simplest algorithms that provide acceptable accuracy are preferable (i.e., logistic regression and
decision trees) over more complex algorithms (e.g., SVM and neural networks) that may provide
slightly higher accuracy but are less interpretable.

5. Conclusions

The present overview showed that among the high volume of literature, published on the topic
of objective gait analysis in PD, only few studies showed accurate algorithms that can potentially be
clinically useful for diagnosis and symptoms monitoring. However, none of those studies have been
independently validated or tested on a large scale.
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