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Abstract: The article presents a new space-time adaptive processing (STAP) method for target
detection in a heterogeneous and non-stationary environment. In study it was proven that it is
possible to estimate the clutter covariance matrix (CCM) in STAP by using the MIMO (Multiple Input
Multiple Output) radar geometry model and the orthogonal matching pursuit (OMP) algorithm.
For the estimation of spatio-temporal spectrum of clutter and target, a model of joint sparse recovery
was established. As a result, clutter suppression and target detection in a heterogeneous environment
will be achieved. In addition, the proposed method uses a single snapshot of the radar data cube,
which eliminates the need for access to all training cells.

Keywords: space-time adaptive processing; STAP; sparse representation; MIMO radar; orthogonal
matching pursuit algorithm; clutter covariance matrix

1. Introduction

STAP is an effective method for airborne radar system to suppress clutter and detect targets.
Currently, many scientists studying the possibility of using the STAP technique are trying to answer
the question of how to accurately estimate the key in the entire STAP processing algorithm, the clutter
covariance matrix (CCM).

Classic, statistical STAP algorithms suppress clutter by estimating the CCM, which is based on
the data contained in the training cells surrounding the range cell under scrutiny. Unfortunately, the
clutter occurring in a real environment is heterogeneous. Hence, the data contained in the training cells
do not reflect the statistical properties of clutter. In addition, such algorithms require a large number of
independent and identically distributed training cells, which is also difficult to fulfil [1–3].

In connection with the above, a lot of research is conducted to develop a method for estimating
the CCM in a heterogeneous environment. A serious of effective methods have been proposed,
mainly including direct data domain (D3) methods [4–6], the compensation methods of non-side looking
geometry [7,8], knowledge-aided (KA) methods [9,10] and the sparse recovery (SR) methods [11–17].

Currently, the most advanced attempts are carried out to obtain the method of estimating the
CCM by the use of a sparse recovery method with prior target information. It has been demonstrated
by using a small number of training cells or in some cases one and by using the sparsity of clutter in the
spatio-temporal domain that high resolution of the spatio-temporal clutter spectrum can be obtained
followed by accurate estimation of the CCM.

In [12,13], sparse recovery methods are proposed for estimating the CCM, which directly uses the
data contained in the test cell. As a result of this work, the accuracy of the estimation of the CCM was
improved, and the performance in terms of clutter suppression and target detection was enhanced.

This article proved that it is possible to estimate the CCM by using the MIMO radar geometry
model and the OMP algorithm. This configuration in combination with the properly selected system
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and environmental parameters allowed us to obtain very good results, and helped us to understand
the approach. As a result, clutter suppression and target detection in a heterogeneous environment
will be achieved. In addition, the proposed method uses a single snapshot of the radar data cube,
which eliminates the need for access to all training cells.

The spatio-temporal clutter spectrum estimation problem is expressed as the joint sparse recovery
problem under a sparse complete basis. The OMP algorithm was used to estimate the spatio-temporal
clutter spectrum. The use of the OMP algorithm seems to be easier in practice than other methods;
e.g., M-FOCUSS (M-FOCal Underdetermined System Solver). Hence, this solution was adopted as
optimal. Finally, the estimated CCM is used to determine the weight vector, which causes clutter
suppression and target detection. Compared with the existing methods, the proposed method allows
for a more accurate estimation of the CCM and better performance of clutter suppression, as evidenced
by the experiments and numerical calculations.

2. Model of System Geometry and Model of Signal

A MIMO radar with a linear uniformly array (ULA) mounted on an aircraft flying at altitude H
with a constant speed of V is considered. In Figure 1 is shown the considered geometry of the MIMO
radar system. The system consists of N receivers spaced apart by dR and M transmitters spaced apart
by dT = αdR, where α is a specific factor. In each transmitter, K pulses are transmitted with a pulse
repetition frequency of fR. θp is the angle between the antenna array and the direction of flight of the
platform. It was assumed that the platform velocity vector is perfectly aligned with the antenna array
axis vector; hence, θp = 0. It was assumed that the transmitted signals from different transmitters are
independent and coherent.
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Considering that the clutter echo data of the range test cell are the superpositions of the echoes
of multiple discrete clutter patches on the range cell, the normalized Doppler frequency and the
normalized spatial frequency of the ith clutter patch are expressed as [18]:

fdi =
2V
λ fR

cos(ϕi) cos
(
θi − θp

)
, (1)

fsi =
dR

λ
cos(ϕi) cos(θi), (2)

where λ is the wavelength, ϕi is the elevation angle and θi is the azimuth angle. Doppler frequency
is related to the relative velocity relationship between a target or individual clutter patches. Spatial
frequency shows the phenomenon of time difference between the arrival of signals from target or
individual clutter patches to individual radar system antennas. Thus, the echo signal received by the
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nth element of the array corresponding to the mth transmitter and the kth pulse can be represented
as [18]:

xm,n,k = Im,n,k + Tm,n,k + nm,n,k, (3)

Im,n,k =
Nc∑
i=1

δie j2π[(α(m−1)+(n−1)) fsi+(k−1) fdi], (4)

Tm,n,k = δte j2π[(α(m−1)+(n−1)) fst+(k−1) fdt], (5)

α =
dT

dR
, (6)

where i = 1, 2, . . . , NC denotes the number of discrete clutter patches; fdt and fst are the normalized
Doppler frequency and normalized spatial frequency of the target; α denotes the ratio of the distance
between the transmitting antennas and the distance between the receiving antennas; δi is the reflection
coefficient of the ith clutter patch; δt is the reflection coefficient of the target; and nm,n,k denotes noise.

By collating the received echo of the mth transmitted waveform for all receivers and pulses, it was
received as

xm = [xm,1,1, xm,2,1 . . . , xm,N,K]
T = Im + Tm + nm, (7)

Im =

Nc∑
i=1

βi,m S( fdi, fsi), (8)

Tm = βt,mS( fdt, fst), (9)

βt,m = e[ j2πα(m−1) fst], (10)

βi,m = e[ j2πα(m−1) fsi], (11)

where βt,m is the reflection coefficient of the target corresponding to the mth transmitted signal; βi,m is
the reflection coefficient of the ith clutter patch corresponding to the mth transmitted signal; and nm is
a received noise. S(fdi, fsi) and S(fdt, fst) are the space-time steering vector of the ith clutter patch and
target, which can be represented as [18]:

S( fdi, fsi) =


1
...

e( j2π fdi(K−1))


⊗

1
...

e( j2π fsi(N−1))

, (12)

S( fdt, fst) =


1
...

e( j2π fdt(K−1))


⊗

1
...

e( j2π fst(N−1))

, (13)

where
⊗

denotes the Kronecker product.

3. Joint Sparse Recovery Model

For the estimation of spatio-temporal spectrum of clutter and target, a model of joint sparse
recovery was established. The problem of spatio-temporal spectrum estimation was expressed as a
problem of optimization of joint sparse recovery based on a complete basis of steering vector.

Due to the above, the plane of normalized Doppler frequency and normalized spatial frequency
were divided into a grid with the dimensions Kd × Ns, so as to obtain denser coverage of the analysed
range cell. To perform high-resolution spectrum estimation, Kd and Ns values should satisfy the
dependence KdNs >> NK.
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Therefore, the data received by the radar corresponding to a specific range cell can be expressed
as [19]

xm = Ψγm + nm, (14)

where γm is the clutter and target spatio-temporal spectrum of the range cell under tests and the
space-time sparsifying dictionary can be constructed as

Ψ =
[
S( fd1, fs1), . . . , S

(
fdp, fsq

)
, . . . , S

(
fdKd

, fsNs

)]
, (15)

where p = 1, 2, . . . , Kd, q = 1, 2, . . . , Ns. S(fdp, fsq) denotes the space-time steering vector of the (p–q)-th
Doppler and spatial frequency pair:

S
(

fdp, fsq
)
=


1
...

e( j2π fdp(K−1))


⊗

1
...

e( j2π fsq(N−1))

, (16)

To analyse the sparsity of γm, Equation (14) can be written as [19]:

xm = ΦBm + βt,mS( fdt, fst) + nm, (17)

where
Φ =

[
S( fd1, fs1), S( fd2, fs2), . . . , S

(
fdNc , fsNc

)]
, (18)

Bm =


β1,m
β2,m

...
βNc,m

, (19)

According to Brennan’s rule, the rank of the clutter covariance matrix (Rc) is a measure of the
minimum number of adaptive degrees of freedom necessary for a STAP processor:

rank(Rc) = N + (M− 1)
2V

dR fR
, (20)

According to Ward [17], where the Brennan rule regarding the system’s degrees of freedom,
including clutter, has been described and analyzed, it can be concluded that the clutter can be
represented by the space-time steering vectors, which are spanned by Q = rank(Φ) clutter subspace in
Φ. Therefore, Equation (17) can be rewritten as:

xm = VmΞm + βt,mS( fdt, fst) + nm, (21)

where Vm is a matrix constructed by the space-time steering vectors selected from the matrixΦ and
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m is the corresponding reflection coefficient vector:

Ξm =
[
σm,1, σm,2, . . . , σm,Q

]T
, (22)

Equation (21) indicates that the received data xm of the mth transmitted signal can be represented
by space-time steering vectors covering the clutter subspace and the target. Thus, the spectrum γm can
be expressed by steering vectors from the dictionaryΨ. Accordingly, the γm spectrum can be obtained
by solving the following optimization problem [18]:

min‖γm‖0, (23)
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s.t. ‖xm −Ψγm‖2 ≤ ε, (24)

where ‖· ‖u denotes the u-norm of matrix or vector; ε is a constant determined by noise; and s.t.
denotes such that. As shown in article [18], for any transmitted signal m* (m* , m), echo data can be
expressed as

xm′
∗
= ΦDBm′ + e[ j2πα(m

∗
−m) fst]βt,m′S( fdt, fst) + nm

∗
, (25)

where
D = diag

{
e[ j2πα(m

∗
−m) fs1], . . . , e[ j2πκα(m

∗
−m) fsNc ]

}
, (26)

diag{·} represents a diagonal matrix. Due to the fact that the degree of matrixΦ is equal to the degree
of matrixΦD, Equation (25) can be written as

xm′
∗
= Vm′Ξm′

∗
+ e[ j2πα(m

∗
−m) fst]βt,m′S( fdt, fst) + nm

∗
, (27)

From Equations (21) and (25) it is known that γm* and γm have the same clutter subspace and
target signal model, which indicates the corresponding sparse structure of these vectors. Finally, the
sparse echo data recovery model was established as

X = ΨY + N, (28)

where
Y = [γ1, γ2, . . . , γM], (29)

N = [n1, n2, . . . , nM], (30)

X = [x1, x2, . . . , xM], (31)

4. Application of Sparse Recovery Algorithms

M-FOCCUS algorithm and OMP algorithm, which are typical joint sparse recovery algorithms, are
used to solve the Equation (28) to estimate the spatio-temporal spectrum of clutter and target [19–21].

The estimation of Y with M-FOCCUS algorithm and OMP algorithm is equivalent to solving the
following convex optimization problem [19]:

min ‖Y ‖u,v, (32)

s.t. ‖X −ΨY ‖F ≤ Σ, (33)

where ‖Y ‖u,v = [‖ Y1
T ‖u,v + . . . + ‖ Yr

T ‖u,v . . . + ‖ YNK
T ‖u,v]1/u denotes the Lu,v norm of Y, Yr is r-th

element of Y, u = 2, v ≤ 1. ‖· ‖F denotes the Frobenius norm of matrix and Σ is a constant determined
by noise. The L2,1 norm of Y is the sum of the Euclidean norms of the columns of the matrix:

‖Y ‖2,1 =
m∑

j=1

‖γj ‖2, (34)

The individual steps of the M-FOCCUS algorithm and OMP algorithm to solve Equation (28)
were included in Appendices A and B, respectively.

5. Definition of Clutter Plus Noise Covariance Matrix and Weight Vector

As a result of determining the spectrum Y through a sparse recovery algorithm, the clutter plus
noise covariance matrix (CNCM) ŘSR can be calculated by [19]

ŘSR =

Kd∑
p=1

Ns∑
q=1

∣∣∣γ∗(p, q)
∣∣∣2S

(
fdp, fsq

)
SH

(
fdp, fsq

)
+ σ2INK, (35)
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(p, q) < Ω( fst, fdt), (36)

where p = 1, 2, . . . , Kd, q = 1, 2, . . . , Ns, Y0
* is a column vector obtained by taking 2-norm of each row

vector of Y0. σ2 denotes power of noise; INK is a NK × NK identity matrix.
The possible Doppler frequency range of the target, which is determined by previously known

information about the target is given as

Ω( fst, fdt) =
{
(p, q)

∣∣∣ ∣∣∣ fdp − fdt
∣∣∣ ≤ δd &

∣∣∣ fsq − fst
∣∣∣ ≤ δs

}
, (37)

System tolerances regarding Doppler frequency uncertainty and spatial frequency of the target
are given as

δd = µd∆d, (38)

δs = µs∆s, (39)

∆d and ∆s are the resolution unit sizes specified by Kd and Ns. µd and µs are appropriate constants
defined to prevent self-cancelling of the target.

If the CNCM has been determined from Equation (35), the optimal weight vector of the STAP
processor can be determined by [19]

wSR = µ̌R−1
SRS( fdt, fst), (40)

where µ is the specified constant.

6. Simulation Results

The paragraph presents simulation results to show the effectiveness of the proposed STAP method.
Simulation parameters are listed in Table 1, which refer to the standard parameters set in [20].

Table 1. Parameters.

Parameter Value

number of transmitters of MIMO radar 18
number of receivers of MIMO radar 8

number of pulses 8
wavelength 0.23 m

distance between transmitters 0.115 m
distance between receivers 0.115 m

distance between elements of the antenna array 0.115 m
flight altitude of the platform 5 km

velocity of the platform 250 m/s
pulse repetition frequency 4347.8 Hz

normalized Doppler frequency of target 0.2
normalized spatial frequency of target 0.2

clutter-to-noise ratio 30 dB
signal-to-noise ratio 10 dB

6.1. Performance of Spatio-Temporal Spectrum Estimation and Target Detection

First, the performance of the proposed method using the OMP algorithm is shown and analysed.
The maximum number of iterations was 500. The units of Doppler and spatial frequency resolution
are both equal to Ns = Nd = 60. The algorithm specifies µs = µd = 4. The following drawings are
provided to confirm the performance of the proposed method for determining the CCM based on the
OMP algorithm.

Figure 2 shows space-time spectrum of clutter before and after STAP processing in 2D charts. It
shows the values of signals received by the MIMO radar array on the space-time plane. On the left
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chart, a yellow area is drawn along the diagonal of the graph. According to the literature on the subject
of such research, this represents the so-called clutter ridge, whose graphic interpretation is shown in
the Figure 3. In the right chart, it can be seen that the algorithm correctly detected the target located at
the intersection of two straight lines, for a normalized Doppler frequency of fdt = 0.2 and a normalized
spatial frequency also of fst = 0.2, respectively.
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The following figure graphically depicts the interpretations of the clutter ridge. Clutter ridge is
a constant value for given radar and environment parameters and depends directly on the speed of
movement of the flying platform and inversely on the distance between the antennas and the pulses
repetition frequency.

Figure 4 shows space-time spectrum of clutter before and after STAP processing in 3D chart. It
is easy to see that clutter occurs in every distance cell. It is related to the movement of the flying
platform and the non-zero value of the Doppler frequency shift between the platform and stationary
field objects. The left chart shows the clutter ridge for simulation parameters. The proposed algorithm
successfully removed the simulated clutter and enabled the detection of an object obscured by clutter.

A very important feature of the proposed STAP algorithm is the precise detection of objects.
Another simulation was carried out for the same parameters. Figure 5 shows the values of signals
received by the MIMO radar array as a function of range after the first pulse. At this stage, the received
signals form a data cube of three dimensions (number of distance cells × number of pulses × number
of antennas), which has not yet been processed by the newly developed STAP algorithm. Therefore,
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the radar cannot indicate the location of the object against the background of strong clutter. As you can
easily see, the radar erroneously indicates that the object is 1000 m away from the radar.
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Figure 5. Values of signals received by the MIMO radar array as a function of range before
STAP processing.

Figure 6 shows the values of signals received by the MIMO radar array as a function of range after
the first pulse. However, this time, the raw data were subjected to STAP processing by implementing
the proposed STAP algorithm in the MATLAB environment. As you can easily see, the radar correctly
indicates that the object is approximately 1900 m from the radar in a straight line.

6.2. Performance of Clutter Suppression

Next, we compare and analyse the proposed STAP method in terms of clutter suppression
performance based on the improvement factor IF, where IF is defined as the signal-to-noise ratio at the
output to the signal-to-noise at the input of STAP processor [21].

Figure 7 shows the performances of clutter suppression for both of the sparse recovery algorithms
used. Considering the practical implementation and the standard parameter set [22], for the OMP
algorithm, better clutter suppression can be obtained compared to the same STAP processing but
using the MFOCUSS algorithm. This is due to the fact that the indentation of the IF curve in Figure 5
is narrower and reaches higher values. The use of the MFOCUSS algorithm in STAP processing
and its comparison with the methods described in articles [12,13] were the subject of publication
consideration [19].
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7. Conclusions

The paper presents a new STAP processing method for target detection in a heterogeneous and
non-stationary environment. The new method has been experimentally verified. The case of using
MIMO radar on a flying platform was modelled and the OMP algorithm was used to determine the
spatio-temporal clutter spectrum. The new method uses a single snapshot of the MIMO radar data
cube radar. This allowed us to solve the problem of access to a large number of training cells and the
non-stationary clutter in a heterogeneous environment, which in total significantly hinders the use of
STAP processing in practice.

The paper alleges the analysis of the joint sparsity of echo data in the time and space domains
in the MIMO on-board radar. Theoretical analysis and simulation results show that the proposed
method can obtain a more accurate spatio-temporal spectrum estimation and have better clutter
suppression performance than existing STAP methods using joint sparsity echo data and the
MFOCUSS algorithm [12,13,19]. In addition, the OMP method is less computationally complex
than the MFOCUSS method.

In summary, it has been proven in this paper that it is possible to estimate the STAP clutter
covariance matrix by using the MIMO radar geometry model and OMP algorithm. The authors are
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aware of the lack of practical verification of the proposed algorithm; however, this will be targeted by
future research.
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the manuscript.
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Appendix A

Application of M-FOCCUS Algorithm

The individual steps of the M-FOCCUS algorithm (u = 2, v = 1) to solve Equation (28) are as
follows [19–21]:

1. Initialization of the algorithm—setting initial variables. It was assumed that:

Y0 = ΨHX, (A1)

C0 =



C0,1
...

C0,i
...

C0,NsKd


, (A2)

C0,i =

√√√√ M∑
j=1

∣∣∣Y0,i( j)
∣∣∣2, (A3)

where Y0,i, i = 1, 2, . . . , NsKd denotes ith row of Y0, Y0,i(j) denotes jth element of Y0,i, j = 1, 2,
. . . , M.

2. Calculation of the weight matrix W:

Wt =



∣∣∣Ct−1,1
∣∣∣ 0 0 0

0
∣∣∣Ct−1,2

∣∣∣ 0 0

0 0
. . . 0

0 0 0
∣∣∣Ct−1,NsKd

∣∣∣

, (A4)

while the other elements of the weight matrix are zeros. Wt denotes the t-th (t = 1, 2, . . . , tmax)
iteration weight matrix W, tmax denotes maximum number of iterations and Ct−1 denotes the
(t−1)-th iteration value of C.

3. Iteration loop:

Yt = Wt(ΨWt)
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X, (A5)

Ct =



Ct,1
...

Ct,i
...

Ct,NsKd


, (A6)
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where Yt and Ct represent t-th iteration value of Y and C respectively, Yt,i, i = 1, 2, . . . , NsKd is
i-th row Yt, Yt,i(j) is jth element of Yt,i and (·)
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Appendix B

Application of OMP Algorithm

The orthogonal matching pursuit algorithm is a method of analysing signals that involves finding
a representation of an input signal in a large set of arbitrarily selected functions. Searching such a set,
called a dictionary, to find the optimal match is characterized by high computational complexity; it
is called an NP-hard problem. In 1993, Mallat and Zhang proposed a sub-optimal, greedy iterative
algorithm as a solution to the problem.

The main advantage of OMP is the possibility of using a redundant dictionary, which allows for
very flexible parameterization of the structures contained in the signal. When decomposing, choose
the base functions whose characteristics best match the characteristics of the signal being analysed.
However, the dictionary can be composed freely. The choice of dictionary function is determined by
the external knowledge of the decomposed signal.

The individual steps of the OMP algorithm to solve Equation (28) are as follows [21]:

1. Initialization of the algorithm—setting initial variables. It was assumed that:

r0 = X, (A7)

Y0 = 0, (A8)

Γ0 = ∅, (A9)

where r0 indicates an approximation error,
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is the wanted spectrum.
2. Iteration loop consists of eight consecutive steps:

1 : gn = φTrn−1, (A10)

2 : in = argmax
∣∣∣∣gn

i

∣∣∣∣, (A11)

3 : Γn = Γn−1
∪ in, (A12)

4 : pΓn = Ψ
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rn−1, (A13)

5 : cn = dΓn pΓn , (A14)

6 : an =
〈rn, cn

〉

‖cn‖2
2

, (A15)

7 : Yn
Γn Yn−1

Γn + anpΓn , (A16)

8 : rn = rn−1
− ancn, (A17)

where φT indicates the transposition of a normalized dictionaryΨ, p
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residue rn is determined. The atom is selected from the dictionary in each iteration step; it meets
the obvious condition in = arg max | gi

n |.
3. Condition to stop iteration:

‖rn
‖2 ≤ ε, (A18)

If the convergence condition is satisfied for the assumed ε, the iteration is stopped and the result
of the calculation is Yn
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