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Abstract: In time-of-arrival (TOA)-based source localization, accurate positioning can be achieved
only when the correct signal propagation time between the source and the sensors is obtained.
In practice, a clock error usually exists between the nodes causing the source and sensors to
often be in an asynchronous state. This leads to the asynchronous source localization problem
which is then formulated to a least square problem with nonconvex and nonsmooth objective
function. The state-of-the-art algorithms need to relax the original problem to convex programming,
such as semidefinite programming (SDP), which results in performance loss. In this paper,
unlike the existing approaches, we propose a proximal alternating minimization positioning (PAMP)
method, which minimizes the original function without relaxation. Utilizing the biconvex property
of original asynchronous problem, the method divides it into two subproblems: the clock offset
subproblem and the synchronous source localization subproblem. For the former we derive a global
solution, whereas the later is solved by a proposed efficient subgradient algorithm extended from
the simulated annealing-based Barzilai–Borwein algorithm. The proposed method obtains preferable
localization performance with lower computational complexity. The convergence of our method
in Lyapunov framework is also established. Simulation results demonstrate that the performance
of PAMP method can be close to the optimality benchmark of Cramér–Rao Lower Bound.

Keywords: source localization; time-of-arrival; signal processing; asynchronous sensor networks

1. Introduction

In the Wireless Sensor Networks (WSNs), the concept of wireless interconnection between
sensors brings hope for breakthrough in new application fields [1]. In most application scenarios,
e.g., battlefield surveillance, forest fire detection, managing inventory control and smart homes,
the location information of sensors can be obtained via Global Positioning System (GPS) or source
localization. In source localization, the sensors with known position measure the signals transmitted
from a source, and then relay the noisy measurement data to a signal processing center for further
processing and data fusion. Finally, the center estimates the location of source based on the source
localization algorithm [2]. In terms of algorithms, So summarized some basic source localization
approaches from linear and nonlinear aspects [3].

Currently, the source localization algorithms mainly depend on range measurement. It can
be extracted from the received radio signal data using the following measurement approaches:
received-signal-strength (RSS) [4], angel-of-arrival (AOA) information [5], time-of-arrival (TOA) [6],
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time-difference-of-arrival (TDOA) [7] and their combination [8]. It is well known that time-based
ranging techniques can achieve high localization accuracy at lower power consumption, especially
using TOA. The TOA technique requires strict clock synchronization between the source
and the sensors [2]. However, in many engineering applications, even though the sensors are
synchronized (via GPS timing), there is still an initial clock offset t0 between the source and the sensors.
The sensors cannot obtain the emitted time of the radio signal sent by the source because of t0.
In the absence of accurate information on clock offset, the measurement of arrival time will deviate
from its true value. Although it seems to be only a tiny error, its influence when speed of light is
considered can greatly affect the positioning accuracy. In fact, TOA ranging technique is more reliable
than others in underwater acoustic sensor networks (UASNs) [9], and the speed of sound will also
affect the positioning accuracy due to the existence of t0. Hence, we focus on the asynchronous
TOA-based source localization in this paper.

Finding an efficient method for the original problem can solve asynchronous problem
fundamentally, which is a big challenge. In this paper, we present a proximal alternating minimization
positioning (PAMP) method for directly dealing with the asynchronous TOA-based source localization
problem. The proposed method divides the original problem into two subproblems based on the special
structure of the objective: the clock offset subproblem and the synchronous source localization
subproblem. The former subproblem has a closed-form solution, and the later one is solved by
an efficient Barzilai–Borwein algorithm using subgradient information. Then the two subproblems
are alternately minimized until the joint estimate is obtained. The main contributions of this paper
are as follows:

(1) We propose a proximal alternating minimization positioning (PAMP) method for the original
asynchronous TOA-based source localization problem, and the simulated annealing-based
Barzilai–Borwein subgradient (SABB-Subgradient) algorithm is extended from the simulated
annealing-based Barzilai–Borwein (SABB) algorithm to solve the subproblem.

(2) The convergence and Cramér–Rao performance analysis of the proposed method are presented.
(3) Even in the complex environment with high noise, the algorithm can still meet the requirements

of high precision and real-time positioning.
(4) Proposed algorithms do not depend on a specific noise distribution and in the process of solving,

these do not need to use the noise structure. For any noise distribution we can always find
a superior solution.

(5) As is apparently illustrated by the numerical results, the proposed method has the best
performance compared with the existing approaches. In the sense, it has the minimal gap
with CRLB. At the same time, the proposed method also has the least computational time.

The rest of the paper is organized as follows. Section 2 provides an overview of existing
approaches. Section 3 describes asynchronous TOA-based source localization problem and formulates
it to a least square problem. Then the proposed PAMP method and SABB-Subgradient algorithm
are described in detail. The convergence analysis is also presented in this section. In Section 4,
the performance bound is deduced from Fisher information matrix, and the effectiveness
and superiority of the proposed method are illustrated by numerical simulations. The last section
summarizes this paper by some final remarks.

2. Related Work

There are four ways to deal with the asynchronous TOA-based source localization problem.
The first one is two-way TOA technique [10], it requires that the signal is sent from sensor

to source, and then the round trip time between the sensor and the source is measured to solve
an asynchronous problem.

The next solution is TDOA measurement [7]. Select an sensor as the reference node,
the asynchronous effect is mitigated by subtracting the TOA measurements on the reference node from
the TOA measurements of other sensors [2]. The advantage of TDOA technique is that synchronization
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between the sensors and the source is not required. Yang et al. [7] considered a maximum likelihood
formula for the target location problem and provided effective convex relaxation for the resulted
non-convex optimization problem. In the case of large measurement noise, the performance of TDOA
is significantly better than the existing methods based on the least squares.

The third way is joint source position and time synchronization [11], this kind of TOA
measurement model considers clock skew and clock offset at the same time, the positioning
accuracy is relatively high. Zheng et al. [11] deduced a maximum likelihood estimator of this model,
which has a highly nonlinear, non-convex objective function. As a result that the original function
has no closed-form solution, the traditional algorithm consumes too much energy, they proposed
a joint maximum likelihood estimation and a two-step least squares estimation with higher
computational efficiency.

The last one directly estimates the source location [12–14], this type of model only contains clock
offset in clock parameters, the simpler model structure leads to lower computational complexity.
In [12], Xu et al. proposed a two-step estimation algorithm and a min-max algorithm, both of which
are based on semidefinite programming (SDP) technique. In [13], Vaghefia et al. proposed a novel
SDP estimator which estimates the source transmit time jointly with the source location. In 2016,
Zou et al. [14] used SDP skill to convexify the original problem, in order to improve the tightness
of the original SDP algorithms, SOC constraint is combined with an additional penalty term. The usual
relaxation techniques of these algorithms are summarized as follows:

(1) Based on least square:

In 2LS approach, the estimation of t0 is obtained by using the least squares technique:

t̂0 =
1
N ∑N

i=1

(
ti −

1
c
‖s− ai‖

)
. (1)

Then substitute t0 with t̂0:

N

∑
i=1

[
ti −

1
c
‖s− ai‖ −

1
N

N

∑
j=1

(
tj −

1
c
∥∥s− aj

∥∥)]2

. (2)

The resulting objective function is still nonconvex. After introducing auxiliary variables
τi =

1
c ‖s− ai‖, G = I − 1

N 1 · 1T , Q = ττT and ys=sTs, the final objective function and constraint
of 2LS algorithm can be obtained:

min
s,ys ,τ,Q

Tr[GTG(Q− 2tτT + ttT)] + η
N
∑

i=1

N
∑

j=1
Qij

s.t.

[
Q τ

τT 1

]
� 0,

[
I s

sT ys

]
� 0,

Qii =
1
c2

[
ai
−1

]T [
I s

sT ys

] [
ai
−1

]
,

Qij ≥ 1
c2

∣∣∣∣∣∣
[

ai
−1

]T [
I s

sT ys

] [
aj
−1

]∣∣∣∣∣∣ ,

i = 1, · · · , N, j = i + 1, · · · , N,

(3)

where η ∑N
i=1 ∑N

j=1 Qij is the penalty term, which is used for avoiding the ambiguity of original
function. Semidefinite relaxation is applied to relax the auxiliary variables into convex inequalities in
the constraints.
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(2) Based on min-max criterion:

The MMA approach utilizes the idea of minimizing the peak error to construct the cost function as:

ŝ = arg min
s,ys ,t0,ts

max
i=1,··· ,N

∣∣ts − 2tit0 + t2
i −

1
c2 (ys − 2aT

i s + aT
i ai)

∣∣∣ , (4)

where ys = sTs and ts = t2
0 are auxiliary variables. By the same operation as semidefinite relaxation in

2LS algorithm, the final objective function can be expressed as:

min
s,ys ,t0,ts

θ

s.t.−θ ≤ ts − 2tit0 + t2
i −

1
c2 (ys − 2aT

i s + aT
i ai) ≤ θ,

i = 1, · · · , N,[
1 t0

t0 ts

]
� 0,

[
I s

sT ys

]
� 0.

(5)

(3) Based on additional Second-Order Cone constraint:

The SDP2016 algorithm utilizes the same two-step LS technique as the 2LS algorithm, with only
two differences. The first is that the penalty term in SDP2016 is ηtr(D), which is a more
sensitive tuning parameter. The second difference is that the constraint is more tightness by
the additional SOC constraint. Define a new vector Vi = (di, s − ai) ∈ Rn+1, i = 1, 2, . . . , N,
where di = ‖X(:, 1)− X(:, i + 1)‖, X = [s, a1, a2, . . . , aN ]. Then the SOC constraint can be expressed as
Vi(1) ≥ ‖Vi(2 : (n + 1))‖ , i = 1, 2, . . . , N, i.e., di ≥ ‖s− ai‖ , i = 1, 2, . . . , N.

At present, the algorithms for solving asynchronous problems still have the following defects.
The two-way TOA technique is not applicable to active localization, i.e., the source node should
have the ability to send and receive data, whereas the traditional TOA technique only requires
the source node to send data. Although the TDOA technique can eliminate the effect of clock offset by
subtraction of pairwise TOA measurements, it also increases the correlation between measurements.
These correlated will enhance the measurement noise of 3 dB. In the joint estimation, the variables were
lifted into a higher dimensional space, which in turn increases the computational complexity. The last
model is simpler than the previous ways, but the existing SDP algorithms with better performance
all contain penalty term, which is an uncontrollable and extremely sensitive factor, so it is difficult to
configure an appropriate penalty factor to solve the actual asynchronous source localization problem.
Their computation time are still high, which is unacceptable for a real-time positioning system.

3. Problem Statement and Proposed Algorithms

Suppose, there is a wireless sensor network having N distributed sensors with known positions
and one source node with unknown position, as shown in Figure 1. Let ai = (xi, yi)

T (i = 1, 2, · · · , N)

and s = (x, y)T be the position of the i-th sensor and the source node to be located respectively.
Then, for the signal propagation along the line of sight (LOS) path, the TOA measurement at the i-th
sensor is:

ti =
1
c
‖ai − s‖2 + t0 + ni, i = 1, 2, · · · , N, (6)

where t0 is the initial clock offset between the sensors and the source node, c is the speed of light
or the speed of sound. The term ‖ai − s‖2 is the distance from the i-th sensor to the source node,
and ni is the measurement noise (error) between the i-th sensor and the source that can be arbitrarily
distributed. Without any prior assumptions on the statistics of the TOA measurements, the least square
(LS) estimation of s and t0 is as follows:
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min
s,t0

f (s, t0) =
1
2

N

∑
i=1

[c ∗ (ti − t0)− ‖ai − s‖2]
2 . (7)

This model is called the range-based least squares (RLS) [15] model.

Source node
(with unknown   )
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(       )
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(       )
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Figure 1. Asynchronous time-of-arrival (TOA)-based source localization.

3.1. Proposed Subproblems and Algorithms

Problem (7) is highly non-convex and non-smooth on jointed variable (s, t0), so it is a challenge
for finding a global solution. Fortunately, the objective function is biconvex, i.e., convex on one variable
if the other is fixed. This feature motivates the proximal alternating minimization positioning (PAMP)
method as follows. For a given (sk, tk

0), we find the next iteration (sk+1, tk+1
0 ) via

tk+1
0 = arg min

t0
f
(

sk, t0

)
+

r
2

(
t0 − tk

0

)2
,

sk+1 = arg min
s

f
(

s, tk+1
0

)
.

(8)

The PAMP method divides the complex nonconvex problem (7) into two subproblems: one
is clock offset subproblem with respect to t0, and the other is synchronous source localization
subproblem with respect to s. At the k-th iteration, two subproblems in (8) are convex. For fixed
s = sk, the clock offset subproblem with the location sk estimated by the previous step is a smoothing
convex minimization problem, which has a closed-form solution, and it is also a global solution.
With fixed t0 = tk+1

0 estimated in the current step, the asynchronous source localization problem
reduces to a synchronous source localization problem. The source localization problem is nonsmooth
but convex with respect to s. Hence, the approximating global solution could be obtained by some
subgradient minimization algorithms.

3.1.1. Clock Offset Subproblem with Known Location

In clock offset subproblem, the source node location sk estimated in the last step is used as a known
location, then the current estimator of clock offset can be expressed as:

tk+1
0 = arg min

t0

{
f
(

sk, t0

)
=

1
2

N

∑
i=1

[
c ∗ (ti − t0)−

∥∥∥ai − sk
∥∥∥]2
}

. (9)

The subproblem is to estimate a clock offset t0 using the sk obtained in the previous step, so as to
weaken the effect of clock bias on the TOA measurements in the subsequent solving process. At this
point, the objective function is smooth with respect to t0. By letting the gradient of f

(
sk, t0

)
with

respect to t0 equal to zero, the closed-form solution of tk+1
0 can directly obtained as follows:



Sensors 2020, 20, 3466 6 of 18

tk+1
0 =

1
r + Nc2

[
c×

N

∑
i=1

(
c× ti −

∥∥∥ai − sk
∥∥∥)+ rtk

0

]
. (10)

3.1.2. Synchronous Source Localization Subproblem

The clock offset t0 = tk+1
0 estimated in the current subproblem is used to eliminate the distance

bias caused by the existence of clock offset in the TOA measurements. With the estimator of the clock
offset, the source localization subproblem converts to a synchronous source localization problem,
and the source node location estimator sk+1 can be expressed as:

sk+1 = arg min
s

{
f
(

s, tk+1
0

)
=

1
2

N

∑
i=1

[
c ∗
(

ti − tk+1
0

)
− ‖ai − s‖

]2
}

. (11)

This subproblem estimates the position of source node in an asynchronous system with sensors
position and clock offset t0. Although we are dealing with an asynchronous source localization
problem, when the tk+1

0 is fixed, the clock offset has been subtracted from the objective function,
and the subproblem can be considered as a convex synchronous source localization problem. Then we
propose a subgradient descent algorithm for solving it.

Let φk(s) = f (s, tk+1
0 ), and

gk = −
N

∑
i=1

[
c× (ti − tk+1

0 )− ‖ai − sk‖
]

gk
i , (12)

where

gk
i =


0, if ‖ai − sk‖ = 0,

ai − sk

‖ai − sk‖
, otherwise.

(13)

Then gk ∈ ∂φk(s) is a subgradient vector of φk(s). In general, the minus subgradient is not
a descent direction of a nonsmooth objective function, even if it is convex. However, in φ(s, tk+1

0 ),
it has at most one sensor node ai such that ‖ai − sk‖ = 0, in which we assign 0 as the subgradient
vector of ‖ai − sk‖. For the other sensor with ‖ai − sk‖ 6= 0, this function is smooth and its gradient

can be given by
ai − sk

‖ai − sk‖
. It is easy to verify that, −gk is a descent direction of φ(s, tk+1

0 ) at sk.

So, we generalize the SABB algorithm proposed by Dong, Li and Peng [16] to the SABB-Subgradient
algorithm. By the Barzilai and Borwein method [17], we get a BB step-size as:

αBB
k =

(vk−1)Tvk−1

(vk−1)Tyk−1 , (14)

where vk−1 = sk − sk−1 and yk−1 = gk − gk−1.
We proposed a Barzilai–Borwein subgradient algorithm for the synchronous source localization

subproblem as follows Algorithm 1.
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Algorithm 1: The SABB-Subgradient algorithm for min φk(s)

s0. Let {εk} be a positive convergent sequence in the sense of ∑k≥0 εk < ∞, let c ∈ (0, 1),
0 < αmin < αmax < ∞ and α0 ∈ [αmin, αmax], T0 > 0, γ ∈ (0, 1), ϑ ∈ Z+. Set s0 = sk, l = 0.

s1. Compute gl by (12)–(13). If ‖gl‖ < εk, then let sk+1 = sl and stop.
s2. Compute ( If l = 0, then αl is given by an Armijo line-search.)

zl = sl − αl gl , (15)

and

∆φk = φk(zl)− (φk(sl)− cαl‖gl‖2). (16)

Let

p = e−
∆φk
Tl . (17)

Pick a random number

r ∈ (e−ϑ, e−
1
ϑ ). (18)

s3. If

p ≥ r, (19)

let sl+1 = zl and go to s4. Otherwise, let αl be a step-size given by the Armijo line search,
and sl+1 = sl − αl gl .

s4. Compute

αl+1 = max
{

αmin, min
{

αBB
l , αmax

}}
, (20)

where αBB
l is given by (14).

s5. Let Tl+1 := γTl , l := l + 1 and go to s1.

Combining the solution flow of two subproblems from above, the proximal alternating
minimization positioning method for asynchronous TOA-based source localization can be summarized
as follows Algorithm 2:

Algorithm 2: Proximal Alternating Minimization Positioning (PAMP) method

s0 Initialize: provide a random initial estimator of the location point s0 ∈ R2 and initial clock
offset t0

0 ∈ R, respectively. Let ε > 0 be a small real. Let k := 0.
s1 For the given (sk, tk

0), produce (sk+1, tk+1
0 ) via:

s1.1 (Clock Offset Subproblem With known Location) With the source node location sk estimated in
the previous step, the t0 is estimated via (10);

s1.2 (Synchronous Source Localization Subproblem) Using the estimated t0 in the last subproblem
to eliminate the influence of clock offset, the asynchronous localization problem is transformed
into the synchronous localization problem. Then finding the solution sk+1 of this subproblem
by Algorithm 1.

s2 If the stopping criterion is met, then stop and let (s∗, t∗0) := (sk+1, tk+1
0 ) be the final solution;

otherwise set k = k + 1, go to s1.



Sensors 2020, 20, 3466 8 of 18

Remark 1. In our method, we use max{
∣∣∣tk+1

0 − tk
0

∣∣∣ ,
∥∥∥sk+1 − sk

∥∥∥} < ε as our stopping criterion, which means

the difference between (sk+1, tk+1
0 ) and (sk, tk

0) is so subtle that there is no need for further improvement.

Using the PAMP method to solve the asynchronous source localization problem, as shown in
Figure 2.

The PAMP method

Original Problem of 
Asynchronous  Localization

Clock Offset Subproblem

Synchronous Source 
Localization Subproblem

Location
Preferable Performance

Lower Complexity

Closed‐form 
solution

SABB‐Subgradient
algorithm

TOA 
measurements

Alternating
Minimization

Modeled
Divided

Figure 2. The flowchart for solving asynchronous source localization problem by the proximal
alternating minimization positioning (PAMP) method.

3.2. Convergence Analysis

We will prove that sequence {(sk, tk
0)} generated by the proposed method is convergent under

the Lyapunov framework.

Definition 1. Let W = X × Y = {(u, v)|u ∈ X, v ∈ Y}. Function f : W → R is a Lyapunov function
associated with a discrete sequence (uk, vk) ∈W if

1) f (u, v) is continuous on W;
2) The level set {(u, v)| f (u, v) ≤ c} ⊆W is bounded for any positive real c > 0;
3) f (uk+1, vk+1) ≤ f (uk, vk) for all k = 1, 2, · · · .

It is easy to verify that, the objective function f (s, t0) in problem (7) is continuous on W = R2 ×R
and, for any c > 0 the level set {(s, t0)| f (s, t0) ≤ c} is bounded. To claim f (s, t0) is a Lyapunov
function associated with the iteration sequence (sk, tk

0) generated by our method, it only needs to prove
that f (sk+1, tk+1

0 ) ≤ f (sk, tk
0).

Theorem 1. Suppose sequence (sk, tk
0) is generated by Algorithm 2, then we have

f (sk+1, tk+1
0 ) ≤ f (sk, tk

0), ∀k ≥ 0. (21)

Proof. By iteration (8), ∀t0 ∈ R and ∀s ∈ R2 we have f (sk, tk+1
0 ) +

r
2
(tk+1

0 − tk
0)

2 ≤ f (sk, t0) +
r
2
(t0 − tk

0)
2,

f (sk+1, tk+1
0 ) ≤ f (s, tk+1

0 ).
(22)

Set (s, t0) = (sk, tk
0), we get f (sk, tk+1

0 ) +
r
2
(tk+1

0 − tk
0)

2 ≤ f (sk, tk
0),

f (sk+1, tk+1
0 ) ≤ f (sk, tk+1

0 ).
(23)

Adding two inequalities in (23) we obtain

f (sk+1, tk+1
0 ) ≤ f (sk, tk

0)−
r
2
(tk+1

0 − tk
0)

2 ≤ f (sk, tk
0). (24)

In the last inequality, equality holds if and only if tk+1
0 = tk

0.
By LaSalle invariance principle [18], we immediately have
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Theorem 2. The sequence (sk, tk
0) generated by our Proximal Alternating Minimization Positioning Method

(Algorithm 2) converges to Lyapunov stationary point of problem (7).

4. Performance and Complexity Analysis

4.1. Cramér–Rao Lower Bound

By the asynchronous TOA-Based measurement model (7), the performance of any unbiased
estimation of s is limited by the Cramér–Rao Lower Bound (CRLB) [19]. In order to obtain the CRLB
under the asynchronous TOA-Based measurement model, we assume that the measurement noises
in (6) are independent and identically distributed (i.i.d) Gaussian random variables with zero mean
and variance σ2. Under this assumption, the joint conditional probability density function of the
measured data ti is:

p (t1, t2, . . . , tN |s, t0) =
N
∏
i=1

1√
2πσ2

i
× exp

(
− 1

2σ2 (c ∗ (ti − t0)− ‖ai − s‖2)
2
)

= 1

(2πσ2
i )

N
2

exp
(
− 1

2σ2

N
∑

i=1
(c ∗ (ti − t0)− ‖ai − s‖2)

2
)

.
(25)

Let aij, sj denote the jth element of ith sensor node ai and source node s respectively.
Let ϕ = [s1, ..., sm, t0]

T be a vector consisting of all unknowns, where m = 2. The log-likelihood
function (ignoring the constant term) is written as:

L (ϕ) = − 1
2σ2

N

∑
i=1

(c ∗ (ti − t0)− ‖ai − s‖2)
2. (26)

Each element of Fisher information matrix FIM(ϕ) is given by: for 1 ≤ j ≤ k ≤ m,

[FIM(ϕ)]jk = −E
(

∂2

∂ϕj∂ϕk
L (ϕ)

)
= 1

σ2

N
∑

i=1

(aij−sj)(aik−sk)

‖ai−s‖2

(27)

and for 1 ≤ j ≤ m,

[FIM(ϕ)]j(m+1) = [FIM(ϕ)](m+1)j

= −E
(

∂2

∂ϕj∂ϕm+1
ln p (t1, . . . , tN |ϕ)

)
= 1

σ2

N
∑

i=1

aij−sj
‖ai−s‖

(28)

and

[FIM(ϕ)](m+1)(m+1) = −E
(

∂2

∂ϕm+1∂ϕm+1
L (ϕ)

)
=

N
σ2 . (29)

So the FIM is:

[FIM(ϕ)] = 1
σ2 ×



N
∑

i=1

(ai1−s1)(ai1−s1)

‖ai−s‖2

N
∑

i=1

(ai1−s1)(ai2−s2)

‖ai−s‖2

N
∑

i=1

ai1−s1
‖ai−s‖

N
∑

i=1

(ai2−s2)(ai1−s1)

‖ai−s‖2

N
∑

i=1

(ai2−s2)(ai2−s2)

‖ai−s‖2

N
∑

i=1

ai2−s2
‖ai−s‖

N
∑

i=1

ai1−s1
‖ai−s‖

N
∑

i=1

ai2−s2
‖ai−s‖

N
σ2

 . (30)

The diagonal element of the inverse FIM is the minimum variance that can be reached theoretically.
Therefore, the CRLB of unbiased estimation ŝ is:
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MSEϕ = E
(
‖ŝ− s‖2

)
≥

m

∑
i=1

[
FIM(ϕ)−1

]
ii

, (31)

and

RMSEϕ=
√

1
M ∑M

p=1
(
MSEϕ

)
p
≥
√

1
M ∑M

p=1

(
m
∑

i=1
[FIM(ϕ)−1]ii

)
p
, (32)

where M is the number of Monte Carlo simulations.

4.2. Simulation Results

4.2.1. Simulation Settings

The numerical performance of the proposed method is examined in two scenarios:
the deterministic sensor location (scenario 1) and uniformly distributed sensor location (scenario 2).

In scenario 1, both near-field and far-field cases are investigated. By near-field/far-field, we mean
that the source node is inside/outside the convex hull formed by sensors. To be specific, in scenario
1, we consider the same sensor deployment used as in [12]. There are eight sensors with positions:
a1 = (400, 400)T, a2 = (400,−400)T, a3 = (−400, 400)T, a4 = (−400,−400)T, a5 = (800, 800)T,
a6 = (800,−800)T, a7 = (−800, 800)T and a8 = (−800,−800)T (unit: m). The true position of the
source node in the case of the near-field is s = (30, 10)T and the far-field is s = (1350, 10)T, respectively.

In scenario 2, the positions of the eight sensors are the same as in scenario 1, the source node is
uniformly distributed in a square region of size [−1200m, 1200m]× [−1200m, 1200m]. In both scenarios
1 and 2, t0 follows a Gaussian distribution N (0, 16) ns. What needs to be explained here is that our
algorithm does not depend on specific noise distribution and does not need to use noise structure in
the process of solving. In order to compare with the CRLB and existing algorithms, the noise is set as
two distributions in following simulation (i.e., Gaussian noise and uniformly distributed noise).

The performance of the proposed method is compared with the 2LS and MMA algorithms in [12],
the SDP-NEW approach in [13] and the SDP2016 approach in [14]. The source codes of the PAMP
method is available at [20].The localization accuracy is evaluated in terms of the root-mean square
error (RMSE), it is

RMSE =

√
1
M ∑M

i=1 ‖ŝi − s‖2, (33)

where s is the true location of source node, ŝi is the estimated location of source node at ith Monte
Carlo simulation, M = 1000 which is the number of simulations.

The simulation scenario considered in [14] is small, and the choice of penalty factor is not
comprehensive enough. The simulation scenario in this paper is based on the actual engineering
problems, so the considerations are more comprehensive. To be fair, we take K constant value ηk,
k = 1, 2, ..., K to compute the cost function of SDP2016 algorithm, and then the Jk function given by [14]
is used to select the optimal penalty factor for our simulation. For the 2LS approach, the penalty factor
is set to 6.18× 10−5. In our simulations, the noise in the time domain ni in (6) is transformed into
the distance domain similar to [12], and it is set to be the same for simplicity of illustration.

4.2.2. Performance Comparisons

In Figure 1, we test the performance of SDP2016 approach at different η and compared it with
the proposed method. The performance of the proposed method under different σ2 with compared
to some existing algorithms in scenario 1 and scenario 2 are shown from Figures 3–7, respectively.
For comparisons, the root CRLB is also displayed. It is observed that, the proposed method (PAMP)
outperforms 2LS, MMA, SDP-NEW and SDP2016 algorithms in all cases.
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Figure 3. Selection of the penalty factor η in SDP2016 when σ2 = 0 dB for near-field case in scenario 1.
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Figure 4. Root-mean square error (RMSE) versus σ2 using different methods, near-field case in
scenario 1.
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Figure 5. RMSE versus σ2 using different methods, far-field case in scenario 1.
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Figure 6. RMSE versus σ2 using different methods in scenario 2, Gaussian noise.
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Figure 7. RMSE versus σ2 using different methods in scenario 2, uniformly distributed noise.

Simulation 1:

Due to an increase in the area considered for simulation, the original penalty factors of SDP2016
algorithm cannot be directly used in this simulation. We selected the appropriate penalty factor by
testing the sensitivity of the penalty factor in SDP2016 approach. We fix the σ2 to 0 dB and the source
position to (30, 10)T. Figure 3 compares RMSE with different σ2. It can be seen that the performance
of SDP2016 algorithm is sensitive to the choice of penalty factor η. Similarly, for different σ2 in the same
scenario, the SDP2016 algorithm needs to use different penalty factors to improve the positioning
accuracy. When σ2 = 0 dB for near-field case in scenario 1, SDP2016 algorithm achieves the best
performance with RMSE = 0.709m when the penalty factor η = 1.0× 10−5, and η = 1.0× 10−4 it
obtains RMSE > 0.715m and η = 1.0× 10−3 it gets 0.710m < RMSE ≤ 0.715m, but our method always
achieves RMSE < 0.709m. After this test, the penalty factor of SDP2016 is set to vary from 10−10

to 10−2. Obviously, the PAMP method does not contain penalty factor, it can accurately and stably
estimate the location of source node in any scenario.

Simulation 2:

The source is placed at point s = (30, 10)T, which is inside the convex hull formed by the sensor
nodes. The noise is generated from i.i.d. Gaussian, and t0 is randomly chosen by normal distribution
with zero mean and variance 42. In Figure 4, we compare the performance of our PAMP and 2LS,
MMA, SDP-NEW and SDP2016 algorithms. It can be found that our PAMP method consistently
outperforms the other algorithms in terms of the gap between the solution and CRLB. The PAMP
method is closest to the CRLB, followed by SDP2016, 2LS, SDP-NEW and MMA. It is worth noting
that the performance of SDP2016 algorithm is poor in high-noise environment, but when σ2 decreases
to 5 dB, it improves to be second only to that of PAMP method. However, the PAMP method still has
incomparable advantages over other algorithms, because it does not require noise information.

In order to compare performance conveniently, the following Table 1 lists the RMSE comparison
between the PAMP and the SDP2016 under different σ2 and the optimal penalty factors required
by SDP2016 algorithm in each cases. This experiment further demonstrates that SDP2016 algorithm
is sensitive to penalty factors, and it is difficult to select an appropriate penalty factor in different
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scenarios, which consumes too much work. Based on the above considerations, the subsequent
simulation will not be compared with the SDP2016 algorithm.

Table 1. RMSE comparison (in meter) and penalty factor selection under different σ2 for the near-field
case in scenario 1.

σ2 RMSE of PAMP RMSE of SDP2016 (Optimal η)

−20 dB 0.072 0.088 (10−7)
−15 dB 0.126 0.137 (10−7)
−10 dB 0.224 0.230 (10−7)
−5 dB 0.405 0.426 (10−4)
0 dB 0.711 0.731 (10−5)
5 dB 1.262 1.264 (10−9)

10 dB 2.243 3.406 (10−8)
15 dB 4.037 12.930 (10−8)
20 dB 7.204 22.477 (10−4)

Simulation 3:

We locate the source node at s = (1350, 10)T, which is outside the convex hull of the sensor nodes.
The noise follows from the normally distributed with zero mean and variance 42 and i.i.d. Gaussian
measurement noise. In Figure 5, unfortunately, SDP-NEW approach does not give a good estimation
when σ2 decreases to 5 dB in this case. One reason is that the source node is not in the convex
hull and SDP optimization cannot find a better solution. It can find that PAMP method consistently
provides the best performance. In other words, the PAMP method has excellent anti-noise performance
in high noise environment.

Simulation 4:

The source node is uniformly distributed in a square region [−1200 m, 1200 m] × [−1200 m,
1200 m]. For each σ2, we randomly generate 1000 source locations. The noise is i.i.d. Gaussian
and t0 is randomly chosen from the normal distribution with zero mean and variance 42. We display
the performance of different algorithms in Figure 6. As it is in the previous simulation, the PAMP
method provides excellent performance in a high noise environment.

Simulation 5:

The source node is uniformly distributed in a square region [−1200 m, 1200 m] × [−1200 m,
1200 m]. Different from Simulation 4, the environment noise is set as uniformly distributed in this
simulation and t0 is randomly chosen from the normal distribution with zero mean and variance 42.
Since the CRLB is derived under the condition of Gaussian noise, the CRLB is not shown in Figure 7 for
uniformly distributed noise. From Figure 7 we can find that the positioning accuracy of all algorithms
is improved when the noise is uniformly distributed. The proposed PAMP method is still far ahead in
performance comparison.

4.2.3. Complexity Comparisons

In scenario 1 and scenario 2 when σ2 = 0 dB, the computational time and iteration number
of proposed PAMP method and other algorithms are shown from Tables 2–5 for comparison. In Table 6,
we summarize algorithm complexity in terms of operations in each iteration. The code is run on
a personal computer with Intel(R) Core(TM) i5-4590 CPU 3.30GHz and 8 GB RAM.
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Table 2. Average computational time (in seconds) and average iteration number for the near-field case
in scenario 1.

Method Computational Time Iteration Number

Proposed PAMP 1.30× 10−3 3.83
2LS in [12] 5.71× 10−1 37.29

MMA in [12] 3.53× 10−1 11.04
SDP-NEW in [13] 3.29× 10−1 23.34
SDP2016 in [14] 9.87× 10−1 32.96

Table 3. Average computational time (in seconds) and average iteration number for the far-field case in
scenario 1.

Method Computational Time Iteration Number

Proposed PAMP 9.13× 10−2 454.10
2LS in [12] 5.76× 10−1 37.31

MMA in [12] 3.57× 10−1 12.38
SDP-NEW in [13] 3.30× 10−1 23.99

Table 4. Average computational time (in seconds) and average iteration number in scenario 2,
Gaussian noise.

Method Computational Time Iteration Number

Proposed PAMP 6.66× 10−2 219.60
2LS in [12] 6.11× 10−1 37.73

MMA in [12] 3.82× 10−1 11.94
SDP-NEW in [13] 3.64× 10−1 24.65

Table 5. Average computational time (in seconds) and average iteration number in scenario 2, uniformly
distributed noise.

Method Computational Time Iteration Number

Proposed PAMP 7.82× 10−2 268.41
2LS in [12] 5.63× 10−1 37.70

MMA in [12] 3.17× 10−1 11.71
SDP-NEW in [13] 3.35× 10−1 24.62

Table 6. Complexity comparison.

Method Operation Per Iteration

Proposed PAMP O((mN)t̄ + 1)
2LS, MMA, SDP-NEW and SDP2016 Poly(l(l + 1) + c)

It is obvious that, the PAMP method is superior to the other algorithms [12–14] in terms
of computational time. This is guaranteed by the nature of proximal alternating minimization
and excellent performance of SABB-Subgradient algorithm. Each step of the PAMP method
contains an closed-form solution and subproblem iteration, where the subproblem is solved by
SABB-Subgradient algorithm. This approach is an efficient first-order acceleration algorithm which
has been verified by a large number of numerical experiments.

Suppose m is the dimension of the problem, N is the number of sensors and t̄ is the average number
of subproblem iterations, which is usually less than 5. The overhead of subproblem is O((mN)t̄),
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and then consider the cost of closed-form solution, we can get the operation per iteration of the PAMP
method is only O((mN)t̄ + 1). Obviously (mN)t̄ + 1 is a linear function of the problem size m,
which means that the cost of one-step iteration of the PAMP method is negligible. The algorithms we
compared use SDP technique to solve this sticky problem, which ascends the dimension of the original
problem from m to l, where l = (N2 + N + m + 1). In the SeDuMi solver, the cost of each step is at
least Poly(l(l + 1) + c), see Roos, Terlaky and Vial [21].

For this reason, even though the PAMP method has more iterations in scenarios 1 and 2 when
the source node is outside the convex hull. Yet the subproblem is quickly solved by SABB-Subgradient
algorithm, hence the computational time is still less than other algorithms at least by one order
of magnitude.

4.2.4. Summary

One can find the proposed algorithm provides better estimation and faster convergence than
traditional SDP approaches. The 2LS and MMA algorithms adopt different objective functions,
the former includes extra penalty to improve the tightness of cost function, so it can achieve higher
positioning accuracy, but also correspondingly improve the computation time and iteration number.
SDP-NEW algorithm ranked fourth in performance comparison of scenario 1 near field. Once the source
is outside the convex hull, the localization performance decreases rapidly, and the robustness is not as
good as MMA algorithm. Although an optimal penalty factor can improve the performance of SDP2016
algorithm, which is second only to PAMP method, the selection of penalty factor is relatively complex
and it is difficult to be applied in practical applications. In a word, our approach will more likely to
find the approximating global solution in complex engineering environment at higher speed.

The objective function f (s, t0) in (7) is non-convex and non-smooth for the jointed variable (s, t0).
It is hard to find the global minimizer of problem (7). By convex relaxation, some convex optimization
algorithms can be used for the approximate convex problem [22]. The convex relaxation approach has
suboptimal solution with high computational complexity. By smoothing objective function f (s, t0),
the trust region algorithm can be used for problem (7) [23]. These methods mentioned above require
relaxation or approximation of the objective function, which may result in some performance loss
of TOA. In this paper, we propose a proximal alternating minimization positioning method for
problem (7). The proposed method optimizes the original objective function in an alternative mode.
At each iteration, the biconvexity of the objective function yields two easy subproblems: the clock
offset subproblem has a closed-form solution, and the synchronous source localization subproblem is
a convex optimization problem which is easy to obtain an approximating global solution.

5. Conclusions

In this paper, we investigated the TOA-based source localization with unknown clock offset
via a biconvex minimization model, and proposed a proximal alternating minimization positioning
method to solve the original model. We also proved the global convergence of proposed method
under the Lyapunov framework. Simulation results show that the performance of PAMP method in
the problem of asynchronous TOA-based source localization is closest to the CRLB. When the target
is randomly distributed around the sensors, the operation time for precise positioning is at least one
order of magnitude less than the classic algorithm when using the PAMP method.
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