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Abstract: This paper addresses wearable-based recognition of Activities of Daily Living (ADLs) which
are composed of several repetitive and concurrent short movements having temporal dependencies. It
is improbable to directly use sensor data to recognize these long-term composite activities because two
examples (data sequences) of the same ADL result in largely diverse sensory data. However, they may
be similar in terms of more semantic and meaningful short-term atomic actions. Therefore, we propose
a two-level hierarchical model for recognition of ADLs. Firstly, atomic activities are detected and their
probabilistic scores are generated at the lower level. Secondly, we deal with the temporal transitions
of atomic activities using a temporal pooling method, rank pooling. This enables us to encode the
ordering of probabilistic scores for atomic activities at the higher level of our model. Rank pooling
leads to a 5–13% improvement in results as compared to the other popularly used techniques. We
also produce a large dataset of 61 atomic and 7 composite activities for our experiments.

Keywords: rank pooling; human activity recognition; activities of daily life; atomic activities;
composite activities;

1. Introduction

The advancement in health sciences has increased the median age of human and caused an
increase in the number of elderly people. While it is good news overall, it raises other questions
like whether the elderly people can maintain their quality of living independently or would need
human resources to look after them. Medical doctors actually use Activities of Daily Living (ADLs)
like dressing up, cleaning a room, or preparing a meal, to evaluate an elderly’s ability for independent
living [1,2]. Thus, a system that can continuously recognize ADLs based on wearable devices,
is beneficial for detecting their health problems and supporting healthcare.

An ADL is usually a long term and complex activity that is made up of the sequence of short-term
actions. For example, preparing a meal can be made up of cutting the food, opening or closing the door
of the refrigerator, stirring in the utensils. We refer to these long-term activities (i.e., ADLs) as composite
activities and the underlying short-term actions as atomic activities. Wearable devices can be used to
detect such activities in an unobtrusive way using motion sensors embedded on these devices [3–5]. In
most cases, it is impractical to directly use raw sensor data to recognize composite activities [6] because
raw data is cluttered with noise and meaningless components. The sensors may also yield different
data streams for multiple examples (i.e., data sequences, in further reading, the term example will refer
to a data sequence collected by the sensors) of the same activity even when performed by the same
person. One main reason is that the person can change the order of atomic activities to accomplish
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the composite activity. Therefore, it is required to extract meaningful features from sensory data to
recognize the composite activities.

Atomic activities can be considered as meaningful features for this purpose for two reasons.
Firstly, despite personal habits, atomic activities having short durations are relatively easy to recognize
using sensory data. Secondly, the example of the same composite activity generates different sensory
data, but it has smaller diversity in terms of atomic activities, for example, the composite activity,
cleaning a room can be characterized by the combination of atomic activities as depicted in Figure 1.
When cleaning a room, a person is mainly walking, bending, and squatting to clean floors using a
vacuum cleaner and a floor cloth, and sometimes standing to clean surfaces like windows and tables.

Thus, a composite activity may produce significantly different raw sensory data but they are
assumed to be similar in terms of atomic activities. Hence, it is pertinent to recognize a composite
activity on the basis of the atomic activities. It motivates us to propose a two-level recognition model
in which atomic activities are detected at the first level and then the composite activities are recognized
at the next level.

Figure 1. Hierarchical model for Activities of Daily Living (ADL) recognition. This figure depicts
two examples of ADLs or composite activities, cleaning a room and preparing food. Each of the
composite activities consists of several atomic activities like Bending, UsingCleaner, Squatting, Wiping,
Opening Door and Cutting Food. Our hierarchical model uses raw sensory data obtained from
wearable devices at its first level to detect the atomic activities performed within a short interval of
time. The second level of our model recognizes composite activities based on the probabilistic scores of
atomic activities.

In order to recognize composite activities, we need to handle temporal relationships among
underlying atomic activities. Hidden Markov Models (HMM) and Long Short Term Memory (LSTM)
are popular techniques to deal with such temporal patterns. HMM are useful only when the
classification target has a typical temporal relation and a clear structure [7], whereas LSTM can
only be successfully used if we have an extremely large amount of data. Another technique used in
event detection through video data is pooling. The temporal patterns of many concepts are involved
to detect an event. Thus, a large amount of data describes one event. In order to compress this data,
researchers have used pooling techniques. Some pooling techniques like max and average pooling
have been found to be useful for activity recognition [8,9]. These techniques are usually applied to the
recognition scores of atomic activities for the construction of feature vectors to characterize composite
activities. The max and average pooling techniques work well but they are too simple and incapable
of handling the temporal patterns within the example of a composite activity.

Thus, to solve this problem, we propose another pooling technique, rank pooling, that models the
evolution and dynamics of a composite activity. Rank pooling is a temporal pooling method based on
unsupervised learning. It accumulates the pertinent information during the execution of a composite
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activity by fitting a learning-to-rank model. Then, parameters of the learned model are used as the
new features of the composite activity. Rank pooling not only maintains the temporal ordering of
underlying activities but also performs well in a situation when there is no clear temporal relationship
among these sequences. Rank pooling has been successfully used to recognize actions in video data [10].
We extend this technique to recognize composite activities using sensory data. We start by recognizing
atomic activities and then find their temporal ordering by training a linear ranking model [11] on
the recognition scores of atomic activities. The parameters of the linear ranking model encode the
evolution of atomic activities that make up a particular composite activity. The ranking models
trained on different examples of the same composite activity are expected to be similar. Therefore,
we propose to use the parameters of the ranking models as characteristic features for the classification
of composite activities.

Figure 1 shows an overview of our proposed two-level hierarchical model based on rank pooling.
The lower level of our model recognizes atomic activities like sitting, standing, walking, standing up,
squatting, opening and closing door. The higher level of our recognition model recognizes composite
activities like cleaning room and preparing food. Atomic activities are detected by a codebook
approach [12] which outputs the probabilistic scores of each of atomic activities. Rank pooling
is then used to construct feature vectors for composite activities using these probabilistic scores.
Classifiers trained on feature vectors obtained from rank pooling turn out to be very effective for
distinguishing composite activities. We evaluate our results obtained by rank pooling while comparing
them with the other pooling techniques like average and max pooling and also with HMM and LSTM.
We found that rank pooling yields an accuracy 5 to 13% higher than the other techniques. In this paper,
we also introduce a dataset of atomic and composite activities collected using wearable devices at our
pattern recognition lab. We performed all of our experiments using this dataset.

This paper offers two main contributions:

• We use rank pooling for sensor based data to recognize 7 composite activities.
• We produce a large dataset that contains 9029 examples of 61 atomic activities and 890 examples

of 7 composite activities. This dataset is collected within the Cognitive Village Project supported
by the German Federal Ministry of Education and Research (BMBF), and named CogAge dataset
for the sake of simplicity.

All research contents (CogAge dataset, codes, and trained models) are made available at the
webpage: https://www.info.kindai.ac.jp/~shirahama/rank_pooling (in the Supplementary Materials)
to help other researchers reproduce our findings.

This paper is organized as follows: Section 2 presents an overview of highly relevant existing
research work regarding human activity recognition. Section 3 describes the details of our proposed
methods to detect atomic and composite activities. Section 4 presents the experiments carried out on
CogAge dataset and the results to evaluate of our proposed approach while comparing it with other
state-of-the-art techniques. Section 5 provides discussions to use our proposed system in real-world
settings for monitoring the ADLs using an online version of our system. Finally, Section 6 concludes
the paper and presents potential future works regarding human activity recognition. Apart from
the main body of this paper, Appendix A details the sensor modalities and data acquisition process.
Our webpage shows detailed results like confusion matrices for recognition of 7 composite activities,
and the details of our atomic activity recognition method which is not the main focus of this paper.

2. Related Work

In this section we discuss the existing research work that is highly relevant to our contribution.
We start by mentioning hierarchical activity recognition models and then discuss about approaches to
capture temporal patterns of activities. We also mention some deep-learning approaches for activity
recognition. In the end, we relate the setup of our devices with similar existing approaches.

https://www.info.kindai.ac.jp/~shirahama/rank_pooling
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A long term activity exhibits a hierarchy of intrinsic actions. The research has shown that
hierarchical models are necessary for accurate activity recognition [13,14]. In [15] the authors
have presented a multilevel discriminative model to detect composite activities. Their hierarchical
partonomy based approach shows improvements in recognition of composite activities and atomic
activities (which are called activity events in [15]) compared to the non-hierarchical approach. However,
they use a predefined sequence of atomic activities during the execution of a composite activity.
The composite and fine-grained activities related to cooking are detected in [16] using video data.
The authors have recognized fine-grained activities like peeling and washing, using pose-based,
hand-centric, and holistic approaches. Firstly, they have detected the movements and positions of
hands, and the shape of objects like knife and vegetable. Then they recognize composite activities
based on the fine-grained activities. Their work produces a large dataset of kitchen related activities.
The authors in [17] focus on recognition of complex activities based on a limited amount of labeled
data by proposing an attribute-based learning. Their approach detects semantic attributes (primitive
actions) in the existing data of composite activities and recognizes new activities on the basis of these
attributes along with the characteristic features. A hierarchical model is presented in [18] to detect
human activities in the wild using a smartphone accelerometer. This approach reduces the energy
consumption and users do not need to wear a lot of sensors. The authors in [19] present a multimodal
and multi-positional body sensing approach for recognizing ADLs. They use a two level classification
technique to classify 21 different activities. They use wearable devices on multiple positions on the
body for context awareness during the execution of an activity. Moreover, they use Bluetooth beacons
for location awareness to increase the accuracy of their results. In [20], authors present an approach to
automatically construct mid-level features using Deep Belief Networks. These features contribute to
recognize well-structured human activities in an exercise dataset.

Compared to the aforementioned approaches, we present a more generic and a hierarchical
approach that recognizes composite and the underlying atomic activities using multimodal sensory
data obtained from three unobtrusive wearable devices. The fusion of multi-positional and multiple
modalities of sensory data provides higher accuracy for our targeted 61 atomic and 7 composite
activities. The automatic construction of atomic activities as described in [20] is data dependent and
can be useful in a specific domain of activities. On the other hand, we manually define our atomic
activities to make our hierarchical approach more general. We believe that our approach, where a large
number of atomic activities cover numerous variational movements, is applicable for many composite
activities other than the ones in this paper.

Generative models, particularly Hidden Markov Models (HMMs), encode temporal information
and have largely been used to recognize long-term activities [21,22]. Hybrid approaches have also
been used where a discriminative model like Support Vector Machine (SVM) or Artificial Neural
Network (ANN) obtain posterior probabilities of actions and an HMM is employed to capture the
temporal dynamics of the composite activities [23]. Another generative method is naive Bayesian
network that can also deal with temporal relationships of activities. This approach has been used
to encode temporal relationships in order to detect ADLs in home settings [24]. A layered HMM
approach is proposed to detect human activities in an office environment [25] using multimodal data.
It exploits the ability of HMM to handle different levels of abstraction and their corresponding time
granularities. HMMs have also been used to recognize daily routine activities such as commuting and
other office work tasks using unsupervised learning methods [26]. The authors in [27] present an HMM
based activity recognition where sensors are placed not only on user’s body but also on the object
used, in order to minimize the overhead of labeling and feature selection. Another popular model
is Conditional Random Fields (CRFs) that capture sequential characteristics of long-term activities
in a discriminative way [19]. In [15] the authors have classified the composite activities using the
combination of joint boosting and CRFs. Many approaches from the field of deep learning have also
been employed in the domain of human activity recognition [28–32] and produced very good results.
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However, an HMM can be used only for recognizing activities that have a typical sequence of
underlying actions [22]. In addition, it is incapable of capturing long-range or transitive dependencies
of observations due to its very strict independence assumptions on observations. Furthermore,
without a significant amount of training data, the HMM may not be able to recognize all of the
possible observation sequences that can be consistent with a particular activity [21]. In contrast to
HMMs, CRFs relax the independence assumptions on observations and can capture their long-rage
dependencies. However, the biggest disadvantage of CRFs is their high computational complexity
when there are a large amount of training data, and when there are many states having complex
connectivities [33]. Although deep learning methods produce good results, they need a huge amount
of training data and tune a large number of hyper-parameters. Finally, for all of HMMs, CRFs,
and deep learning methods, finding a model structure that leads to accurate recognition needs a
laborious trial-and-error process or significant amount of background knowledge on a problem.

Compared to the aforementioned methods, we propose a sensor-based activity recognition
method using rank pooling, which has been originally developed to recognize human activities in
video data [10]. A ranking function is learned that satisfies the sequential order of low-level atomic
activities, in which a particular high-level composite activity is performed. The temporal evolution
of atomic activities is learned by employing point-wise ranking functions [11]. One main advantage
of rank pooling over the above-mentioned methods is that it only involves one hyper-parameter,
that is, the penalty parameter for violating the sequential order of atomic activities. Thus, our method
based on rank pooling can be easily applied to many problems without relying on any laborious
trial-and-error process or much background knowledge.

The ubiquitous devices are considered unobtrusive for monitoring and recognizing ADLs and an
abundant amount of work focuses on design and operations of these ubiquitous technologies in home
settings [34,35]. The use of wearable sensors for such in-home settings has been experimented in [36]
and we also use similar wearable devices for our activity recognition system.

3. Methodology Description

In this section, we describe our two-level hierarchical model for recognition of ADLs. The first
level uses a codebook approach to generate recognition scores of atomic activities, and the second level
recognizes ADLs by performing rank pooling on these scores.

3.1. Atomic Activity Recognition

First of all, assume that our atomic activity recognition method aims to recognize M atomic
activities using S sensors, each of which forms a multi-dimensional sequence. Under this setting,
our method consists of the two main phases, “feature extraction” and “model training/test”. For each
of S sensors, the former extracts a feature that represents the characteristics of the corresponding
sequence. Then, features for all the S sensors are fused into a single high-dimensional feature. This way,
diverse examples for atomic activities in training data are converted into high-dimensional features.
In the model training/test phase, a recognition model is built on those high-dimensional features.
Afterwards, given sequences obtained from S sensors for an unknown example (i.e., test datum),
the model is used to compute atomic scores that individually indicate the probability of an atomic
activity in the example. Since atomic activity recognition is not the main focus of this paper, the feature
extraction and model training/test phases are briefly described below. Please refer to the website of
this paper for details of our atomic activity recognition method.

Figure 2 illustrates the feature extraction phase based on the codebook approach, which extracts a
histogram-type feature representing frequencies of characteristic subsequences, called codewords, in a
sequence [12]. As shown in Figure 2, the codebook approach consists of two main steps. The first step,
termed codebook construction in Figure 2a, adopts a sliding window approach to collect subsequences
from a large number of sequences. These subsequences are then grouped into clusters of similar ones
using k-means clustering. A codebook is constructed as a set of codewords each being the center of a
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cluster. The second step, named codeword assignment in Figure 2b, extracts the feature of a sequence
by assigning each subsequence to the most similar codeword. Thus, the resulting feature is a histogram
representing the frequency of each codeword in the sequence.

a) Codebook construction b) Codeword assignment

Note that, in order to focus on shapes of subsequences,

each subsequence is translated so that the three values

at the first time point are zero.

w

Codewords

Histogram-type feature

Assigned to the

most similar codeword

Figure 2. An overview of our codebook-based feature extraction phase: (a) illustrates the codebook
construction step where subsequences collected from a large number of sequences are grouped into
clusters, and the center of each cluster is regarded as a codeword; (b) depicts the codeword assignment
step where each of subsequences in a sequence is assigned to the most similar codeword. As a result,
the sequence is represented as a histogram-type feature indicating the frequency of each codeword.

There are three notes about the feature extraction phase. The first is about how to measure
the similarity between two subsequences. Let us assume that a sensor produces a d-dimensional
sequence and subsequences are collected using a sliding window of length w. This means that each
subsequence contains d× w values and can be regarded as a dw-dimensional vector. In Figure 2a,
the sensor generates 3-dimensonal sequences (d = 3), so each subsequence is represented as a
3w-dimensional vector. In addition, in order to focus on shapes of subsequences, each subsequence
is translated so that the d values at the first time point are zero. Under this setting, the similarity
between two subsequences is measured as the Euclidean distance between their dw-dimensional vector
representations. The second note is based on the fact that the translation described above loses the
overall distribution of values in a sequence. Thus, the codebook approach in [12] is extended by
adding dimensions capturing such a distribution to the original codebook-based feature. Please refer
to the website of this paper for details of this extension. The last note is regarding how to fuse features
extracted from sequences for S sensors. We use a simple but effective approach, called early fusion,
which just concatenates features for S sensors into a high-dimensional feature [12].

In the model training/test phase, for each of M atomic activities, the one-versus-all approach
is used to build a model that distinguishes examples of this atomic activity from those of the other
atomic activities. Since each example is represented by a high-dimensional feature through the fusion
of component features for S sensors, a Support Vector Machine (SVM) is employed as a model because
of its effectiveness for high-dimensional data [12]. It can be thought that the high-dimensional feature
of each example indicates the location of this example in the high-dimensional space. The SVM is
trained to output a scoring value between 0 and 1 based on the distance between the example and the
classification boundary in the high-dimensional space. This scoring value is nothing except for the
atomic score, and the larger it is, the more likely the example is to include the atomic activity. Finally,
M SVMs are trained to output M atomic scores for the example. The online use of these SVMs is
straightforward, that is, they are used to compute atomic scores for sequences acquired from S sensors
in a certain time interval.

3.2. Composite Activity Recognition

We aim at classifying N composite activities using the atomic scores of M atomic activities that
we computed using the method described in the previous section. Assume that we have K instances of
N composite activities where each instance has its own length. Mathematically, the kth instance of a
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composite activity C(k) (1 ≤ k ≤ K) has a length of Tk time points. Figure 3 illustrates our composite
activity recognition method where we first extract the atomic scores for C(k), which is described as,

C(k) = (a(k)1 , a(k)2 , · · · , a(k)Tk
), (1)

where each a(k)i ∈ RM denotes the vector of M atomic scores at a time point i (1 ≤ i ≤ Tk) for C(k).

Each a(k)i can be further described as,

a(k)i = (a(k)i1 , a(k)i2 , · · · , a(k)ij · · · , a(k)iM), (2)

where a(k)ij represents the atomic score of jth atomic activity (1 ≤ j ≤ M), computed at time point i for

C(k). In addition, the value range of a(k)ij is between 0 and 1.

All a(k)i vectors are shown according to their temporal ordering as we assume that the relative
ordering of atomic activities is relatively preserved in the formation of a composite activity. So far,
we have defined a composite activity in terms of its kth instance C(k) because we want to emphasize that
each instance may have its own length. However, the use of similar terms without the superscript (k)
refers to a composite activity in general instead of its specific instance i.e., a(k)t belongs to kth instance
whereas at refers to vector of atomic scores for any instance of a composite activity. Before describing
the method of capturing the temporal evolution or dynamics of atomic activities, we concede that
atomic scores are expected to have a high degree of variability and noise. Using those scores directly
might have some disadvantages. For instance, the noise may lead to the erroneous results. In addition,
the time-independent vectors of atomic scores ai are weakly connected to the consecutive score vectors
(i.e., ai−1 and ai+1) resulting in the sudden variations in atomic scores. This weak correlation may also
cause an improper learning of the dynamics of atomic activities.

Thus, to reduce the effect of noise and abrupt variations in atomic scores, and to strengthen the
correlation among the consecutive atomic score vectors, we generate a new sequence,

X(k) = (x(k)1 , x(k)2 , · · · , x(k)Tk
), (3)

which is a more general and smoothed form of C(k), as illustrated in Figure 3. Each x(k)t ∈ RM is
an output of the vector valued function obtained using Time Varying Mean Vector (TVMV) [10],
which computes x(k)t or simply xt (that denotes the smoothed form of any instance of a composite
activity) by processing all ai up to time t, denoted by a1:t. This approach avoids the presumable
disadvantages of directly using atomic scores. With this approach we first calculate mt =

1
t ×∑t

τ=1 aτ ,
where mt denotes the vector containing mean scores at time t. This is how the temporally local
dependency on atomic scores obtained during the consecutive time intervals is maintained. Then we
compute a unit-mean appearance vector xt to capture the direction at time t, xt =

mt
‖mt‖ . Our ranking

function Ψ, which is described in the following paragraphs, learns the evolution of this normalized
vector over time. The way the TVMV is constructed, the dynamics of a composite activity in the
forward flow with respect to time can be captured. Additionally, we also capture the backward flow by
computing the TVMV on the reverse flow, starting from the latest time points to the earliest. The results
show that computing the flow in both directions improves the recognition accuracy.



Sensors 2020, 20, 3463 8 of 21

Figure 3. An overview of our composite activity recognition using rank pooling. The figure shows
two examples C(1) and C(k) of a composite activity. Our atomic activity recognizer computes atomic
scores in regular time intervals (t = 0→ Tk) during the execution of each example of the composite
activity. These atomic scores are converted to Time Varying Mean Vectors (TVMVs) (denoted by

xt). After applying non-linear transformations, we implement rank pooling on x(k)t s to compute the
parameters w(k) of a ranking function Ψ(k). These parameters are used as a feature vector to represent
an instance of C(k). Such feature vectors are generated for all instances in the training dataset. We use a
Support Vector Machine (SVM) classifier to classify the composite activities.

We focus on the relative ordering of atomic activities, that is, xt+1 succeeds xt, denoted as xt ≺ xt+1.
As such we end up with the order constraint O(X) = (x1 ≺ · · · ≺ xt ≺ · · · ≺ xT). We then learn to
sequentially order the vectors xt (1 ≤ t ≤ T) using a linear function Ψw = Ψ(X; w) parametrized by w.
Each instance X(k) of a composite activity is characterized by learning a different dynamics function
Ψ(k)(X(k); w(k)) parametrized by w(k) [10]. In other words, w(k) characterizes the temporal evolution
D(k) of X(k). As illustrated in Figure 3, we propose to use w(k) ∈ RM of Ψ(k) as a representation of
composite activity instance X(k).

In order to model the order constraints O(X), we can use the learning to rank paradigm in [11],
also called ranking machines which optimizes a ranking function of the form Ψ(t, x1:t; w) [10]. We can
either choose a point-wise or a pair-wise ranking machine [11]. In rank pooling, the parameters w
represent our composite activities. We implement a point-wise rank pooling approach by solving the
constrained minimization problem, in which we seek f (xt; w)→ t that is a direct mapping from the
input vector xt to its time variable t based on the linear parameters w. In other words, we try to solve

w∗ = arg min
w

∑
t
‖t−wT .xt‖, (4)

where Support Vector Regression (SVR) is a robust approach to finding w∗. Thus, we can use SVR to
encode temporal evolution D of composite activity X. Such a solution would also satisfy the order
constraint f (xi; w) < f (xj; w) if xi ≺ xj due to the direct mapping of the form f (xt; w)→ t.

Real-life data exhibit complex patterns that are difficult to capture by a linear model, therefore,
we use non-linear feature maps to manage the underlying non-linearity of D. Thus, we extend the
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linear ranking machine (SVR) by incorporating a non-linear transformation on each xt of X. We use
two separate non-linear transformations. The first uses the Hellinger kernel defined as follows [37]:

Hellinger(xij) =

√
xij

∑n
j=1 xij

, (5)

where xij denotes the j-th component of xi. The second non-linear transformation is a modified version
of the power transformation taken from [38]:

Power(xij) = x′ij = xλ
ij, λ ∈ R (6)

Then we normalize the score by
x′ij

∑n
j=1 x′ij

. As the value of each xij is between 0 and 1, the original

proposal for the power transformation xij = x′ij =
xλ

ij−1
λ , described in [38] converts all xij into negative

values which poorly maps the input vector xt to its time variable t, thus leading to poor results.
The modified version not only avoids negative values, preserves the statistical distribution of the data
but also improves the results.

Finally, we use w∗ as a feature vector to represent a composite activity for standard supervised
learning method. We construct a linear SVM for each category of the composite activities using the
training data and examine their performance on test data.

4. Experimental Results

In this section, we present the details of acquiring the CogAge dataset and discuss about the
experimental settings and results on this dataset. We also exhibit a comparative analysis of our
approach with the other popular or state-of-the-art methods.

4.1. Dataset Acquisition

We collected the CogAge dataset for atomic and composite activities using the following
unobtrusive wearable devices like smart phone, smart watches [39] and smart glasses.

• LG G5 smartphone [40] placed in a subject’s front left pocket of the jeans, providing 5 different
sensory modalities: 3-axis accelerometer, gravity sensor, gyroscope, linear accelerometer (all
sampled at 200 Hz), and magnetometer (100 Hz). We use this device to capture the body
movement.

• Huawei watch [41] placed on a subject’s left arm, providing two different sensory modalities:
3-axis accelerometer and gyroscope (both sampled at 100 Hz). This device is used to capture the
movements of the hand.

• JINS MEME glasses [42] worn by the subjects, providing 3-dimensional data of accelerometer
(sampled at 20 Hz) for our experiments, in order to capture the head movement.

Please see Appendix A for the details of eight sensor modalities in the above-mentioned three
wearable devices, and the system layout to acquire data from those devices.

The data acquisition process of atomic activities targets 61 different activities involving 8 subjects
who contributed to collect over 9700 instances. The data acquisition process for 7 composite activities
was performed by 6 subjects using the same three wearable devices. An Android-based data acquisition
application was developed to collect data for composite activities. The application connected Huawei
watch and JINS MEME glasses to LG G5 smartphone via Bluetooth and saved the data of 8 sensory
modalities locally on the memory of the smartphone. In this way, it became convenient for the
subjects to move with the set of devices to their kitchens, washrooms, or living rooms, and perform
the activities naturally. We collected over 1000 instances of composite activities. However, some of
instances had missing sensory data and were removed from the dataset later. Therefore, we performed
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the experiments on 890 instances. Table 1 shows the list of composite activities and their counts.
The length of each activity is not fixed as analogous to real-life events. It varies from 5 min to 30 s
because some composite activities like preparing food take a long time to be completed, while there
are some composite activities like handling medications, that take a shorter amount of time (although
the lengths of composite activities were different, we did not use them as features for the classification
because our goal is to recognize these activities in an online settings where we may not be able to
determine their lengths in advance). The data collection for atomic and composite activities was
carried out separately for training and testing phases on different days. We intended to include
variations while performing the activities. The subjects who participated in data collection of atomic
and composite activities come from different countries with diverse cultural backgrounds. Their ways
of performing an activity were also varied. Therefore, we believe that the collected data includes a
variety of activity executions that are suitable for examining the generality of our rank pooling method,
despite the low number of subjects. Appendix A provides more description of data acquisition setup,
sensor modalities, and the complete list of atomic activities.

Table 1. List of composite activities and the number of examples.

List of Composite Activities

Sr. No Activity Name Number of Examples

1. Brushing Teeth 128
2. Cleaning Room 129
3. Handling Medication 137
4. Preparing Food 113
5. Styling Hair 127
6. Using Phone 128
7. Washing Hands 128

4.2. Implementation Details of Activity Recognition

Sensory data of composite activities are firstly provided to the codebook-based atomic activity
recognizer. The data transfer buffers (queues) are created for each type of sensors data. These buffers
contain data of 1500 time points for accelerometer, gyroscope, linear accelerometer, and gravity sensors
of smartphone. For smart phone magnetometer, and accelerometer and gyroscope of the Huawei watch,
the buffers with 450 time points are used. A buffer with 150 time points is prepared for accelerometer
of JINS glasses. Atomic activity recognition is performed every 2.5 s using sensor data temporally
stored in the aforementioned buffers. It produces a series of vectors containing atomic scores of 61
atomic activities (i.e., a(k)i in Section 3.2). Thus, we receive a matrix of atomic scores for each instance
of a composite activity, where the number of rows depends upon the length of the composite activity,
as depicted in Figure 3. For example, an activity with the length of one minute approximately produces
24 vectors of atomic scores. This matrix is considered as the characterization of a composite activity.
Each row of the matrix measures the atomic scores within a time-window. Whereas each column
provides atomic scores for a particular atomic activity in consecutive time-slices. The transitional
patterns of these scores are important to recognize a composite activity. These kinds of matrices are
approximated by the feature vectors using pooling techniques. We have constituted feature vectors for
composite activities using several pooling techniques described in following sections.

4.2.1. Max and Average pooling

Max and average pooling are well known techniques to reduce the dimensionality of input data
while keeping the characteristic information within the output. In our composite activity recognition
problem we used these pooling techniques to transform a matrix of atomic scores into a feature vector.
Max pooling is effective to get good accuracy and also guarantees that no important information
in terms of atomic scores will be missed as the feature vector is constructed using the maximum
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score of each atomic activity during the execution of a composite activity. We have also used average
pooling technique as it is more robust to mis-recognition as the whole spectrum of atomic scores over
time effects the average value. Both pooling techniques yield 61-dimensional feature vectors for each
instance of a composite activity. Despite their simplicity and effectiveness, they are inadequate to
capture the temporal evolution of a composite activity.

4.2.2. Rank Pooling

First of all, we validate our choice to use TVMVs in our rank pooling method. Table 2 shows a
performance comparison between directly using atomic scores and using TVMVs. The results clearly
show that ranking functions applied on TVMVs capture the temporal evolution of the composite
activities better than when they are applied to atomic scores directly. Mainly due to the smoothness,
the noise in atomic scores is removed and secondly the temporal transition captured in TVMVs makes
it more correlated with time variables. Such a correlation is exploited by a ranking machine to learn
the evolution of a composite activity over the time in the input data.

Table 2. Comparison between direct use of atomic scores and their transformation into TVMVs.
The evaluation measures are explained in Section 4.3.

Composite Activity Representation

Encoding Technique Average F1 Accuracy

Rank Pooling using atomic scores 31.50 35.07
Rank Pooling using TVMVs 48.74 51.49

SVR is applied on TVMVs with soft-margin parameter C = 1 and the parameters w and the bias
of SVR are jointly used as the feature vectors of forward rank pooling. For reverse rank pooling we
computed TVMVs in the reverse order and passed to SVR. In order to handle the non-linearity of input
data, we used Hellinger and power transformations on TVMVs. The details of feature vectors based
on these transformations, their notations and lengths are explained below:

• Rank Pooling refers to the 62-dimensional feature vector (FV) obtained after forward rank pooling.
It contains a 61-dimensional weight vector w and the bias b of the SVR trained for each composite
activity instance.

• RPFwdRev, is a 124-dimensional FV obtained by concatenating forward and reverse rank pooling
outputs.

• RPHellinger, is a 62-dimensional FV produced by applying Hellinger transformation on forward
rank pooling FV.

• RPHellinger_FwdRev, is a 124-dimensional FV obtained by applying Hellinger transformation on
forward and reverse rank pooling FV.

• RPPower, is a 62-dimensional FV obtained by applying power transformation on forward rank
pooling FV.

• RPPower_FwdRev, is a 124-dimensional FV obtained by applying Power transformation on forward
and reverse rank pooling FV.

• RPHellinger_Power, is a 124-dimensional FV obtained after concatenation of Hellinger and power
transformation of forward rank pooling FV.

• RPHellingerFwdRev_PowerFwdRev, is a 248-dimensional FV constructed by the concatenation of
Hellinger and power transformations of forward and reverse rank pooling FV.

4.2.3. HMM and LSTM Pooling

In order to capture the temporal evolution of a composite activity, we can consider other popular
algorithms for temporal data, such as Hidden Markov Models (HMM) and Long Short-Term Memory
(LSTM).
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We implemented HMM using hmmlearn library [43]. We built separate HMMs for each of the
composite activities. Each of these HMMs has a left-to-right structure and takes as input a sequence of
atomic scores. The HMMs were trained on two different data settings as described in the Section 4.3.
The composite activity of a test example is recognized as the one, for which the corresponding HMM
outputs the highest probabilities in comparison to the other HMMs. We performed our experiments on
different parametric settings and found the best results with 3 states and 1000 iterations. As described
in Section 1, a composite activity is not characterized by a specific structure of atomic activities.
This may be a reason why we got better results with 3 states instead of a larger number of states.

We also performed our experiments using LSTM. The training data was provided in the settings
as described in the Section 4.3. The input layer of our model accepts 61 atomic scores at each time
point. These atomic scores are abstracted using two LSTM layers that have 18 and 10 units, respectively.
The LSTM layers were followed by two dense layers with 10 units. We used Adam optimizer to
optimize the parameters in our model. For a test instance, the outputs of the second dense layer form
the feature vector [44] for an SVM to identify the composite activity.

4.3. Evaluation Protocol

The CogAge dataset was split into the training and testing data in the following two settings:

• In first setting, we used a holdout method to split CogAge dataset into the training and testing
parts. The training part contained the data collected by three subjects (i.e., S1, S3, S6) which
consists of 472 composite activity instances. The data of the remaining three subjects (i.e., S2, S4,
S5) consisting of 418 activity instances, are used as the testing part. The data split was performed
on the basis of two points. First, we intend to include different subjects on training and testing
data so that the generalization power of our approach for unseen subjects can be demonstrated.
Second, we want to divide CogAge dataset as evenly as possible.

• The second setting is leave-one-subject-out cross validation in which we repeatedly trained our
models on the data of five subjects and tested them on the remaining one subject’s data. In this
setting, every instance of an activity is tested for once and remained the part of training set for
five times. It eliminates the bias of how the data is split and also reduces the variance of results.

For each of the seven composite activities, we trained linear support vector machines (SVM) as
binary classifiers. The training data was used to train models and the performance was examined
on test data. The performance of these SVMs to classify composite activities are evaluated using the
average F1-score, which is an evaluation measure independent of class partition and already used in
previous work of activity recognition [6,36,44]. An F1-score is the harmonic mean of precision (number
of true positives divided by the total number of examples evaluated as positive) and recall (number
of true positives divided by the total number of positive examples). We first compute the F1-score
for each class in a one-vs-all fashion, and then take their mean value to get the average F1-score.
We also evaluate our methods with two additional evaluation metrics to make the comparison with
others easier: the overall accuracy (number of examples correctly classified divided by the total
number of examples), and the Weighted F1-score (sum of F1-scores for all classes, weighted by the
class proportion) [44]. In the following discussion, an average F1-score and weighted F1-score are
abbreviated as AF1 and WF1, respectively. Finally, for readers interested in the performance of
our codebook-based atomic activity recognition, please refer to the website of this paper and also
our paper [44] showing that the codebook approach achieves a reasonable performance of activity
recognition compared to several other methods including deep learning-based ones.

4.4. Results and Performance Evaluation

For composite activity recognition, rank pooling obtains better results in comparison to the other
pooling techniques like max, average, HMM and LSTM pooling. Specifically, Table 3 shows the results
on the holdout setting. It clearly shows that the non-linear rank pooling RPHellingerFwdRev_PowerFwdRev
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outperforms all other pooling techniques in terms of all three measures and produces the best
results. Table 4 shows the results of leave-one-subject-out cross validation, where another variation
of non-linear rank pooling RPHellinger_Power produces the best AF1 and WF1 scores as compared to
other techniques. Although max pooling is slightly better than non-linear rank pooling in terms of
accuracy, we consider AF1 is a better measure because it is computed on the basis of classes while the
accuracy is computed on the basis of instances. The accuracy may be biased on unbalanced datasets
which is the case here as Handling Medication has significantly more associated examples than Preparing
Food. In particular, a dominant class which is well recognized may increase the accuracy of the whole
system without the latter necessarily performing well for less represented classes. In other words,
the performance of RPHellinger_Power is more stable and higher for seven composite activities than
max pooling.

Interestingly HMM and LSTM pooling poorly performed and there can be a couple of reasons:
First, the lack of typical temporal structure of composite activities might lead to the low performance
of HMM as it is useful when there exist such a typical temporal structure. The second reason can be
due to the lack of large-scale dataset because the probabilistic approach (HMM) and model with many
parameters (LSTM) need a much larger dataset than our rank pooling approach. The results conclude
that our rank pooling approach improves the accuracy of composite activity recognition by capturing
well temporal relations among underlying components (i.e., atomic activities) with a relatively small
amount of data.

Table 3. Comparison of pooling techniques: hold-out setting.

Composite Activity Recognition Results

Pooling Technique Average F1 Accuracy Weighted F1

Rank Pooling 51.64 52.63 51.87
RPFwdRev 55.99 56.94 55.89
RPHellinger 52.78 53.11 52.9
RPHellinger_FwdRev 55.14 55.5 55.08
RPPower 44.28 46.41 44.45
RPPower_FwdRev 55.17 55.5 55.12
RPHellinger_Power 56.25 55.74 56.38
RPHellingerFwdRev_PowerFwdRev 60.91 61.48 60.95
Average Pooling 50.88 53.11 50.33
Max Pooling 55.26 57.42 54.6
LSTM (epochs = 1000, #o f layers = 4) 51.82 51.91 51.24
Hidden Markov Models (1000) 47.69 51.2 47.22

Table 4. Comparison of pooling techniques: leave-one-subject-out cross validation.

Composite Activity Recognition Results

Pooling Technique Average F1 Accuracy Weighted F1

RankPooling 55.61 57.87 57.37
RPFwdRev 50.59 53.39 51.89
RPHellinger 59.18 61.41 60.86
RPHellinger_FwdRev 57.36 60.28 59.09
RPPower 43.77 46.70 44.91
RPPower_FwdRev 46.78 51.04 48.67
RPHellinger_Power 62.23 64.58 63.89
RPHellingerFwdRev_PowerFwdRev 60.70 62.91 62.23
Average Pooling 50.29 55.32 52.01
Max Pooling 60.74 64.79 62.41
LSTM Pooling 56.64 60.63 58.13
HMM Pooling 60.23 61.01 60.11
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4.5. Fusion of Rank Pooling with Average and Max pooling

In order to capture the diversity of input data (i.e., atomic scores), the fusion of different results
may lead to a performance improvement, while the fusion of very similar results is unlikely to do
so [45]. Since different pooling techniques have their own strengths, their fusion can be used to achieve
improved results. We performed experiments while combining different variants of rank pooling with
max and average pooling techniques. The results of these experiments are reported in Tables 5 and
6 for the holdout and leave-one-subject-out cross validation settings, respectively. While comparing
these results to those in Tables 3 and 4, we observe 2 to 4% improvements in AF1, Accuracy, and WF1
scores. This result is quite convincing to conclude that the fusion of different results yields performance
improvements. In the following section, we use the fusion of rank pooling with max and average
pooling to discuss the performance of our approach in real-world settings.

Table 5. Results of rank pooling fused with max and average pooling: hold-out setting.

Composite Activity Recognition Results: Pooling Techniques Combined

Pooling Technique Average F1 Accuracy Weighted F1

RankPooling 58.57 58.37 58.43
RPFwdRev 58.2 57.89 58.21
RPHellinger 59.59 59.09 59.56
RPHellinger_FwdRev 58.80 58.85 58.63
RPPower 57.91 58.13 57.48
RPPower_FwdRev 62.59 62.68 62.3
RPHellinger_Power 61.96 61.48 62.00
RPHellingerFwdRev_PowerFwdRev 63.65 63.64 63.48

Table 6. Results of rank pooling fused with max and average pooling: leave-one-subject-out
cross validation.

Composite Activity Recognition Results: Pooling Techniques Combined

Pooling Technique Average F1 Accuracy Weighted F1

RankPooling 61.00 64.49 62.77
RPFwdRev 59.29 63.18 61.00
RPHellinger 62.91 65.94 64.65
RPHellinger_FwdRev 59.16 62.47 60.98
RPPower 64.67 68.54 66.51
RPPower_FwdRev 64.39 68.65 66.24
RPHellinger_Power 62.48 65.42 64.43
RPHellingerFwdRev_PowerFwdRev 62.34 65.24 64.12

5. Discussion for Real-World Settings

Our goal is to use the developed method for real-world settings, especially for monitoring ADLs
of elderly people in a nursing home. Considering this, we first examine and discuss the performance
of our method in an online setting. In addition, it may be burdensome for elderly people to wear all of
LG G5 smartphone, HUAWEI watch, and JINS MEME glasses. Hence, we check how the performance
of our method changes when using a subset of these devices.

5.1. Online-Recognition System

We implemented an online version of our recognition system which identifies composite activities
in nearly real-time. A user wearing all three devices performs composite activities. The devices are
connected according to Figure A1 and they send data to the home-gateway. Sensory data are received in
the respective queues as described in Section 4.2. The online activity recognition is performed at every
2.5 s by encoding sensors data in the respective queues. The codebook-based atomic activity recognizer
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generates atomic scores which are further passed to the composite activity recognizer. In the online
setting, we assume that a time window of 30 s is enough to recognize composite activities. We use the
fusion approach that combines max pooling and average pooling with RPHellingerFwdRev_PowerFwdRev,
based on our experiments where we found it more effective and robust than the other variations of
rank pooling. Therefore, we use this approach to generate the feature vectors of composite activities to
classify them using an SVM. The whole process of recognition takes less than 1 s. Figure 4 shows the
results of our online recognition system, in which we display the F1 scores of seven composite activities
along with another activity Idle. This activity represents the idle state of devices, i.e., when they are not
worn by the subject and probably placed on a desk. In the online settings, we aim to log the duration
of each composite activity performed by a user within a specific time period (one week or month) and
generate a summary based on such logs. We found many time intervals where none of composite
activities is performed and the devices might have been placed on a desk and remain unused. Thus, it
is helpful and meaningful to categorize these time intervals as the idle activity class.

Figure 4. F1 scores for eight composite activities in the online setting.

The demonstration videos of our atomic and composite activity recognition system can be found
online (https://youtu.be/hr3i9I5Ga0M, https://youtu.be/J6WaO7jFOtU). Note that the composite
activity videos were recorded using a previous version where we used linear rank pooling approach
fused with max and average pooling. Thus, at some points, the accuracy remains a little low as
compared to the version presented in this paper. Nevertheless, it can be observed that our system
appropriately recognizes the user’s activities, and is robust to the changes of his postures.

5.2. Experiments on Different Device-settings

We examine the performance of our composite activity recognition models on the following three
different device settings:

• Phone Watch Glasses: we use all the three devices in the full version of our recognition system
and all of the results shown in the above tables are also obtained using this device-setting.

• Phone Watch: in this device-setting, we use sensor values of LG 5S smartphone and Huawei
watch to recognize our activities. This setting can be helpful for the users who want to use their
own glasses or might not want to wear the glasses at all, because it hinders their activity execution
(e.g., foggy glasses when cooking food).

• Watch-only: in this setting, we only use the accelerometer and gyroscope sensors of Huawei
watch to recognize our activities. This is the lightest version of our system. Like for the glasses,
a smartphone might not be convenient to a user for data recording, e.g., like if a user wants to use
it instead of leaving it in their pocket.

We use the same layout as described in Figure A1. The sensory data are selected depending on a
device setting. We find interesting facts that the best performances for the recognition of one activity are

https://youtu.be/hr3i9I5Ga0M
https://youtu.be/J6WaO7jFOtU
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not necessarily obtained with all three devices combined, but sometimes with only the device placed
on the part of the body actively involved in performing the activity. Figure 5 shows the performance
comparison among the different device-settings. The statistics shown in this figure are acquired
using the fusion approach on the holdout setting. Figure 5 clearly shows that washing hands can be
effectively detected in the watch-only setting because hand movements provide enough information
for distinguishing it from the other activities. On the other hand, cleaning room involves not only hands
but also head and lower body movements (while bending, squatting, walking, etc.), so sensor data
from all three devices increases the accuracy. In the future, if we consider more composite activities
which involve movements of different body parts then we expect that using all devices should produce
better results.

Figure 5. Performance comparison in terms of device combinations. The results are shown in terms of
F1 scores.

6. Conclusions and Future Work

In this paper, we proposed a two-level hierarchical model to recognize ADLs. The lower level
recognizes 61 atomic activities using the codebook approach and outputs atomic scores for them over
time. The higher level recognizes lengthy composite activities using the rank pooling approach applied
to sequences of atomic scores. We conducted our experiments on the newly introduced CogAge dataset
of wearable sensors data including 9029 examples of 61 different atomic activities and 890 examples of
7 different composite activities. We showed that our rank pooling approach outperforms the other
well-known approaches like max pooling, average pooling, HMM, and discussed the possibility to
use our approach in real-world settings. Although data for only 7 composite activities were used in
the experiments, we believe that our model based on a large variety of underlying atomic activities is
capable enough to recognize more composite activities like eating, bathing, getting dressed, toileting,
and so on.

We implemented and tested a lighter version of our system on a few of elderly users’ household
where composite activity recognition was being performed in the watch-only setting. This alternative
version performed a little worse than the full version in terms of how correctly composite activities
are identified. We also observed that our system performs better for young users compared to elderly
people because of the slightly different way and speed to perform the same activity. Therefore, the
recognition performance can be improved if we collect a few training examples from such an elderly
user whose ADLs we are going to recognize later. This motivates us to introduce adaptivity in our
system using a classifier feedback approach as our future work. This enhancement may lead to make
our approach adaptable to get optimal results for users of all ages.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1.

www.mdpi.com/xxx/s1
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Appendix A. Data Acquisition Setup

This appendix provides the details of sensor modalities collected for CogAge dataset. It also
explains the data acquisition process of atomic activities.

Appendix A.1. Wearable Devices and Sensor Modalities

Figure A1 shows the hardware configuration of our activity recognition system. The following
three wearable devices are used to capture body, hand, and head movements:

I. LG G5 smartphone [40] is used to capture the body movement. It is placed in a subject’s front left
pocket of the jeans, and provides 5 different sensory modalities:

1. Accelerometer: This sensor produces a three-dimensional sequence that specifies
acceleration forces (including gravity) acting on the smartphone’s x, y, and z axes.
Its sampling rate is 200 Hz.

2. Gyroscope: This sensor produces a three-dimensional sequence that presents angular
velocities on the x, y, and z axes. Its sampling rate is also 200 Hz.

3. Gravity: This sensor produces a three-dimensional sequence that represents gravity forces
on the x, y, and z axes. Its sampling rate is also 200 Hz.

4. Linear accelerometer: This sensor produces a three-dimensional sequence that specifies
acceleration forces (excluding gravity) on the x, y, and z axes. It is also sampled at 200 Hz.

5. Magnetometer: This sensor produces a three-dimensional sequence that describes intensities
of the earth’s magnetic field along the x, y, and z axes. Such intensities are useful for
determining the smartphone’s orientation. Its sampling rate is also 100 Hz.

II. Huawei watch [41] is used to capture the movements of the hand. It is placed on a subject’s left
arm. It provides two different sensory modalities:

6. Accelerometer: This sensor produces a three-dimensional sequence of acceleration forces
applied to Huawei watch’s x, y, and z axes. Its sampling rate is 100 Hz.
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7. Gyroscope: This sensor produces a three-dimensional sequence of angular velocities on the
watch’s x, y, and z axes. Its sampling rate is also 100 Hz.

III. JINS MEME glasses [42] is used to capture head movements of the subjects. It provides one
sensor modality:

8. Accelerometer: This sensor produces a three-dimensional sequence of acceleration forces on
the glasses’ x, y, and z axes. It is sampled at 20Hz.

We use the eight sensor modalities provided by these wearable devices. Figure A1 shows our
system layout where sensors data from JINS MEME glasses and Huawei watch are initially sent
to the LG G5 smart phone via Bluetooth connection and then all sensors data are further sent to a
home-gateway through Rabbit-MQ using Wi-Fi connection [36]. Our home-gateway is established on
Intel NUC NUC5i5RYK (CPU: Core i5-5250U 1.6GHz, RAM: 16GB, HDD: 450GB, OS: Debian 4.8.4-1)
where our atomic and composite activity recognition methods are executed.

Smart Glasses

Smart Watch

-Accelerometer

-Accelerometer

-Gyroscope

Smart Phone

-Accelerometer

-Gyroscope

-Lin. Accelerometer

-Magnetometer

-Gravity
Via Bluetooth

A
ll
 8

 s
e
n
s
o
rs

-d
a
ta

Via AMQP

Human Activity recognition

Home-Gateway

Figure A1. System layout: Our system uses three wearable devices. The sensory data from the smart
glasses and the smart watch are firstly sent to smart phone via Bluetooth connection and then all
sensory data is sent to home-gateway through Rabbit-MQ using Wi-Fi connection.

Appendix A.2. Data Acquisition of Atomic Activities

The data acquisition process of atomic activities targets 61 different activities involving 8 subjects
who contributed to collect over 9700 instances. The data collection was carried out separately
for training and testing phases on different days because we intended to include variations while
performing atomic activities. In each phase the subjects were asked to wear the three devices and
perform 10 examples of each activity where every example lasts for 5 s. After the removal of some
examples where data were not appropriately recorded due to sensor errors, we use 9029 instances for
our experiments. As shown in Table A1, 61 atomic activities are split into two distinct categories: 6
state activities characterizing the posture of a subject, and 55 behavioral activities characterizing his
or her behavior. The reason is that a behavioral activity can be performed while being in a particular
state, for instance, rubbing hands can be performed while either sitting, standing, or lying.
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Table A1. List of state and behavioral atomic activities.

List of State Atomic Activities

Standing Sitting Lying
Squatting Walking Bending

List of Behavioral Atomic Activities

Sit down Stand up Lie down
Get up Squat down Stand up from squatting
Open door Close door Open drawer
Close drawer Open small box Close small box
Open big box Close big box Open lid by rotation
Close lid by rotation Open other lid Close other lid
Open bag Take from floor Put on floor
Bring Put on high position Take from high position
Take out Eat small thing Drink
Scoop and put Plug in Unplug
Rotate Throw out Hang
Unhang Wear jacket Take off jacket
Read Write Type
Talk using telephone Touch smartphone screen Open tap water
Close tap water Put from tap water Put from bottle
Throw out water Gargle Rub hands
Dry off hands by shake Dry off hands Press from top
Press by grasp Press switch/button Clean surface
Clean floor
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