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Abstract: Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to
gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as
well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities.
In particular, mobile crowdsensing techniques can be used to capture phenomena of common interest.
Especially valuable insights can be gained if the collected data are additionally related to the time
and place of the measurements. However, many technical solutions still use monolithic backends
that are not capable of processing crowdsensing data in a flexible, efficient, and scalable manner.
In this work, an architectural design was conceived with the goal to manage geospatial data in
challenging crowdsensing healthcare scenarios. It will be shown how the proposed approach can
be used to provide users with an interactive map of environmental noise, allowing tinnitus patients
and other health-conscious people to avoid locations with harmful sound levels. Technically, the
shown approach combines cloud-native applications with Big Data and stream processing concepts.
In general, the presented architectural design shall serve as a foundation to implement practical and
scalable crowdsensing platforms for various healthcare scenarios beyond the addressed use case.

Keywords: mHealth; crowdsensing; tinnitus; geospatial data; cloud-native; stream processing;
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1. Introduction

Nowadays, smartphones can be considered as an everyday object. Along this trend, many other
trends have been fanned. For example, as many people become more and more health-conscious,
smartphones can be utilized to support the trend to monitor someone’s own health status. Mobile
crowdsensing is one technology that is often used in this context. With mobile crowdsensing, a person’s
health status can be efficiently monitored, but beyond this opportunity, each crowd user benefits from
the measurements of other crowd users as well since measured values can be compared among the
users over time. Especially for users that suffer from a chronic disease or disorder, the approach of
mobile crowdsensing can be very helpful [1–3]. For the tinnitus chronic disorder, the measurement of
noise exposure can help each person in a crowd to avoid harmful locations based on the individual
measurements and their aggregations. For example, if a defined threshold in terms of the average
loudness is exceeded for a certain location, tinnitus users can be warned to avoid these places and
therefore avoid an unhealthy noise exposure.

Importantly, smartphones with their built-in sensors are able to reliably measure the noise level
of a user’s surrounding and store these measurements to a backend, which calculates average values
and responses with the aggregated data. Based on this information, places with an unhealthy noise
exposure can be, for example, visually highlighted on a map on the smartphone of a user. On the one
hand, as potentially millions of noise measurements have to be collected and processed continuously
and concurrently, such a backend in the mHealth context has to ensure a high degree of scalability to
avoid a degradation of the service for its users [3]. In addition, since the workload of such a system
can change frequently (e.g., due to day times or public events), such a backend should also provide
elasticity. On the other hand, efficient computations on geospatial data are non-trivial and choosing
an adequate data representation format can be a complex task. Furthermore, the architecture of such
a system should allow for flexible technical changes. Ensuring flexibility can become important, for
example, if a mobile operating system changes the sensor features used for measurements or other
additional requirements emerge. Therefore, monolithic backends using relational databases are usually
not sufficient if crowdsensing is used to store, process, and deliver stream-based smartphone data.
When working on a scenario like the measurement of noise levels, which is considered in the work at
hand, we propose that new architectural designs become necessary. For this purpose, we discuss a
mobile crowdsensing architecture, which is based on (1) cloud-native applications as well as (2) Big
Data and stream processing concepts. This work discusses the newly conceived architectural design
and also shows an implemented prototype on top of the architecture, which enables the aforementioned
noise level measurements. The architecture, its design principles, and the prototype show that for
tinnitus patients, the compiled approach is feasible in particular. However, the proposed approach can
be used for other healthcare scenarios with similar requirements as well.

As health-conscious people, especially those suffering from a chronic disease, crave technical
applications like those shown here; the overarching goal of this work is to utilize the power of the
crowd on one hand, but provide a scalable and flexible technical solution on the other hand. To
summarize the pursued aspects, the contributions of our work are as follows:

• Practically, geospatial data that are gathered by the smartphones of crowd users shall be the basis
to provide a noise exposure map for tinnitus patients and the general public. This map shall help
patients and other health-conscious people to avoid unhealthy places.

• Technically, a cloud-native architectural design based on microservices and stream processing has
been composed, which is able to collect, process, aggregate, store, and deliver measurement data
in mobile crowdsensing scenarios in an efficient and scalable manner. In this context, it is shown
how the mobile context is captured by the proposed architectural design in such a way that it is
able to cope with potentially increasing amounts of workloads without a noticeable degradation
of the resulting response times for its users.
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• Generally, the technical setting shown in this paper shall help other researchers to create scalable
mobile crowdsensing solutions for various healthcare scenarios.

Moreover, recent works show [3,4] that approaches that combine contemporary mobile technology
with paradigms from the healthcare side should address the question how this combination can be
accomplished so that various diseases and their particular aspects can be flexibly addressed. To this
end, based on the architecture that is presented in this work, including the promising experimental
results, the approach may constitute as a solid basis for other disorders than tinnitus. For example,
for the management of stress, noisy places should be also avoided. In addition, stress constitutes
generally a negative factor and is also being negative for many diseases and disorders, including
tinnitus. Therefore, the measurements done in this work may be beneficial for other scenarios. As
stress is also being important for companies and the management of employees, the solutions can
also be utilized in non eHealth scenarios. Finally, the presented approach can be adapted to other
measurements like, for example, the aggregated gathering of weather-related factors. The latter can
then be used, for example, for the better management of migraine.

In summary, when designing a system in such a context, the following technical challenges must
be addressed:

• Scalability and Elasticity: The system should be able to cope with increasing workloads without
significant loss of performance and adapt its resources accordingly.

• Efficient Geospatial Processing: The system should be able to efficiently process geospatial data
and store it in an adequate data representation format.

• Flexibility: The system should allow flexible changes in order to cope with changing
requirements.

An overview of the resulting system design that addresses these challenges is shown in Figure 1. A
mobile application as well as Internet of Things (IoT) sensors are able to contribute their measurement
data by sending the data to an ingress service in the cloud. The measurements of all users in a certain
area are then processed in the backend by utilizing stream processing techniques. More specifically,
the received measurements are continuously aggregated and prepared for being visualized on the
smartphone of the crowd users, before finally being stored in a database. The mobile application can
then request the aggregated data by querying an access service and displaying it directly on the device.
The shown architecture distinguishes itself from others (like, for example, TrackYourTinnitus [2])
as it allows for the efficient processing of data from various input sources (e.g., IoT sensors and
mobile applications) in the mHealth context by making use of stream processing concepts, which are
embedded in a cloud-native design.

This work is an extension of the following conference paper [5]. It substantially extends the
conference paper by the following aspects. First, the used data model for the representation of the
geospatial data as well as the indexing mechanisms for its storage are discussed (see Section 5).
Second, the stream processing as well as other implementation aspects in the Measurement Context
are described in more detail (see Section 6). Third, the performance and scalability of the conceptual
architecture were evaluated by conducting load tests on a running instance of the developed prototype
(see Section 8). Finally, related work and background information are discussed more extensively.

The work at hand is built upon the following structure. In Section 2, related work is discussed,
while Section 3 introduces relevant background information. The proposed architecture is presented
in Section 4, followed by a discussion in Section 5 that shows in what way geospatial data is captured
and processed by the architecture. The measurement context, which is a peculiarity of the approach, is
separately discussed in Section 6. Selected insights into the prototypical implementation are presented
in Section 7. The experiments conducted in the scope of the performance evaluation of the architecture
and their results are presented in Section 8, before concluding the paper with a summary and an
outlook in Section 9.
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Figure 1. System design overview of the crowdsensing platform.

2. Related Work

Mobile crowdsensing platforms that are used for urban sensing and collaborative noise maps
have been already discussed. In order to enhance the spatial and temporal data resolution of noise
pollution in cities, the authors of [6] implemented a participatory sensing approach, making use of an
Android application and an urban sensing platform. Importantly, the smartphones’ microphones and
GPS-sensors are utilized by the mobile application to perform location-related noise measurements.
Following this, the collected data is transferred to the urban sensing platform. Furthermore, users are
enabled to access this information basis and generate real-time noise maps or data graphs. The authors
of [7], on the other hand, realize a noise monitoring platform and acoustic urban planning in smart
cities by leveraging crowdsensing based on an Android application and Open Source data collection
and processing techniques. Noise reduction interventions are recommended to urban planners in
order to enable them to comply with European laws and regulations, using a web-based visualization
application. However, none of these platforms offers an interactive visualization of the measured
noise data directly on the mobile application, which would presuppose that the respective architecture
is designed for mobile clients. Moreover, these approaches do not set their main focus on efficiency
and scalability.

Crowdsensing platforms and architectures that address scalability and efficiency have also
been considered in the past. The authors of [8] propose the middleware infrastructure MECA
(mobile edge capture and analysis middleware for social sensing applications). It is designed for
mobile data collection of crowdsensing applications in an efficient, flexible, and scalable manner.
The common infrastructure allows for the collection of real-time data for different kinds of applications
simultaneously. By introducing a high-level abstraction of phenomena to be measured, applications
can express diverse data needs. Additionally, data can be shared among different applications with
common information needs. Primitive data processing can be performed on the edge of the network
(e.g., base stations in cellular networks). The platform CAROMM (context-aware real-time open
mobile miner), proposed by the authors of [9], supports data collection for mobile crowdsensing
applications by leveraging real-time mobile stream mining. This reduces the amount of sent data
as well as energy-usage on mobile devices, while providing comparable accuracy to conventional
approaches on the other. Different types of stream data can be captured on mobile devices, processed,
managed, analyzed, and finally queried by mobile users. The collaborative mobile sensing platform
MOSDEN (mobile sensor data engine) [10] enables us to capture and share sensed data between
multiple distributed (mobile) applications. Its design goals are ease of use, ease of development and
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deployment, scalability and performance, ease of access to both on-board and external sensors, support
for on-board data analytics and collaboration, as well as data sharing. In contrast to CAROMM,
MOSDEN separates data collection, processing, and storage from the domain-specific application logic
by providing standardized interfaces in order to reduce complexity as well as to ease the re-usability
opportunities for developers. CARDAP [11], a context-aware real-time data analytics platform, deals
with energy-efficient and context-aware distributed mobile data analytics in the context of distributed
applications like crowdsensing. It utilizes a standardized component-oriented approach in order to
provide the application-specific analytics and additionally addresses local data storage and processing
in fog and cloud environments. The authors of [12] propose an approach for mobile crowdsensing
based on the cloud-based publish/subscribe middleware CUPUS (cloud-based publish/subscribe
middleware). The platform is able to acquire sensor data from mobile devices in a flexible and
energy-efficient manner, and to perform near real-time processing of Big Data streams. It allows us to
manage mobile sensor resources within the cloud, filtering, and aggregating sensor data on mobile
devices, before they are transmitted to the cloud based on global data requirements, and to send push
notifications from the cloud to mobile devices. However, none of the approaches discussed focuses
on the mHealth context and therefore do not consider aspects such as privacy. In addition, from
a technical point of view, none of these approaches combines cloud-native and stream processing
concepts to enable efficient and (horizontally) scalable processing of measurement data, as proposed
in the work at hand.

Platforms that deal with efficient processing of data streams have already been discussed in the
literature. For example, Microsoft StreamInsight [13] is an extensible stream processing platform that
enables continuous query processing, while ensuring a well-defined temporal model over incoming
events. Its extensibility infrastructure allows us to process geospatial data with the help of the SQL
Server Spatial library [13]. Furthermore, other approaches for processing geospatial data in particular
have been considered in the past. The authors of [14] review recent developments in the context of
crowdsourcing of geospatial data in particular. They identify two basic technologies that facilitate these
developments: geo-referencing (e.g., GPS) and the Web 2.0 to enable user-generated content (e.g., by
uploading data via broadband communication). Challenges and opportunities of geospatial big data
are discussed in [15]. The authors highlight the emerging opportunities through the advancements
of sensor and communication technologies as well as mobile devices and highlight the importance
of high performance computing in this context. As an example, the XML-based system G-Portal [16]
has been designed to organize and manage geospatial as well as geo-referenced information in order
to make it available through a web search and an interactive map. Other geospatial applications like
GeogDL [17] have been built on top of G-Portal.

Crowdsensing of geospatial data has already been considered in other application domains,
such as vehicular networks [18,19] or location-based games [20,21]. Furthermore, the feasibility of
crowdsensing platforms in the mHealth context that support people suffering from chronic disorders,
especially tinnitus, has already been shown by [1–3,22]. However, to the best of our knowledge, none
of these approaches combines efficient and scalable processing of geospatial data with crowdsensing
in the mHealth context, as it is done in this work.

3. Background Information

Mobile crowdsensing (MCS) is a paradigm that is increasingly utilized in the mHealth
context [22,23]. It has been shown that MCS has the potential to reveal meaningful medical insights
when it is combined with Ecological Momentary Assessments (EMA) [24]. For instance, the authors
have developed the mobile crowdsensing platform TrackYourTinnitus (TYT), which is designed for
patients with the tinnitus disease [22]. Note that the tinnitus disorder can be described as the phantom
perception of a sound. The related symptoms of patients are subjective and vary over time. In order
to monitor and evaluate this variability of symptoms over time, TYT was realized based on EMAs
and mobile crowdsensing. Notably, with a prevalence rate of 10−15% of the population worldwide,
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tinnitus is a chronic disorder with a high economic burden. Since there is no general treatment,
patients search for valuable experiences or methods to better manage their symptoms in daily life. One
possible countermeasure constitutes the avoidance of noisy places, as it is often reported that patients
suddenly get a tinnitus episode or that their already existing symptoms worsen after they visited a
concert. In addition, also for other phenomena like stress management, the avoidance of noisy places
is recommended. Therefore, in this work, the power of the crowd shall be leveraged to create noise
level maps of a region. More precisely, users should be able to measure the current noise level of their
environment with their smartphones using mobile crowdsensing techniques. Noise levels maps that
are created utilizing this data can be used by tinnitus patients to avoid noisy places (if the collected
data is reliable). Or, being utilized by other users for other healthcare questions like the reduction
of stress.

Although this work exploits the power of the crowd, it technically differs greatly from
TrackYourTinnitus with respect to three major issues: First, the platform should be able to process many
concurrent requests for incoming and outgoing measurement data without a significant performance
loss. Hence, it should be scalable and, in the best case, also be elastic. To get a better idea of these two
criteria, the following definitions for scalability and elasticity from the literature are used.

Definition 1. Scalability is “the ability of a system to maintain the satisfaction of its quality goals to levels that
are acceptable to its stakeholders when characteristics of the execution environment (“the world”) and design
(“the machine”) vary over expected ranges.” [25,26]

Definition 2. “Elasticity is the degree to which a system is able to adapt to workload changes by provisioning
and deprovisioning resources in an autonomic manner, such that at each point in time the available resources
match the current demand as closely as possible.” [27]

Second, the platform should be able to efficiently process, store, and deliver a large amount of
geospatial data. Geospatial data or geographic data denote data with “implicit or explicit reference
to a location relative to the Earth” [28]. Finding an adequate representation format for this kind of
data is a key task in the design phase of such a platform. In general, computations on geospatial
data are complex as operations on high-resolution coordinates, that are needed in order to aggregate
geographically and hierarchically related data, are costly [29]. Therefore, it is of utmost importance to
select an efficient approach for indexing and aggregating geospatial data. Third, the platform should
be designed in a generic way, so that it is able to process different types of geospatial crowdsensing
data (e.g., noise pollution, air pollution, or traffic information) as well as different types of utilized
sensors (e.g., smartphone or stationary sensors).

To conclude, designing a crowdsensing platform that is able to collect, process, store, and deliver
data for noise measurements comes with several new challenges compared to other crowdsensing
solutions of the authors in particular and other existing work in general.

4. Technical Approach

The core functions that were identified for the mobile crowdsensing platform, that enables the
implementation of a noise level map for tinnitus patients, are shown in Table 1. After the requirements
analysis and during the design phase, it was decided to decompose the system into bounded contexts.
The term originates from domain-driven design (DDD) and “delimits the applicability of a particular
model, so that team members have a clear and shared understanding of what has to be consistent
and how it relates to other contexts” [30]. The contexts serve as the inner boundaries for a global
domain (e.g., crowdsensing of geospatial data), and are the result of a strategic decomposition
of large components into smaller, more coherent components [31]. After defining these contexts,
respective microservices were developed that can be flexibly adapted or replaced if the requirements
of a context change. To this end, the five bounded contexts User Identity, Social, Measurements,
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Incentives, Communication, and Sensors were identified. Following this, functions were mapped to
one of these contexts as shown in Table 1. Finally, one or more microservices compose a bounded
context, as different patterns must be supported to technically implement a bounded context through
microservices.

Table 1. Core functions of the platform mapped to bounded contexts. Reproduced with permission
from Kraft et al., In Proceedings of the 2019 IEEE 32nd International Symposium on Computer-Based
Medical Systems (CBMS); published by IEEE, 2019 [5].

# Function Bounded Ctx

1.1 Let users register and authenticate with the backend. User Identity
1.2 Let users change their password and provide lost-password recovery. User Identity
1.3 Let users deactivate and delete their user account. User Identity

2.1 Let users maintain a User Profile with personal information. Social
2.2 Let users join groups and start, follow, and contribute to discussions. Social
2.3 Provide geospatial relations of groups and discussions. Social
2.4 Trigger a notification to the user on new contributions in subscribed

discussions or subscribed areas of interest.
Social

3.1 Collect measurements provided by smartphones and other IoT-devices and
streamline them as a common input stream.

Measurements

3.2 Aggregate the measurements to provide min-, max-, and average values
within certain geospatial areas and time-based windows.

Measurements

3.3 Allow geospatial request filtering by specifying the area of interest and time
windows.

Measurements

3.4 Allow access to single stored measurements with a pagination like limitation
for the number of results.

Measurements

3.5 Provide an API that returns the results in a common geospatial format to
allow straightforward visualization features with commonly used frontend
technologies.

Measurements

4.1 Track user contributions for authorization of additional functionality and to
provide a feature that users can evaluate their progress.

Incentives

4.2 Maintain awards and streaks for certain achievements that motivate users to
continue in contributing measurements.

Incentives

5.1 Inform users about certain events via email. Communication
5.2 Inform users about certain events via push-notifications. Communication
5.3 Let the user define preferences for the type of events he or she likes to be

informed.
Communication

6.1 Manage meta-information about statically deployed sensors. Sensors

A cloud-native approach was selected in order to enable an efficient and scalable processing of
concurrent requests for noise measurements. A cloud-native application (CNA) denotes an application
that is explicitly designed to be deployed in the cloud. To this end, such applications are distributed,
horizontally scalable, and elastic by design. Moreover, CNAs are composed of microservices,
with a minimum of isolated states [32]. The developed prototypical implementation uses several
microservices, utilizing Docker (https://www.docker.com/) as container technology and Kubernetes
(https://kubernetes.io/) as container-orchestration system. Notably, in order to enable decoupled
processing of incoming geospatial data, the cloud-native approach was combined with stream
processing. Stream processing denotes a programming paradigm. in which data from an unbounded
(i.e., infinite and ever growing) dataset (data stream or event stream) is continuously read and
processed. This ongoing processing is taking place in a continuous, asynchronous, and non-blocking
manner [33]. Furthermore, due to its compatibility to Apache Kafka (https://kafka.apache.org/), the
library Kafka Streams was used for the implementation of the stream processing. Apache Kafka is

https://www.docker.com/
https://kubernetes.io/
https://kafka.apache.org/
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a distributed stream processing platform that allows users to publish and subscribe to streams of
messages. In Kafka, services can act as producer and publish different messages to Kafka Topics. Every
interested service can then act as a consumer that subscribes to these topics and reads the respective
messages [33].

Figure 2 shows the overall architecture of the platform. Incoming measurements from
smartphones are handled by the central Measurement API Services. Measurements are then forwarded
by these services to the stream processing with Apache Kafka. In addition, any type of an Internet
of Things (IoT) sensor can use the message queuing telemetry transport (MQTT) protocol in order
to directly contribute measurement data to Apache Kafka. Furthermore, the measurement API
services provide an interface for the other services that allows them to consume raw or transformed
measurement data. In Section 6, this process is described in detail. User authentication and
authorization for all access-restricted services are handled by the Authentication Services. Different
autonomous services manage their individual databases for sensor data, social and discussion data,
incentive (i.e., challenges and awards) data, and finally communication (i.e., contact) data.

Mobile
App

Authentica-
tion

 Services

raw noise measurements
Noise

Measurement
API

Services

Social
Services

Measure-
ment
Data

Apache Kafka

Kafka Streams
Services

Kafka
Connect

Social/
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Data

intermediate topics

final results

Incentive
Services

Challenges/
Awards

Data

IoT Sensors

Communica-
tion

Services
Contact

Data

Push
Notification
Service

API-Gateway

Sensor Data

sensor meta information

Credentials
Data

Sensor
Services

Figure 2. Architecture of the crowdsensing platform. The components depicted in orange are part of
the proof-of-concept implementation. Reproduced with permission from Kraft et al., In Proceedings of
the 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS); published
by IEEE, 2019 [5].
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5. Representation of Geospatial Data

In order to efficiently transmit, store, and process geospatial data, it has to be represented by an
adequate data format. A coordinate referencing system (CRS) or spatial reference system (SRS) [34] is
a system that describes how entities are located in space based on their coordinates. It allows us to
unambiguously identify any point in a geographical space (e.g., on Earth). In this context, an object
is related to a coordinate system by a geodetic datum. One of the most known geodetic datums is
the World Geodetic System (WGS). Its latest revision WGS84 [35] is used by the Global Positioning
System (GPS) [36], which, in turn, is commonly used for navigation purposes. WGS approximates the
sea-level of the earth by using a defined ellipsoid. A point is then described by latitude and longitude
angles on this surface.

Furthermore, in order to provide interoperability between systems, we decided to use the OGC
Simple Feature Access Specification [37], published by the Open Geospatial Consortium (OGC).
It defines a common architecture on how geometric objects that are associated with a spatial reference
system can be stored and accessed. Its geometry model includes definitions for geometries like
points, lines, and polygons. GeoJSON [38] is a geospatial data interchange format based on the
JavaScript Object Notation (JSON) that uses WGS84 as coordinate reference system and encodes
geographic data structures according to the simple feature access specification. A GeoJSON object
may not only represent a region of space (i.e., a Geometry), but also additional properties forming
a spatially bounded entity (i.e., a Feature), or a list of features (i.e., a FeatureCollection). A feature
object contains an Identifier (id), a geometry object, and additional properties that describe the entity.
Geometry objects are of type Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon,
or GeometryCollection, and are described by coordinates, which are encoded as arrays in the form
[longitude, latitude], (and optionally altitude/elevation). The properties attribute contains an
arbitrary JSON object and can be used in order to associate data with the geometry. In the case of the
developed prototypical implementation, these properties were used to store the (sensor) measurement
data. Figure 3 shows an example for a GeoJSON feature, including a polygon, defined by the
coordinates of its vertices, and the properties including (sensor) measurement values. The right-hand
side of the figure shows a graphical representation of the polygon described by the geometry.

{
" type " : " Feature " ,
" geometry " : {

" type " : " Polygon " ,
" coordinates " : [

[ 9 . 9 6 0 0 5 , 48 .42798 ] ,
[ 9 . 9 5 9 7 9 , 48 .42733 ] ,
[ 9 . 9 6 0 5 1 , 48 .42690 ] ,
[ 9 . 9 6 1 5 0 , 48 .42712 ] ,
[ 9 . 9 6 1 7 7 , 48 .42776 ] ,
[ 9 . 9 6 1 0 4 , 48 .42819 ] ,
[ 9 . 9 6 0 0 5 , 48 .42798 ]

} ,
" p r o p e r t i e s " : {

" measurement_value1 " : 5 0 . 5 ,
" measurement_value2 " : 0
. . .

} ,
" id " : 622051731373752300

}

Figure 3. Example for GeoJSON feature object, including a polygon geometry and its visualization
(Screenshot from http://geojson.io).

http://geojson.io
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In order to enable efficient storage, processing, and hierarchical aggregation of geospatial data,
it is helpful to partition data into buckets. To this end, we make use of a Discrete Global Grid Systems
(DGGS). The following definition is provided by the Open Geospatial Consortium (OGC):

Definition 3. “A DGGS is a spatial reference system that uses a hierarchical tessellation of cells to partition and
address the globe. DGGS are characterized by the properties of their cell structure, geo-encoding, quantization
strategy and associated mathematical functions” [39].

A series of discrete global grids represents the spatial reference system of a DGGS. Each of
these grids has a finer resolution, as it encompasses an increasing number of cells with respect to its
predecessor grid. Since DGGSs cover the whole spherical surface of the earth, they can be used to
partition data collected anywhere on the planet.

Furthermore, Uber’s Hexagonal Hierarchical Spatial Index (H3) [40] was used as a
DGGS-implementation. Its grid system (a visualization of the grid system can be found on Uber’s
website [40]) allows for the representation of the same data efficiently and in differently sized buckets.
These characteristics, in turn, are important to aggregate (and visualize) data on different scales. For
instance, for the two points depicted in Figure 4a, indexing them with H3 at resolution 10, results in
two different indexes with their bounding polygons being next to each other (see Figure 4b), while
indexing them with resolution 6, results in one common index including both points (see Figure 4c).
Notably, the H3 library allows for a specific geospatial location to determine in which bucket it has to
be placed and, inversely, to calculate the boundary of each bucket if its index is known.

(a) Two GeoJSON
Points

(b) The points from
(a) indexed with H3 at
resolution 10

(c) The points from (a)
indexed with H3 at
resolution 6

Figure 4. GeoJSON points and their respective H3-indexed polygons at different resolutions
(Screenshots from http://geojson.io/).

6. Measurement Context

The measurement context is a decisive aspect and key factor to create a noise level map.
This section describes in what way the challenges to efficiently represent and aggregate noise
measurements are addressed. At first, the developed document-based (NoSQL) data model for
noise measurements that is used for the Measurement Context is shown in Figure 5. GeoJSON Simple
Features (see Section 5) are used to model measurements and aggregations in order to provide better
compatibility with different geo-libraries and data-storage in MongoDB (https://www.mongodb.
com/). Importantly, the latter supports indexing of GeoJSON structures inherently. Technically, the
attributes Type, Geometry, and Property are used. A unique id and additionally a geo-index, that is
calculated using the H3 library, is assigned to each noise measurement. Properties are used to store the
measurement payload, which contains the type of the sensor, the trigger of the measurement, and one
or more Measurement_Types (e.g., LAeq, LCPeak, and TWA [41]), amongst other attributes. Each of

http://geojson.io/
https://www.mongodb.com/
https://www.mongodb.com/
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these types can either contain only the type and a value if they represent a single measurement, or
contain minimum, maximum, mean, and count values, if they represent an AverageFeature. The latter
is used to store aggregated values for a specific time window in a specific geographical area (i.e., a
hexagonal polygon). Any user-related data are stored separately from the measurement data in order
to preserve privacy.

MeasurementFeature .-+     Geometry 1 Average Feature 
1 

+ id type id 

type coordinates type 

Geometry +- 1 Geometry 

Properties --+--y_ Properties � Properties 

h3idx h3idx 
sensor_type 

created_at 
trigger _type 

h3_resolution 

accepted_at +- created_by _userid 
center_coord 

created_by _user _type 
calculated_at 

MeasurementUserMapping 
window_id 

position_accuracy_in_meters 

+ +- from 
measurement_id Measurement_ Types 

+ to 
user_id 

+ Device PrivacySettings � Measurement_ Types 

created 
-

at userid type: 

r+- settings value: 

+ Device count 

brand l....E:: PrivacySettings min: 

model privacy_type max 

device 
-

id privacy_user_type mean 

Figure 5. Data model for noise measurements. Reproduced with permission from Kraft et al., In
Proceedings of the 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems
(CBMS); published by IEEE, 2019 [5].

Before sending measurements, the user can authenticate himself to the system. The authentication
follows a token-based approach based on OAuth 2.0 [42] in order to reduce the transmission of user
credentials and enable separation of the authentication in a distributed environment. Users may log in
once with their credentials and then receive a signed access token that can be used for all subsequent
requests for a certain period of time. Only the Authentication Service (see Section 4) is able to retrieve
the user information associated with a token, while other services are only able to validate if the token
is valid. Alternatively, users may share their measurements anonymously.

Figure 6 shows the implemented data flow of measurements in the Measurement Context. The
Data Ingress Phase consists of Steps 1–4, which are briefly outlined: In Step 1, measurement records
from the mobile application are sent to an endpoint of the Ingress Service, while in Step 2, the Ingress
Service checks records for validity. Additionally, the endpoint handler attaches timestamps as well
as a user_id, if the user is authenticated. An example for a GeoJSON object, as it is sent to the
Ingress Service, is shown in Figure 7. In Steps 3 and 4, the measurement is published to the Kafka
topic noise-raw-measurements, and a confirmation message is sent to the mobile application (if the
measurement is valid). Thereafter, the Stream Processing Phase is performed in Apache Kafka in Steps
5–12. In the following, these steps are discussed in more detail.
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Mobile 
App 

Access 
Service 

3: Append noise measurement 
to Kafka Topic  

noise-raw- 
measurements

Ingress 
Service 

Single Noise 
Measure-

ments
Aggregations User 

Data 

Apache Kafka

5: poll from noise-raw-measurements

7: publish noise-anonymized-h3-10-indexed, 
noise-anonymized-h3-5-indexed, 

 noise-user-measurement-mapping

8: poll from  
noise-anonymized-h3-10-indexed, 
noise-anonymized-h3-5-indexed 

Kafka Connect 
Mongo Con- 

ncteor 

11.1: poll from  
noise-anonymized-h3-10-indexed

11.3: poll from noise-user-measurement-mapping

11.2: poll from different aggregate topics 

1: Post Record

2: Check record format and  
set correct USERID from token

4: Respond to user device,  
that noise measurement has been 
 accepted and will be processed

13: Send request  
to visualize data 

14: Authorize request  
using provided token

15: Load data of interest from  
corresponding database

16: Perform final aggregation steps  
and apply privacy filters

17: Respond with proper data  
for visualization purposes 

 
Kafka Streams 

Preparator 

6: pre-checks, validation,  
and privacy separation

10: publish to different 
noise-average-rXwY aggregate topics 

12: efficiently off-load 
 topics to database 

 using batches 

 Labeling:

1. Data Ingress Phase
2. Stream Processing Phase
3. Data Access Phase

 
Kafka Streams 

Aggregator 

9:time-windowed average  
calculation based on H3-indexes

Figure 6. Data flow of noise measurements. Reproduced with permission from Kraft et al., In
Proceedings of the 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems
(CBMS); published by IEEE, 2019 [5].

{
" type " : " Feature " ,
" geometry " : {

" type " : " Point " ,
" coordinates " : [

9 .967101535538086 ,
48 .384883089298114

]
} ,
" p r o p e r t i e s " : {

" measurement_types " : {
"LAeq" : {

" type " : "LAeq " ,
" value " : 70 .5179

} ,
. . .

} ,
. . .
" device " : {

" brand " : " apple " ,
" model " : " iphone4 , 1 " ,
" device_id " : " uuid "

}
}

}

Figure 7. Example GeoJSON object that is sent to the Ingress Service.
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Table 2. Kafka topics used in the noise measurement stream processing.

Topic Key Description

noise-raw-measurements created_at The entrance topic for every measurement.
noise-user-measurement-mapping userid Contains mapping objects that relate

measurement-id and user-id.
noise-anonymized-h3-10-indexed H3idx(10) Contains measurements that are filtered and

anonymized. The key is an H3 index of
resolution 10, in order to be correctly assigned
to partitions used in average aggregation.

noise-anonymized-h3-5-indexed H3idx(5) Contains measurements that are filtered and
anonymized. The key is an H3 index of
resolution 5, in order to be correctly assigned
to partitions used in average aggregation.

noise-average-r10w15 H3idx(10) Contains smaller aggregations in
H3-resolution 10 and a window-length
of 15 min.

noise-average-r10w60 H3idx(10) Contains smaller aggregations in
H3-resolution 10 and a window-length
of 60 min.

noise-average-r5w60 H3idx(5) Contains larger aggregations in H3-resolution
and a window-length of 60 min.

noise-average-r10w1440 H3idx(10) Contains smaller aggregations in
H3-resolution 10 and a window-length
of 1 day.

noise-average-r5w1440 H3idx(5) Contains larger aggregations in H3-resolution
5 and a window-length of 1 day.

The Java library Kafka-Streams was utilized in order to publish measurement data to different topics.
Table 2 shows the topics currently used in the developed stream processing implementation, together
with the key that is used to identify each record and a description for the respective topic. In Steps 5–7,
all messages from the noise-raw-measurements topic are processed by the preparator, i.e., measurements
are validated and subsequently anonymized for privacy reasons. To be precise, the mapping between
users and individual measurements is stored in a separate topic noise-user-measurement-mapping, to
which only the user himself has access. This way, all measurements used for the aggregations can be
stored without any user data, but the user can still retrieve his own measurements. Furthermore, the
coordinates of the measurements are used to calculate H3-indexes with the resolutions 10 (smallest)
and 5 (intermediate). The anonymized and indexed data are then published to respective Apache
Kafka topics. In Steps 8–10, data from the previous steps are serving as input for the aggregator, in
which averages (or other aggregation operations) for the different resolutions and time windows are
calculated based on H3-indexes, as shown in Figure 8. A time window is thereby characterized by
a window length (e.g., 15 min to allow for reasonably current data) and a retention time. The latter
specifies for how long the window is updated retrospectively, if measurements are incoming at a later
time (e.g., one day, so that the data from previous days can be considered complete). In the context
of noise measurements, minimum and maximum values are determined and averages are calculated
with respect to the logarithmic scale of decibels (see Figure 9). Aggregation results are then published
to different Apache Kafka topics. In Steps 11–12, the produced results are persisted to a MongoDB
with Apache Kafka Connect in order to allow us to efficiently query the data that would otherwise
be partitioned across multiple topics in the Kafka Cluster. Finally, in Steps 13–17, data are requested
and prepared for visualization in the Data Access Phase, in which the following is processed: In Step
13, a request to the RESTful API of the Access Service is sent by the mobile application, specifying
a H3 resolution, a time window, and a geo-boundary. Optionally, if the request is access-restricted,
authorization is performed in Step 14. Furthermore, in Step 15, MongoDB’s geospatial indexes are
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utilized in order to efficiently load data from the corresponding databases. In Step 16, final aggregations
steps are performed if the data is not already present in the database in the requested format (e.g., a
time window or resolution that is not pre-aggregated), and privacy filters are applied (e.g., to specify
that only the users themselves can see their own raw measurements). Finally, in Step 17, data is
delivered to the mobile application, in which it can be used for visualization on a map.

private Aggregator<...> performAggregation(H3Core h3) {
return (h3idx, measurementFeature, averageFeature) -> {

// Initialize the Average Feature based on the H3-index and its geo-boundary
if (averageFeature.getH3idx() == null) {

averageFeature.initialize(h3idx, new Polygon("Polygon",
GeoUtils.geoListToDoubleArray(h3.h3ToGeoBoundary(h3idx))),

h3.h3GetResolution(h3idx));
averageFeature.setCenterCoord(GeoUtils.getCenterPoint(h3, h3idx));

}
Map<String, Type> averageValues = averageFeature.getProperties().getMeasurementTypes();
// For each measurement type recalculate the average separately with its own count
measurementFeature.getProperties().getMeasurementTypes().forEach((type, measurementType) -> {

Type averageValue = averageValues.getOrDefault(type, new Type(type, 0));
averageValue.recalculateWithMeasurement(measurementType);
averageValues.put(type, averageValue);

});
return averageFeature;

};
}

Figure 8. Method that performs the aggregation when a new measurement is added.

public void recalculateWithMeasurement(Type value) {
if (count == 0) {

min = value.min;
max = value.max;

}
min = (value.min < min) ? value.min : min;
max = (value.max > max) ? value.max : max;
mean = (mean != null) ? mean : this.value;
value.mean = (value.mean != null) ? value.mean : value.value;
int totalcount = count + value.count;
// Calculate mean with respect to the logarithmic scale of decibels
mean = 10 * Math.log10((count * Math.pow(10, 0.1 * mean) + value.count

* Math.pow(10, 0.1 * value.mean)) / totalcount);
count = totalcount;

}

Figure 9. Class method that recalculates the minimum, maximum, and mean values of a
Measurement_Type.

7. Proof-Of-Concept Prototype

A proof-of-concept prototype was implemented, which is briefly outlined in the following.
Figure 10 shows selected screenshots of the prototype. The current environment sound level in
A-weighted decibels (i.e., dB(A)) is continuously displayed to the user of the mobile application (see
Figure 10a). Pressing the Measure button initiates a noise measurement. For this process, (1) the
A-weighted and C-weighted sound levels are tracked over a time period of 30 seconds and cached for
further processing, (2) the Equivalent continuous A-weighted sound level (LAeq) and the C-weighted peak
sound level (LCpeak) [41] are calculated over these cached sound levels, (3) the results are displayed
to the user, and (4) finally posted to the backend (either immediately or delayed if the application is
currently not able to establish a connection to the server). These measurements are then processed by
the backend as described in Section 6. Following this, the mobile application as well as a website (see
Figure 10b) can request aggregations for different geo-boundaries, time windows, and zoom levels (i.e.,
H3 resolutions) through the Access Service. Utilizing this data, an adequate visualization of the noise
exposure in the form of a map can be provided to the user of the mobile application or the website. The
noise exposure is thereby indicated by a color gradient between harmful (red) and harmless (green).
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(a) Mobile Application (b) Website

Figure 10. Screenshots of the mobile application and the website showing the noise level map.
Reproduced with permission from Kraft et al., In Proceedings of the 2019 IEEE 32nd International
Symposium on Computer-Based Medical Systems (CBMS); published by IEEE, 2019 [5].

At present, users in the region of Ulm, Germany have been acquired to test the proof-of-concept
prototype. First feedback indicates that users generally value the application and recognize its
benefits. However, regarding the mobile application, so far, solely an iOS mobile application has been
implemented. Therefore, an Android application is currently under development. The main reason to
only opt for iOS, for the first release, was that sound measurements are more reliable and comparable
on iOS regarding the analysis and interpretation of results. Since various hardware vendors with
different microphones use Android as operating system, unlike iOS, which only runs on a relatively
small number of Apple devices allowing for an easier pre-calibration, the evaluation of retrieved sound
levels becomes more complex as it may vary among different Android vendors and would require a
mechanism for ad-hoc microphone calibration. However, the completion of an Android application
will be a decisive step in order to represent the majority of smartphone users. Furthermore, based
on the feedback of the users, the iOS application will be revised and extended by new features. The
latter could include incentive mechanisms as well social and communication features, as they were
not realized for the first version of the application. In addition, regarding the backend, extensive
performance tests are performed in order to evaluate the scalability of the platform, as described in
the following section. Finally, an external sensor is currently tested in combination with an Android
application that is able to measure even more precise environmental data. In this context, it is also
tested how users experience such an external sensor application over time.

8. Performance Evaluation

In order to evaluate the performance and scalability of the conceived architecture, benchmark
load tests were conducted on a running instance of the prototypical implementation of the backend,
following guidelines for measuring performance of parallel computing systems [43], and computer
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systems in general [44]. In the scope of this paper, we evaluate to what extent the performance of
the Access Service (i.e., the service used by clients to request measurement data from the backend)
under different workloads develops. Other user-centric services like the Ingress Service are evaluated
analogously.

8.1. Experimental Setup and Methodology

For the experiments, the prototypical backend was deployed to the bwCloud, a cloud provider
for scientific and educational purposes by a federation of German universities in the Federal State of
Baden-Württemberg in the context of the bwCloud SCOPE project (https://www.bw-cloud.org/en/).
The bwCloud provides infrastructure as a service (IaaS) and based on the Open Source software
Openstack (https://www.openstack.org/), and the distributed object store and file system Ceph (https:
//ceph.io/). Terraform (https://www.terraform.io/) is then used as Infrastructure as Code (IAC) tool
to configure the cloud resources based on structured text-files. IAC is one of the central parts in
building a cloud-native application, as it allows us to maintain, install, and deploy the infrastructure
in a reproducible manner [45]. Using this concept, eight virtual machines (i.e., nodes) with each 4
VCPUs and 8 GB RAM running CoreOS 1855.4.0 (http://coreos.com/) were configured for the overall
experimental setup. One of these nodes serves as master node for the Open Source software Rancher
(https://rancher.com/), which is used to facilitate the creation and management of the Kubernetes
cluster. Another node, in turn, is used as master node for the Kubernetes cluster itself. The remaining
six nodes serve as worker nodes for the cluster. Finally, the developed backend, composed of a total
of 14 microservices (see Figure 6, some less relevant services (e.g., for authentication) are omitted for
simplicity), was deployed to this cluster setting.

The Open Source testing tool Gatling(https://gatling.io/) for the produced load is used for the
actual measurements. Gatling allows us to simulate concurrent users in a resource-saving manner by
sending asynchronous messages via non-blocking protocols like HTTP. Previous to the experiment,
randomly generated (sound measurement) data for the city of Ulm has been posted to the backend,
as displayed in Figure 10b. Benchmark workloads are created by simulating different numbers of
concurrent users that (simultaneously) access the stored measurement data for the city of Ulm, and
for the last day via the REST API (i.e., the Access Service) utilizing Gatling’s atOnceUsers function.
The experiments are run on a single Ubuntu 19.04 machine in the university network that has a stable
Internet connection to the bwCloud infrastructure. For each run, the 50% quantiles (i.e., the median) of
response times are recorded, as the median is more robust towards outliers as other summary methods
like the mean [44]. Note that this median value is considered and handled as a single measurement.
The experiments were then repeated and the median of the measurements incrementally recomputed,
as well as the confidence intervals (CI) at confidence level 1 − α = 0.95, as described in [43], determined. A
confidence interval provides a measure of accuracy for the experiment, as it bounds the uncertainty
of a summarized data set (i.e., the median) of sample data that results from the randomness of
non-deterministic measurements. The interval can be interpreted as a 95% probability (i.e., confidence
level) that the observed CI contains the true median [44]. Each experiments is repeated n times until
the CI is within 5% of the median of the respective measurements. Note that n > 5 measurements are
required to compute the confidence intervals for statistical reasons [44]. To this end, each test run was
repeated for n = 20 times.

8.2. Results

The results of the experiments are illustrated in Figure 11. The exact medians and confidence
intervals of the measurements are shown in Table 3. It can be seen that the response times increase
almost linearly, as indicated by the dashed trend line. In order words, these results suggest that the
system provides almost ideal linear scaling under different workloads. Regarding the longer response
times of up to about 9 seconds, one has to take into account that actual simultaneous requests were
used to simulate concurrent users in order to represent extreme situations of workloads. As the

https://www.bw-cloud.org/en/
https://www.openstack.org/
https://ceph.io/
https://ceph.io/
https://www.terraform.io/
http://coreos.com/
https://rancher.com/
https://gatling.io/
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proposed architecture is composed entirely out of microservices, horizontal scaling in a large-scale
cluster beyond our prototypical experimental setup might lead to a flatter curve of response times.
However, this could not be assessed due to a limited amount of (cloud) resources in our experimental
setup. Another limitation resulting from the lack of available resources and an suitable load balancer
is that the elasticity of the architecture cannot be assessed at the current stage. Furthermore, as the
load tests are run from a single machine, no statement can be made for a distributed environment.
Generally, the architecture has to prove its suitability in different (mHealth) scenarios. Nonetheless,
the experiments, which have been conducted have shown that the proposed architecture is feasible in
a running environment and can sustain increasing quantities of load in a scalable manner. Therefore,
it can be considered as a first and solid mainstay for the healthcare scenario addressed in this work.
Many more considerations and experiments are needed to map the results and architecture to a more
generic system. In addition, as medical evidence is always an important aspect in healthcare scenarios,
this aspect has to be considered in the light of the presented technical achievements.
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Figure 11. Median of the response time measurements for different numbers of simulated concurrent
(simultaneous) users. The dashed line represents an ideal linear trend line. All experiments were
repeated 20 times and the confidence intervals (CI) at confidence level 0.95 (1 − α = 0.959) were within
5% of the respective median.

Table 3. Median of response times and confidence intervals (CI) in milliseconds (ms) for each number
of simulated concurrent users.

Number of Concurrent Users Median of Response Time (ms) Confidence Intervals (CI)

500 1080.5 [1052 ms, 1115 ms]
1000 2000 [1974 ms, 2027 ms]
1500 2941 [2874 ms, 2972 ms]
2000 3873 [3826 ms, 3937 ms]
2500 4592 [4564 ms, 4662 ms]
3000 5543.5 [5306 ms, 5607 ms]
3500 6414.5 [6264 ms, 6674 ms]
4000 7384 [7174 ms, 7535 ms]
4500 8204 [7904 ms, 8433 ms]
5000 8943 [8795 ms, 9182 ms]

Finally, two more aspects must be investigated more in-depth. Beyond the technical performance
of the approach, studies will be conducted to capture the demands and experiences of users more
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properly. Second, based on the aggregation idea of data, it must be evaluated whether other context
aspects can be further utilized. For example, there is a difference whether the measurements are
accomplished at the beginning or at the end of a day. Or, as another example, the specific city or area,
for which the measurements are accomplished, might have different characteristics and needs as other
areas. These factors will therefore be considered in future work.

In summary, particularly by taking the promising experimental results into account, the three
main technical challenges raised in the introduction are addressed by the proposed technical solution
as follows:

• Scalability and Elasticity: The architecture is scalable and elastic due to its cloud-native design
based on microservices.

• Efficient Geospatial Processing: Geospatial data is efficiently processed in the architecture
by utilizing stream processing techniques and a DGGS as spatial reference system for data
representation.

• Flexibility: The architecture is flexible due to the modularity of microservices of the
cloud-native design.

9. Summary and Outlook

This work presented an approach to create a noise level map using a mobile crowdsensing
platform capable of processing noise measurements from a large number of crowd users and their
smartphones. Noise exposure for a specific area is thereby indicated by a color coding and different
zoom levels. The latter features were made possible through a newly designed measurement context
that stores and aggregates noise measurements by developing a sophisticated stream processing
pipeline. From a patient point of view, first study results based on a proof-of-concept prototype
indicate that users value the platform’s general approach and welcome its ease of use. From the
technical point of view, a performance evaluation has been conducted that suggests linear scaling of
the conceived architecture under increasing amounts of workloads. However, this work also discussed
technical aspects that need to be improved in order to finally provide a feasible approach that can
be reliably applied in various practical scenarios. Furthermore, extensive performance tests will be
conducted against state-of-the-art architectures to evaluate the scalability of the system in different
mHealth and eHealth scenarios again and again. With regard to tinnitus disorder, a noise level map
that is based on the discussed approach may be used by patients to avoid burdensome places. Many
other useful features for tinnitus patients were revealed when testing the proof-of-concept prototype
in practice. For instance, users indicated they could complete a tinnitus-related questionnaire while
performing a noise measurement. Using this information, the data of the tinnitus questionnaire can
be related to the recorded noise levels to enable users to learn more about the daily fluctuations of
their tinnitus. Furthermore, other statements of users indicate that the overall incentive management
must be enhanced to motivate users in participating over a longer period of time. From a technical
point of view, it was revealed that a complex technical architecture and infrastructure are required for
the implementation of the discussed features. The resulting solution, on the other hand, can also be
used in other mHealth contexts. For example, the system could be used to measure weather-related
factors in the context of migraine. In addition, machine learning (ML) approaches on the data streams
have the potential to further improve the system, e.g., by supplementing data sets of areas with sparse
measurement contributions. Overall, it was revealed that mobile crowdsensing in the mHealth context
is still in its infancy. On the other hand, approaches such as the one presented in this work show that
mobile crowdsensing is a promising paradigm for mHealth scenarios. More importantly, the work at
hand shows that the combination of medical-driven information science and computer science is an
important field that requires more in-depth investigations of interdisciplinary teams.

Author Contributions: Conceptualization, R.K. and F.B.; methodology, R.K., M.R., and H.B.; software, R.K. and
F.B.; validation, R.K.; formal analysis, R.K.; investigation, R.K.; resources, M.R. and H.B.; data curation, R.K.;



Sensors 2020, 20, 3456 19 of 21

writing—original draft preparation, R.K. and R.P.; writing—review and editing, R.K. and R.P.; visualization, R.K.;
supervision, M.R., H.B., and R.P.; project administration, A.D., W.S., B.L., T.P., M.S., and R.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Probst, T.; Pryss, R.; Langguth, B.; Schlee, W. Emotional states as mediators between tinnitus loudness and
tinnitus distress in daily life: Results from the “TrackYourTinnitus” application. Sci. Rep. 2016, 6, 20382.

2. Schlee, W.; Pryss, R.; Probst, T.; Schobel, J.; Bachmeier, A.; Reichert, M.; Langguth, B. Measuring the
moment-to-moment variability of tinnitus: the TrackYourTinnitus smart phone app. Front. Aging Neurosci.
2016, 8, 294.

3. Kraft, R.; Schlee, W.; Stach, M.; Reichert, M.; Langguth, B.; Baumeister, H.; Probst, T.; Hannemann, R.;
Pryss, R. Combining Mobile Crowdsensing and Ecological Momentary Assessments in the Healthcare
Domain. Front. Neurosci. 2020, 14, 164.

4. Pryss, R. Mobile Crowdsensing in Healthcare Scenarios: Taxonomy, Conceptual Pillars, Smart Mobile
Crowdsensing Services. In Digital Phenotyping and Mobile Sensing; Springer: Berlin/Heidelberg, Germany,
2019; pp. 221–234.

5. Kraft, R.; Birk, F.; Reichert, M.; Deshpande, A.; Schlee, W.; Langguth, B.; Baumeister, H.; Probst, T.;
Spiliopoulou, M.; Pryss, R. Design and Implementation of a Scalable Crowdsensing Platform for Geospatial
Data of Tinnitus Patients. In Proceedings of the 2019 IEEE 32nd International Symposium on Computer-Based
Medical Systems (CBMS), Cordoba, Spain, 5–7 June 2019; pp. 294–299.

6. Schweizer, I.; Darmstadt, T.; Probst, F.; Bärtl, R.; Darmstadt, T.; Mühlhäuser, M.; Darmstadt, T.; Schulz, A.;
Darmstadt, T. Noisemap - real-time participatory noise maps. In Proceedings of the Second International
Workshop on Sensing Applications on Mobile Phones, Seattle, USA, 1–4 November 2011; pp. 1–5.

7. Zappatore, M.; Longo, A.; Bochicchio, M.A. Crowd-sensing our Smart Cities: a Platform for Noise Monitoring
and Acoustic Urban Planning. J. Commun. Softw. Syst. 2017, 13, 53.

8. Ye, F.; Ganti, R.; Dimaghani, R.; Grueneberg, K.; Calo, S. Meca: Mobile edge capture and analysis middleware
for social sensing applications. In Proceedings of the 21st International Conference on World Wide Web,
Lyon, France, 16–20 April 2012; ACM: New York, NY, USA, 2012; pp. 699–702.

9. Sherchan, W.; Jayaraman, P.P.; Krishnaswamy, S.; Zaslavsky, A.; Loke, S.; Sinha, A. Using on-the-move
mining for mobile crowdsensing. In Proceedings of the 2012 IEEE 13th International Conference on Mobile
Data Management, Bengaluru, India, 23–26 July 2012; pp. 115–124.

10. Jayaraman, P.P.; Perera, C.; Georgakopoulos, D.; Zaslavsky, A. Efficient opportunistic sensing using mobile
collaborative platform mosden. In Proceedings of the 9th IEEE International Conference on Collaborative
Computing: Networking, Applications and Worksharing, Austin, TX, USA, 20–23 October 2013; pp. 77–86.

11. Jayaraman, P.P.; Gomes, J.B.; Nguyen, H.L.; Abdallah, Z.S.; Krishnaswamy, S.; Zaslavsky, A. Cardap: A
scalable energy-efficient context aware distributed mobile data analytics platform for the fog. In East
European Conference on Advances in Databases and Information Systems; Springer: Berlin/Heidelberg, Germany,
2014; pp. 192–206.
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