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Abstract: Maintaining a fair use of energy consumption in smart homes with many household
appliances requires sophisticated algorithms working together in real time. Similarly, choosing a
proper schedule for appliances operation can be used to reduce inappropriate energy consumption.
However, scheduling appliances always depend on the behavior of a smart home user. Thus, modeling
human interaction with appliances is needed to design an efficient scheduling algorithm with real-time
support. In this regard, we propose a scheduling algorithm based on human appliances interaction
in smart homes using reinforcement learning (RL). The proposed scheduling algorithm divides the
entire day into various states. In each state, the agents attached to household appliances perform
various actions to obtain the highest reward. To adjust the discomfort which arises due to performing
inappropriate action, the household appliances are categorized into three groups i.e., (1) adoptable,
(2) un-adoptable, (3) manageable. Finally, the proposed system is tested for the energy consumption
and discomfort level of the home user against our previous scheduling algorithm based on least slack
time phenomenon. The proposed scheme outperforms the Least Slack Time (LST) based scheduling
in context of energy consumption and discomfort level of the home user.

Keywords: reinforcement learning; home energy management; appliance scheduling; human-appliance
interaction; user comfort

1. Introduction

The requisition for electrical energy, smart grid paradigm, and renewable energy extend to
new space for the home energy management system (HEMS) in such a way that can mitigate the
consumption of smart home energy. The HEMS integrates a demand response (DR) mechanism that
shifts and restricts demand to improve smart home energy consumption [1]. Normally, this system
builds an ideal usage in the views of energy cost, user comfort, load profile, and environmental
concerns. During on-peak hours, the DR shifts the load to off peak hours according to price of
electrical energy. The smart home automatic energy management control system (HEMS) optimizes
the scheduling of household appliances when the cost of electrical energy is high [2]. Therefore, this
HEMS schedules the appliances according to the energy consumption and cost, taking account of
different parameters i.e., load profile, energy price, weather, and user preference etc. Energy prediction
and proper feedback reduce the utility bill by 12% [3]. Moreover, the automation of the home through
appliances scheduling and their load profile prediction minimizes the cost of electricity for the user
according to the user comfort, reduces the load on the grid, and controls fluctuation in DR, with less
human interaction and a high effect for the environment. [4,5]. Intelligent techniques have been used
to curtail the price of energy consumption and schedule home devices using real-time monitoring
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and control, stochastic scheduling, and optimal decision making [6]. A real-time monitoring system
schedules the loads according to the load condition and load display of the controllable appliance in
real time. The overall cost of energy is computed by using stochastic dynamic programming to control
a set of home appliances. Finally, selected devices are controlled and scheduled in real-time control
based-HEMS. However, these intelligent algorithms are difficult to operate in an environment with
low speed and an outsized computational load.

Artificial intelligence (AI)-based HEMS has received much attention in the past decade, with most
of the systems implementing a household appliance scheduler and controller for consumers in smart
homes to reduce the energy cost. Further, these systems are based on the adaptive neural fuzzy
inference system (ANDIS), fuzzy logic control (FLC), and artificial neural network (ANN) [1]. The AI
scheduler and controller is incorporated with a programming code that mocks the human nerves
system [7]. ANN consists of input, output, and hidden layers (in some cases) as well as data processing
algorithms which model the nonlinearity of the systems and mimic the human brain, put to use
as a smart scheduler and controller to schedule smart home appliances [8]. ANN-based controller
and scheduling models can be used for prediction and controlling instead of other conventional
simulation-based methods to predict and control the cost of electricity. An ANN-based proposed
scheme was introduced in [9]. The utmost goal of this scheme was to evaluate the demand load
(DL) as a function of demand limit, daytime, price on Time Of Use (TOU), and ambient temperature.
A machine learning-based DR approach was developed in [10,11], for circulation of loads mainly
focused on home heating, ventilation, and air conditioning (HVACs). For the prediction of different
residential load responses to various price signals, an ANN and wavelet transform (WT) approach
was in employed in [12–14]. The HEMS made the existing home much smarter by enabling consumer
participation. Real-time communication between consumer and utility was possible through HEMS.
The consumer could adapt their energy consumption on the basis of the price hiked in peek time,
comfort level, and also environmental concerns.

Human behavior is complex and hard to predict, which depends on environmental aspects
i.e., climate and characteristics of the building [15]. An activity performed by the human-appliances
interaction log in the HEMS through the HEMS framework, where the sensors attached to households,
provides activity data to the HEMS. After collecting the data from the human-appliances module,
the HEMS does many jobs specifically, identifies the number of users and their corresponding
actions, user classification according to the living space, forecasts the user load profile to predict
the future energy consumption and cost. Furthermore, user behavior plays a vital role in designing
home automation that replaces the conventional HEMS with new automatic real-time HEMS [16,17].
The most common example of human–appliances interaction is the smart home environment. In the
smart home paradigm, the user plays a main role where the HEMS gets data from human-appliances
interaction for (1) data and user classification, (2) scheduling the appliances according to the user
preference and electricity cost, (3) providing services to the user. Human-appliances interaction data
consist of (a) Time horizon data, weather data, electricity price data, zone wise ambient temperature,
and user up-to-date location-based data and actions performed by user contained data, (b) control
signal data related to appliances, and (c) indoor and outdoor temperature data, and user comfort
preference data about services provided by household appliances [18,19].

Generally, the household appliances are categorized within three major classes based on
their features and preferences, including un-adaptable, adaptable, and manageable loads [20–22].
The mathematical equations and objective function of the load management, together with the
numerous constrained appliances operation for said categories of appliances, are explained in the
following sections.

1.1. Un-Adaptable Load

Un-adaptable load has strict energy demand requirements that must be satisfied during the load
distribution process, e.g., surveillance system, security alarming system, and refrigerators (REFG).
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Once the un-adaptable load initiates an operation, it is hard to schedule and operate continuously.
The energy consumption of this load profile is usually equivalent to the energy demand of this load
profile [22]:

ECun
k,t = EDun

k,t , (1)

where k ∈ {1, 2, 3 . . . K} represents an appliance, K represents total number of appliances, t ∈ {1, 2, 3 . . .
T} represents the time in hour, and T represents the last hour of the current day, i.e., T = 24, assuming
that the tariff is revised hourly. EDun

k,t EDun
k,t and ECun

k,t ECun
k,t express the load demand and the explicit

energy consumption of household k at hour t, respectively. In this case, the cost of the appliance is
equivalent to the total energy consumption of the consumer bill. So, for the un-adaptable appliance k,
the utility function is:

Uun
k,t = T0ECun

k,t , (2)

where T0 expresses the electricity tariff at time t.

1.2. Adaptable Load

Adaptable load appliances schedule their operation in off-peak hours when the cost is low in the
schedule time horizon. However, during the peak hours, if the demand of these devices cannot be satisfied,
these appliances shut down automatically and reschedule the incomplete operation in off-peak hours.

During the off-peak hours, the electricity tariff is inexpensive and thus the adaptable load
appliances schedule their demand load in these hours. Taking the advantage of off-peak hours not only
are peak hours avoided, but also up to the maximum drop off in the electrical bill. Further, the adaptable
load has two possible operating states, “Power On” and “Power Off” [22]:

ECadapt
k,t = Bk,tEDadapt

k,t . (3)

For appliance k, Bk,t represents the binary variable i.e., Bk,t = 1, assuming that k operates at hour
t; otherwise, Bk,t = 0. Moreover, two forms of costs are derived, in this class of appliance i.e., for the
electrical bill and discomfort time for an appliance to start and finish the current operation. For example,
the dishwasher (DW) normally operates in period [Tk, start, Tk, finish], however, the operation time can
be scheduled from peak hours to off-peak hours, whenever the DW initiates at Tk,dw, in this scenario,
the discomfort waiting period would be Tk,dw − Tk, start.

Hence, for the adaptable appliance k, the utility function becomes as follows [23]:

Uadapt
k,t = T0 . ECadapt

k,t + lk .

(
Tk,dw − Tk,start

)
, (4)

Tk,start ≤ Tk,dw ≤
[
Tk, f inish − Tk,ne

]
, (5)

Tk,ne ≤ Tk, f inish−Tk,start, (6)

where in the first equation, the first term shows the cost of the electricity and the second term indicates
the discomfort waiting time cost. In addition, lk indicates the system dependent coefficient. Further,
Tk, start, Tk, finish are the start and finish periods, Tk,dw shows the current operation initiation time, and
Tk, ne is the time required for the completion of an operation of the adaptable load.

1.3. Manageable Load

Manageable load is totally different from the rest of the two loads and can be operated in manageable
power consumption mode between minimum and maximum energy demand and can be donated as
EDk.min and EDk.max, respectively, when tariff hikes appliances, for example, fan, light, and air conditioner
(AC) revise their energy consumption between the EDk.min and EDk.max power range [22]:

ECmng
k,t = EDmng

k,t , (7)
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EDk.min ≤ EDmng
k,t ≤ EDk.max. (8)

The main purpose of this class of appliances is to minimize the electricity bill and keep the demand
low in peak-hour slots, moreover, this situation may lead to the discomfort wait for the consumer. So,
the utility function for the manageable load profile appliance k is shown as follows [22]:

Umng
k,t = T0ECmng

k,t + βk ∗
(
ECmng

k,t − EDk.max
)2

. (9)

In the above equation, the first portion exhibits the energy cost, and the last item indicates the user
discomfort wait cost, adopted from [24]. The βk is the appliance dependent discomfort cost parameter. If an
appliance has high βk value, the appliance requires high energy to support the comfort level and vice versa.

1.4. Objective Function

The consumer objective function minimizes the electricity cost as well as minimizes the discomfort
wait cost and can be expressed as follows:

min
k∑

k=1

t∑
t=0


(1− ρ).T0.

(
ECun

k,t + ECadapt
k,t + ECmng

k,t

)
+ρ.

 nk.
(
Tk,dw − Tk,start

)
+βk.

(
ECmng

k,t − EDk.max
)2

 , (10)

where the initial part of the equation represents the energy cost, and the last part of the equation
denotes the discomfort wait cost. For balancing the electricity and the discomfort wait cost, ρ is used
as a tuning parameter [23].

2. Related Work

A vast amount of literature on smart home energy control and management has been proposed.
For instance, in [25], the authors introduced the innovative predictive and adaptive heat control
mechanism based on an ANN in urban smart buildings to enhance and produce suitable consumer
thermal comfort environments. The results showed that the ANN-based controller can increase
thermal comfort in residential buildings. But they did not consider energy cost and optimization.
A game-based approach was introduced in [26] for adjusting electrical energy used by a residential
user. In this study, a distributed energy consumption scheduling algorithm was proposed in order to
control the cost of energy and balance the load among multiple users, and it reduced Peak-to-Average
Ratio (PAR), energy cost, and daily electrical charges of each user. However, the authors did not
consider the controlling scheduler and user comfort. Encroachment in HEMS commenced in late 2012,
when an AI-based HEMS with DR was urbanized to moderate energy intake and electricity energy
cost [27]. In this effort, an intelligent algorithm for controlling appliances and analyzing the DR with
simulation study was presented. On the basis of importance and user comfort levels of four households’
appliances, explicitly, air condition, heater, vehicle, and dryer, were managed and controlled. But they
failed to add users’ accessibility and environmental concerns for their energy cost module. In [28],
Niu-Wu, D et al. designed a hybrid scheme for load-forecasting in Smart Grid (SG). They used a
support vector machine and the ant colony optimization-based technique for forecasting DR. In this
article, the authors preprocessed the input data through the ant colony optimization technique and for
feature selection, the mining technique was used. The particular data features were fed into the support
vector machine-based predictor. The authors compared Support Vector Machine (SVM) with the single
ANN and validated the proposed scheme effectiveness for short term load forecasting. In this article,
the author did not address the demand side satisfaction degree for their efficient forecasting and user
comfort. Furthermore, the ANN cum genetic algorithm-based method was used in one study [29].
In this study, home appliances were scheduled with optimized electrical energy consumption in a
housing zone to shrink energy demand during peak hours and take full advantage of the usage
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of renewable energy. However, the authors neglected controlling the user comfort. Additionally,
in [30], Anvari-Moghaddam et al. proposed a multi objective mixed integer nonlinear programming
design for optimum power consumption in a smart home by considering meaningful stability among
power saving and a user comfort zone. The user comfort and power saving were balanced through
mixed objective function under user priority and various constraints. This scheme reduced the
energy consumption, utility bills, and also ensured user comfort. The renewable energy integration
is not addressed in this research study. In [31], a hybrid algorithm was presented based on ANN to
reduce home energy consumption and electricity bills by predicting the ON/OFF status of appliances.
This scheme guaranteed an ideal control scheduling and reduced peak hour energy consumption.
Though, this work did not consider user comfort zone. Yet, there are still challenges in several literature
works on smart HEM systems. Much work on the potential of HEMS was carried out in [32,33], in
context of the smart grid, an optimization-based method for effective demand side management was
presented. The cost reduction issue was formulated for the end user. The price and energy minimization
during peak and off-peak hours were handled by scheduling heterogeneous devices i.e., renewable
and electrical appliances. Underlining that these methods primarily depend on corresponding existing
demand-generation by monitoring and optimization of the energy usage of household appliances at
the user end. However, user comfort is ignored in scheduling household appliances in home scenarios.
Aram et al. [34] presented an energy conservation methodology by decreasing the amount of necessary
communication. This approach utilizes no-linear autoregressive neural networks to predict specific
volume of sensed data. The performance of said system is estimated from humidity and temperature
data attained from corresponding sensors under various circumstances, specifying that the technique
considerably minimizes energy usage for wireless sensor networks. The price and electricity bill
minimization are not considered in this work. Lee et al. [35] proposed a smart energy management
device which embrace the resident’s activities and living patterns as it is aimed to minimize power
consumption of some household appliances, like lights and humidifier. Further, 7.5% of energy was
aimed to save by this sensor-based system. Moreover, in reference [36], the authors used ANN based
on PSO to increase its performance by selecting the learning rates and best neurons in the hidden
layer. A hybrid lightning search algorithm (LSA)-based ANN was proposed in [31], to forecast the
optimum status on/off of household appliances. The hybridized technique improves the ANN accuracy.
In reference [37], an ANN-based distributed algorithm was proposed to reduce the total electricity
cost and delay for power demand by taking accurate energy management decisions. The ANN can
effectively monitor and manage power consumption by controlling appliance electricity consumption.
In [10], authors proposed an associative scheme that integrated machine learning, optimization, and
data structure techniques which result in DR-based HEMS. In this work, a machine learning-based
DR approach was developed for circulation of loads mainly focus on HVACs. For the prediction of
different residential load responses to various price signals, an ANN and WT approach was employed
in [12]. Yu et al. [38] proposed an energy optimization algorithm based on deep deterministic policy
gradients (DDPGs) for the home energy management system to reduce the cost without violating
the indoor comfortable temperature range. The DDPGs-based system takes action concerning the
charging/discharging of Energy Storage System (ESS) and HVAC power consumption, considering the
current observation information. Li et al. [39] presented a deep reinforcement learning (DRL) technique
to schedule the household appliances, taking into account the user behavior, energy price, and outdoor
temperature. The DRL used in this scheme takes care of discrete and continuous power level actions
which enable the scheduling of distinct load of appliances. Ruelens et al. [40] proposed a Monte Carlo
model-free technique that considers a matric depending on the state-action function value (Q-function).
This method predicts a day-ahead schedule of the thermostat of a heat pump. In [41], the authors
proposed a hybrid scheme consisting of deep Q-learning and deep policy gradient which enable the
scheduling of distinct load of appliances in smart community buildings. The algorithm enables a single
agent with an appropriate algorithm to take a series of best actions and solve complex tasks. Another
study in [42] proposed a control system to optimize the energy consumption in community buildings.
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The control system analyzes the energy consumption and cost of appliances using a simulator during the
peak and off-peak time horizon and makes aware the user to minimize energy consumption. Therefore,
the Petri net (PN) model was used to illustrate the energy consumption strategy for community buildings
which ensures the user comfort level based on user preference.

The generic energy consumption by various appliances in a home is presented in Table 1.
The values in Table 1 reveal that the energy consumption is high in the case of manually switching off

and on the appliances.

Table 1. Load profile of various household appliances [43].

Appliance Operating Cycles Operation Load
Rang (kW)

Energy Consumption
Per Cycle (kWh)

Total Operation
Time (min)

DW Three 0.6~1.2 1.44 105

Washing Machine
(WM) and Dryer Three 0.65~0.52

0.19~2.97 2.68 45+60

REFG 24 h 0~0.37 3.43 24 h

AC 24 h 0.25~2.75 31.15 24 h

In addition, we examined the energy consumption required by various appliances with an hour
time as shown in Figure 1. The graphs show that during switch on time, the appliances required
higher energy compared to the rest of the operation. Similarly, some of the devices such as the dryer
and washer required higher energy as long as it was operating. The graphs also reveal that during
operation of such devices, other devices could be switched off or shifted to an idle mode to optimize
energy consumption. However, this could be only performed if we somehow programed the electronic
appliances. Moreover, we could tune the working of the rest of the electronic appliances when the
REFG and AC was operating or in the peak load time.
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Figure 1. Load profile of various household appliances. (a) Energy consumption of dryer; (b) energy
consumption of washer; (c) energy consumption of REFG; (d) energy consumption of AC; (e) energy
consumption of DW [43].

Concluding the above literature, we have seen a number of schemes specifically optimizing the
energy consumption with renewable energy sources, demand–response-based scheduling of household
appliances, traditional scheduling techniques, and machine learning based grid management. However,
there is no such system available that models the human-appliances interaction with incorporating the
previous appliances data and real-time decision-making system for making the household appliances
intelligent. Our aim in this research work is to make the household appliances intelligent in the context
of consuming energy and satisfying the comfort level of home users.

3. Problem Statement

3.1. Motivation

Recently, researchers put a lot of effort in optimizing energy consumption of household appliances.
However, there still exists room for improvement of such systems. In addition, such systems consists
of a number of challenges, for instance, the conventional HEMS defines the household appliances
scheduling as a model-based scheduling problem, where the HEMS application and energy optimization
technique require a model. A difficult step in designing a model-based HEMS is to select a proper
model and explicit parameters. Considering the complex and unpredicted behavior of the user, proper
model and parameters selection becomes more critical. Moreover, the distinct user will expect for the
distinct model with distinct model parameters. However, model-based HEMS implementation requires
a reliable and efficient approach to determine proper model and related parameters. In addition,
current household appliances still require intelligence to share their current energy consumption state
and other relevant parameters with the rest of the household appliances available in a smart home.
However, getting the households intelligent, machine learning algorithms are required. Therefore,
employing machine learning algorithms to household appliances to get them intelligent requires
specific knowledge and the use of agent-based communication. In general, the current literature
consists of several challenges such as:

• Lack of appropriate machine learning implementation at the smart home level;
• High monetary and billing cost of implementation;
• High energy consumption due to inappropriate scheduling of household appliances;
• Inappropriate human-appliances interaction;
• Intelligent communication network among smart homes and smart grids;
• Modeling the unexpected behavior of humans in operating the smart home appliances;
• Irregular utilization of household appliances;
• Inadequate consumer comfort;
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• Modeling the operation of appliances along the day-time horizon;
• Demand-response-based scheduling does not guarantee the low energy consumption;
• Wireless Sensor Networks (WSN) based smart home energy management systems.

3.2. Contribution

The current research literature targets specific scenarios, specific range of appliances, complex
design, etc. In addition, the traditional methods are mostly based on time consuming algorithms and
processes which ultimately give inappropriate decisions with new appliances and complex systems
(smart grid). One of the major reasons of failure of such systems is the difficulty to model human
behavior toward electronic appliances. For instance, one can create many user profiles based on the
previous information of a single home user. Similarly, if there are several users in a home, then it
would become impossible to appropriately manage user profiles and process it through algorithms
based on neural networks or machine learning techniques. Further, if somehow, we succeeded in
modeling human behavior toward electronic appliances, then it may be easy to optimally schedule the
electronic appliances in a smart home. In this research work, we propose a scheduling algorithm based
on human-appliances interaction in smart homes using the Reinforcement Learning (RL) algorithm.
The RL comes up with the best scheduling strategy for minimizing the household appliances energy
consumption while offering minimum discomfort level.

The main contributions of this research work are as follows:

(a) Though, there is no such research studies available till this day providing smart home appliances
with intelligence. This research put forward an idea of making the smart home appliances
intelligent with the reinforcement learning. The household appliances are made intelligent and,
therefore, they can decide intelligently whenever the energy consumption of the smart home
exceeds a certain limit. They also can share their status such as priority information of households,
status, etc. with other appliances.

(b) A new RL-based energy management and recommendation system (EMRS) is proposed that
enables smart home appliances to consume energy through the optimal scheduling of appliances.
In EMRS, a reinforcement learning algorithm called Q-learning is used to schedule the energy
consumption of different appliances. Whereby, the Q-learning algorithm attaches agents to each
household appliance and determines an optimal policy to reduce the energy consumption and
electricity billing without disruption of user comfort level.

(c) A discomfort function is introduced to model the discomfort and arises due to scheduling the
household appliances against the energy consumption.

(d) Finally, the proposed is tested on households against the TOU pricing tariff strategy. The proposed
system efficiently reduces the energy consumption and discomfort of the home user. On the
other hand, the proposed system is compared with the scheduling algorithm based on the LST
algorithm. The results reveal that the proposed system outperforms the LST-based scheduling in
context of energy consumption and user discomfort of the smart home user.

4. Proposed Scheme

4.1. Birdseye View of the Proposed Scheme

Much work on the potential of standardizing HEMS has been carried out, unfortunately, there are
still some critical issues which draw our attention. Moreover, in the last decade, we have observed that
very few studies have been published in this regard. Accordingly, to go a step ahead of designing
specific energy optimization methods and algorithms for specific scenarios, we come up with an
intelligent automatic energy management and recommendation system to interconnect user and
smart home objects of various load profiles such as adaptable, unadaptable, and manageable as
shown in Figure 2. In our proposed architecture, we presented an automatic energy management
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and recommendation system (EMRS), wherein user and different class of household appliances are
equipped with one EMRS, with the concerns to reduce their electricity consumption and user discomfort,
as shown in Figure 1. Human-appliances interaction (HAI) that enables communication and exchange
of human-appliances interaction information pattern and energy consumption of appliances. EMRS
receives the human-appliances interaction information log from the user activity model, and then in
response to the user behavior, the EMRS schedules each appliance to the evaluated user profile. In this
work, we integrate the EMRS with the Markov decision process (MDP) and use the reinforcement
learning-based method called Q-learning to model the HAI and schedule different home appliances
(REFG, TV, bulb, AC, WM, DW) and recommend an optimal scheduled sequence of appliances to the
user according to the HAI model. In the Q-learning paradigm, the agents interact with the environment
and learn to take an optimal action based on their current state. A simple reward from the environment
is set to motivate the agents. From the set of different states, the agent obtains an optimal policy.
Eventually, to maximize the reward, each agent acquires knowledge to choose the best action. It is
accomplished by the agent to measure the current state value, which will be precise by visiting the next
state. The action is picked, which maximizes reward value of the next state. In this work, each appliance
has their own single Q-learning agent, the agent learns and exhibits a sequence of optimal policy
based on the HAI model of the user for operating the appliances to overcome the power consumption
rate and user discomfort level. Each appliance is modeled as an environment with state and aspect.
The user interacts with the appliances to enable an operation for the user, in response, the appliances
execute the operation and give the required service and comfort to the user. When an appliances agent
is participating in the energy management control system to reduce the power consumption and cost,
then the agent will have an automatic and recommended policy for turning off specific appliances
which can create greater discomfort to the user. During the learning process, the HAI model gives
random action feedback to the agent and this feedback comes from the user comfort value of the
state when switching off that specific appliances. The calculation of the comfort level is based on the
user preferences and power consumption which measure the user–appliances interaction at that time.
The user comfort level may change occasionally due to some circumstance i.e., such that user routine,
weather, and emergency situations.
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4.2. Q-Learning-Based Propsoed Emrs Model

While employing the reinforcement learning in the proposed model, the smart home energy
environment is considered an MDP problem. The MDP environment consist of five elements (S, A, P,
R, γ), S represent the set of finite discrete states in the MDP environment, where A is the available
set of actions for an agent, P denotes the probability matrix of the state transition, R represents the
reward, and γ denotes a discount factor amid 0 < γ > 1 and utilization for the relation of the current
versus future reward. An agent in RL continuously reaches out to the environment and picks an
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optimal policy by visiting almost every state. When an agent interacts with the environment at every
observation, the agent reaches a state st ∈ S in time t. Accordingly, the agent chooses and performs an
action at. Afterwards, the current state of the agent environment will be transferred to state st+1 ∈ S
by considering the P (transition probability matrix). Thus, the agent gets an on-hand reward rt by
considering the R (reward function). If the taken action leads to a promising environment reward, then
the attraction of this action-reward pair will be given preference, and vice versa. The primary goal of
the agent to maximize the collective discounted reward at time t as the following:

Rt =
∞∑

k=t

γk−trk = rt + γRt+1. (11)

It is useless to get all the rewards and calculate the discount rewards for every state. To overcome
this limitation, a model-free RL method is introduced in which Q-function is used at state ‘s’ to calculate
the best value and select a proper action at. Specifically, the Q-function is the combined prediction of
the cumulative, expected, and discounted future reward and can be computed using Equation (11):

Q(st, at) = E[rt+γrt+1+γ
2rt+2+ . . . . . . ..|st, at]. (12)

Q-learning is the effective RL model-free algorithm, instead of the building environment model,
the algorithm estimates the action a value at state ‘s’ of the environment. The agent interacts with the
environment and takes an estimated action. From the environment, the agent receives a new state
with the reward for the environment. The process is suspended once the agent maximize the rewards.
A policy is determined from the agent taken action in the specific state; hence, the objective of the
agent is to find an optimal policy which maximizes the reward. For these kinds of decision making
problems, Q-learning is the suitable method for finding and selecting the optimal policy v. Further, the
Q-learning method calculates Q(st, at) pair and updates the Q-value against the cumulative rewards
considering the below Bellman equation [44]:

Qt+1(st, at) = Qt(st, at) + α[yt −Qt(st, at)], (13)

yt = rt + γmaxQt(st+1, a′), (14)

Qv(st, at) = r(st, at) + γmaxQ(st+1, at+1), (15)

Where yt represents the desirable value, as from the beginning it is anonymous. The agent
calculates the approximation of the desirable value i.e., yt in Equation (13) from the immediate reward
and maximum Q value of the next state. In Equation (14), the pair addition of maximum discount
factor γmaxQ(st+1, at+1) and the current reward r(st, at) give the optimal Q-value Qv(st, at) in context
of optimal policy ‘v’. γ denotes a discount factor amid γ ∈ (0, 1) and utilization for the relationship of
the current versus future reward. By decreasing the discounting factor γ, the agent picks the present
immediate reward and when the ‘γ’ is increasing and closet to 1, the agent tends to consider the future
reward. When an action takes place in state ‘s’ at time t, the Q-value is altered in Q-table. From the
same table, the agent selects the future actions in time t, and by using the following Bellman equation,
the agent updates the selected state-action pair value in the Q-table:

Qt+1(st, at) = (1− θ)Qt(st, at) + θ[r(st, at) + γmaxQ(st+1, at+1)]. (16)

In Equation (14), θ amid [0, 1], which denotes the learning rate of the agent by receiving the
observation (trail-error) from the environment up to the extent where the value of Q-table is altered.
When the θ value is near ‘0’, the agent picks the previous Q-value and learns nothing and uses
exploitation in the Q-learning process. Moreover, when the θ value is near ‘1’, the agent picks the
present reward and maximizes the future discounted reward by using the exploration strategy in the
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Q-learning process. Like the γ, the system operator can set the value of θ in between ‘0’ and ‘1’to
ensure the exploitation and exploration using Equation (15), while updating the Qt(st, at) in an iterative
mode. At certain time t, progressively the Q-value will reach a larger value, and using the following
equation with larger Q-value, the agent will get the projected optimal policy v:

v = argmaxQ(st, at). (17)

In this research, the abovementioned RL-based Q-learning model-free method is used where each
appliance acts as a Q-learning environment with an agent to determine an optimal policy for operation
of appliances. Our proposed work targets the consumer electricity consumption plus consumer
comfort level by scheduling preferred appliances. The following section describes the components of
the proposed Q-learning i.e., states, actions, and rewards in context of smart home energy management
and the recommendation control system.

4.2.1. States

In context of smart home energy management and the recommendation control system, in a
house, each appliance refers to the Q-learning environment and the associated load profile or the
power rating is called the state. In the Q-learning paradigm, an environment should have one or
more than one state, in smart home energy management and the recommendation control system,
an agent has more than one goal state by performing couple of actions. In our system, a goal state can
reach once the current energy consumption is less than or equal to the available energy in the current
state the agent can consume. Further, in our proposed system, we have three classes of appliances
i.e., (1) un-adaptable load (2) adaptable load (3) adaptable load. From each class of appliances, we pick
one or more appliance with their corresponding load profile, namely REFG, WM, air-conditioning
system (AC) and light1 (L1), light2 (L2) with the load profile as shown in Table 2. The total power for a
house is considered to be 2500 watts. The agent compares the current power consumption with the
available energy, the goal of the smart home agent is to keep the power consumption less than that of
the available energy. The agent does nothing when the current energy consumption is fewer than the
available energy and can turn on another preferred appliance. The states of the different classes of
appliances are given below:

SREFG = EREFG , SWM = EWM, SAC = EAc. (18)

Table 2. Household appliances simulation parameters.

Device Type ID TK βk Load Profile (Kwh) Operation Time Ln,ne

Adoptable WM 0.1 - 0.52–0.65 6 pm–11 pm 45
DW 0.1 - 0.6–1.2 6 am–11 am 105

Un-adoptable REFG - - 0.2 24 h -

Manageable
AC - 2.3 0–1.4 24 h -
L1 - 2 0.2–0.8 6 pm–11 pm -
L2 - 2.5 0.2–0.8 6 pm–11 pm -

In Equation (17), EREFG , EWM, and EAc represent the states which is actually the power rating of
the REFG, WM, and AC at time t [45].

4.2.2. Actions

In the proposed Q-learning for the smart home energy management system, the action for an
appliance varies from state to state in the agent environment. In this work, we have various actions for
the said three classes of appliances i.e., for (1) un-adaptable load, the agent has no action to perform,
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(2) adaptable load, the agent has two actions ‘On’ and ‘Off’, and (3) adaptable load, the agent has ‘n’
level of actions. The action of different classes of appliances are stated below [45]:

AREFG = {On} OR AREFG ,
{
O f f

}
, (19)

AWM,DW =
{
On OR o f f

}
, (20)

AAC =
{
0, ∆EAc , 2∆EAc, 3∆EAc, . . . , 8∆EAc, 9∆EAc

}
, (21)

AL1,L2 =
{
0, ∆EL1,L2 , 2∆EL1,L2, 3∆EL1,L2, . . . , 6∆EL1,L2, 7∆EL1,L2

}
. (22)

In Equation (18), the REFG agent will perform only on action. In Equation (19), the WM and
DW agent will perform one action i.e., switch on whenever the agent turns on the WM, the constant
energy consumption starts EWM, EDW and when the operation cycle completes, the devices switch off

automatically and the agent updates its corresponding record. In Equations (20) and (21), the AC
and light bulbs (L1, L2) have ten and eight discreet energy levels available respectively, which
means the agent can take 10 actions for AC and 8 actions for L1 and L2 to manage the operations
in certain conditions. The AC and L1 and L2 energy consumption are represented by ∆EAC and
∆EL1,L2, recpectively.

4.2.3. Rewards

In the proposed scheme, we calculate the reward based on the agent actions and appliances
priority. We define the reward matrix based on user preference as given below:

Reward =


−1 when the goal state energy exceeding from the avialable energy (23)

0 Do nothing (24)

1 when the goal state reached after turning off an appliance (25)

4.2.4. Discomfort Level

In the proposed work, we calculate the user discomfort cost against the energy consumption of all
the household appliances [46]:

ϕk(xk) = eβ(1−(
xk

EDk
))
− 1, βk > 0, (26)

where K represents the set of appliances and |K| = N, for each appliance, k ∈ K and xk represent its
strategy. We model the set of appliances ‘K’ latter cost ϕk(xk) as a discomfort cost function. Generally,
ϕk(xk) with respect to xk the function value is continuously decreasing from positive to negative at
the median level of the energy demand (represented by mk). According to [47], this function has
three fundamental properties. (1) If xk is less than mk, meaning that the discomfort value is positive
and the appliance is not satisfied with the current demand. (2) If xk is greater than mk, meaning that
the appliance is satisfied with the current demand and the discomfort value is positive. (3) When xk
xk equals to mk, meaning that the appliance shows neutral behavior to the current energy demand
as shown in Figure 3. For achieving these properties, Equation (25) was used where βk denotes the
appliance priority factor. An appliance with the higher βk has low priority of energy demand and vice
versa. Specifically, the appliance, which closely affects the user comfort level, has smaller βk value [46].
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5. Experimental Analysis

5.1. Simulation Setup

We considered a smart home environment with three major classes of loads adoptable,
un-adoptable, and manageable. The performance of our proposed Q-learning algorithm is evaluated
using Python programming language. We conducted our simulation on six household appliances
i.e., two adoptable loads (WM, DW), one un-adoptable (REFG), and three manageable load (AC, L1,
L2). The household appliances are randomly turned on and off during the entire course of the day.
Similarly, modeling human–appliance interaction exhibits a random nature and, therefore, hard to
predict. According to the human-appliances interaction, the user could have different requirements
in various situations, in context of power requirement, location, weather, and time. With regard to
multiple conditions, for example, during the day time when outside is sunny, high temperature, then
the requirement for AC and Ls depends on the position of the user in the house (bedroom, drawing
room). In the simulation, we have considered the discomfort parameter β depending on the nature or
type of the household appliances. Finally, all the simulation parameters are listed in Table 2 [22].

Furthermore, the energy data of the household appliances and TOU tariff according to Table 3 is
provided to the HEMRS. Resulting, the HEMRS is enabled to take optimal actions by considering the
tariff, load priority, and user comfort level. One of the main advantages of the HEMRS is shifting the
load of low priority appliances during the peak hours’ time of the day. While updating the Q-table,
the agent of each appliance visits all the states and learns new knowledge from the environment.
To enhance the learning process of the Q learning, initially, the exploration and exploitation parameter
ε is set to 0.2. In addition, the discount factor γ is set to 0.9 to update the Q(st, at) during error and trail
experiences from Q-learning episodes. The learning rate of the system θ is set to 0.1.

Table 3. Standard TOU plan with price (cents/kWh).

TOU Plan Time Price

Overnight 11 p.m.–5 a.m. 1.34 cents/kWh

Off-Peak 6 a.m.–12 p.m. 7.04 cents/kWh

On-Peak 1 p.m.–5 p.m. 19.01 cents/kWh

Partial-Peak 6 p.m.–10 p.m. 12.50 cents/kWh
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5.2. Results and Discussion

Subsequently, executing the Q-learning simulation setup as shown in Figure 4, the agent starts
taking actions randomly. Initially, the agents pick expensive actions, which results in poor Q-value.
During this trial and error phase, followed by the successive iteration, the agents explore the available
states and actions which results in maximum Q- value as shown in Figure 5. In the proposed scheme,
the agent can get high Q-value by performing switching off actions. The switching off actions produce
high reward and maximize the Q-value. Simultaneously, the Q-learning algorithm minimizes the
monetary cost by keeping the power consumption levels of a household appliance less or equal
to the available power. The simulation time of all household appliances was carried out for 24 h.
In this section, we compute the throughput in terms of power consumption, monitory cost, and user
discomfort reduction. The results obtained from RL based Q-learning algorithms for consumption,
monitory cost, and user discomfort are discussed in the following sections. The proposed scheme
is compared with one of our previous schemes presented in [48]. In [48], the authors proposed a
load balancing and appliance scheduling based on automated switching off system and least slack
time algorithm, respectively. However, the approach proposed in [48], does not address the problems
i.e., load balancing, scheduling of household appliances, and house hold discomfort level in the proper
way. Moreover, during the load balancing based scheduling, the scheme in [35] automatically turns
off an appliance without knowing the user need, resulting in high discomfort level. In addition,
the scheme in [35] has high energy consumption, high monetary cost, and high discomfort level.
Henceforth, to overcome the problem in LST-based scheduling, we proposed the RL-based scheme,
which minimizes energy consumption, monetary cost, and user discomfort level by incorporating an
intelligent system of performing those actions which results in a high reward.Sensors 2020, 20, x FOR PEER REVIEW 14 of 20 
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The proposed scheme is tested and compared to the home energy management scheme in [48].
As shown in Figure 6a–d, we investigated the energy consumption of REFG, AC, (L1), and (L2),
respectively. It was found that the proposed Q-learning-based scheme reduces the energy consumption
of each appliance by keeping the total energy consumption less than the available energy and avoids
the unnecessary power wastage. In Figure 6a, the results show the performance of the un-adoptable
appliance, whereas the energy consumption in our scheme is constant, which means that our scheme
kept the switch on the un-adoptable appliance (REGR) for 24 h and consumed less energy during the
on-peak hours with less user discomfort. The result shows the average energy consumption of the
REFG. On the other hand, during the hypothesis, we investigate that the scheme in [48], sometime
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automatically switches off the REFG for 10–30 min, which may result in food spoiling. Thus, it highly
increases the discomfort of the home user. Moreover, in the case of LST-based scheduling, REFG
consumes high energy during on-peak hours. Therefore, it results in high energy monetary cost.
Figure 6b–d shows the manageable appliances results (AC, L1, L2), where the proposed scheme
schedules and controls the power consumption of appliances with less energy and cost.
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(b) AC results; (c) L1 results; (d) L2 results.

The AC results in Figure 6b show that during the on-peak hours, the proposed scheme keeps
both the energy consumption and discomfort lower than that of LST-based scheduling, as well as
keeps the total power consumption less than the available power. While the results of L1 and L2 in
Figure 6c, and Figure 6d, respectively, show that during the nighttime L1 and L2 were scheduled to
switch off from 1–5 and 4–5 am respectively. While during daytime and in on-peak hours, the power
rating of lights were scheduled low to keep the total power consumption less than the available power.
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In contrast, L1 and L2 in LST-based scheduling were switched on during the day and night with high
power ratings and in on-peak hours, resulting in high energy consumption and cost.

After getting the maximum Q-value, the energy consumption of the adoptable load can be
determined. In Figure 7, the energy consumption of WM and DW of the proposed scheme with
the scheme LST-based scheduling is presented. When the proposed Q-learning algorithm deployed,
we determined two adoptable appliances i.e., WM and DW, operate and consume energy when the
prices are low (overnight hours, off-peak hours, and partial peak hours) and avoids consumption in
om-peak time. Specifically, WM consumes energy at time slots 23–24, while, the DW consumes energy
during time slots 4–5 and 18–19. During these time slots, the proposed scheme keeps the REFG, AC, L1,
and L2 switched the on mode in the low power rating to reduce the user discomfort level. On the other
hand, the results reveals that the LST-based scheduling consumes high energy during the on-peak and
partial peak hours at time slots 16–17,13–14, and 21–22 in the case of WM and DW. During these time
slots, the LST-based scheduling automatically switches off the unadoptable and manageable appliance,
which results in a high user discomfort level. The decrease in energy consumption against LST-based
scheduling reveals that the proposed scheme can be used in future smart homes.
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Figure 7. Energy consumption of WM, DW with LST-scheduling.

In the case of Figure 8, the proposed Q-learning-based scheme is compared with the LST-based
scheduling, we figure out the total energy consumption and cost of all appliances. The simulation was
24-h long and depicts the overnight, off-peak, on-peak, and partial peak hours accordingly. Figure 8a
clearly reveals that the proposed RL-based Q-learning algorithm significantly minimizes the on-peak
load, which reduced the total cost of a smart home. The cost optimization threshold values (available
energy) dramatically transferred the on-peak and partial-peak to the off-peak hours with the aid of the
Stackelberg game-based dis-satisfaction component [46]. In contrast, the LST-based scheduling has a
high energy cost for household appliances in the same duration of time, because it manages its services
based on the automatic off option, which leads to higher energy consumption than the proposed scheme
during on-peak hours. Figure 8b shows the energy consumption of the proposed scheme against
LST-based scheduling of household appliances. As presented in Figure 8b, the proposed Q-learning
algorithm-based scheduling has minimized the total power consumption of the household appliances
in the on-peak hours and partial-peak hours, as compared to the LST-based scheduling. The LST-based
scheduling is highly suitable in scenarios where there is variation in energy consumption of multiple
smart home appliances. However, the proposed scheme based on Q learning has the advantages of
attaching agents to home appliances, which increases the efficiency by deciding in real time. Similarly,
the LST and similar scheduling strategies such as demand-response always perform inappropriate in
performing actions in real time.
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Figure 8. Total energy cost and total energy consumption comparison with LST-scheduling: (a) total
energy cost of all appliances and (b) total energy consumption of all appliances.

The user discomfort always depends on the energy consumption. For instance, the higher the
energy consumption, the less the discomfort of the home user. Keeping such intentions in mind,
Figure 9 shows the user discomfort level compared to the LST based scheduling scheme. The result
reveals that the user discomfort level throughout the day is less than that of LST-scheduling. This is due
to the energy demand of the appliances of the proposed scheme during the on-peak time being less and
high in off-peak hours. In particular, during the on-peak hours, the agent reduces the power level of all
that appliances which demanded more electricity to keep the total energy consumption below than
that of the threshold energy value and had smaller discomfort βk value. Contrast to the LST-scheduling
scheme, automatically switching off random appliances in higher energy consumption slots and
on-peak hours due to the user discomfort level is high in time slot 5, 8, 13, and 17. This experiment
reveals that the agents attached to each appliance always learn from the environment and whenever
an action is increasing the discomfort of the home user, those actions are always avoided next time.
This behavior of the proposed scheme gives high advantage over other similar systems. Finally, the
existing literature covers techniques and methods to reduce energy consumption, but they highly
increased the discomfort level of the home user. In addition, they never come up with the level of
the discomfort due to reduced energy consumption. Keeping a balance equilibrium between energy
consumption and discomfort is also one of the main advantages of the proposed scheme.
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6. Conclusions

In this article, we proposed the scheduling of household appliances based on the well-known
reinforcement learning algorithm called Q-learning. The Q-learning algorithm attaches agents to
each household appliance. The agents monitor the operation of each appliance and also schedule the
operating time of each appliance. In addition, the agents always perform those actions, which increases
the rewards i.e., minimum energy consumption. The appliances are divided into three groups
i.e., (1) adoptable, (2) un-adoptable, (3) manageable to minimize the discomfort caused by inappropriate
scheduling. The proposed system is tested in a smart home environment with a single home user
and a number of household appliances for 24 h a day. As we can see, after applying the proposed
system the household appliances work intelligently. Therefore, the proposed system efficiently reduces
the energy consumption and discomfort of the home user. On the other hand, the proposed system
is compared with the scheduling algorithm based on the LST algorithm. The results reveal that the
proposed system outperforms the LST-based scheduling in context of energy consumption and user
discomfort of the smart home user.
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work; M.D. performed the experiments; M.D. and B.N.S. analyzed the data; M.D. and B.N.S. wrote the paper; K.H.
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