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Abstract: Low lighting images usually contain Poisson noise, which is pixel amplitude-dependent.
More panchromatic or white pixels in a color filter array (CFA) are believed to help the demosaicing
performance in dark environments. In this paper, we first introduce a CFA pattern known as CFA 3.0
that has 75% white pixels, 12.5% green pixels, and 6.25% of red and blue pixels. We then present
algorithms to demosaic this CFA, and demonstrate its performance for normal and low lighting
images. In addition, a comparative study was performed to evaluate the demosaicing performance
of three CFAs, namely the Bayer pattern (CFA 1.0), the Kodak CFA 2.0, and the proposed CFA 3.0.
Using a clean Kodak dataset with 12 images, we emulated low lighting conditions by introducing
Poisson noise into the clean images. In our experiments, normal and low lighting images were used.
For the low lighting conditions, images with signal-to-noise (SNR) of 10 dBs and 20 dBs were studied.
We observed that the demosaicing performance in low lighting conditions was improved when there
are more white pixels. Moreover, denoising can further enhance the demosaicing performance for
all CFAs. The most important finding is that CFA 3.0 performs better than CFA 1.0, but is slightly
inferior to CFA 2.0, in low lighting images.

Keywords: debayering; demosaicing; color filter array (CFA); RGBW pattern; Bayer pattern; CFA 1.0;
CFA 2.0; CFA 3.0; pansharpening; deep learning

1. Introduction

Many commercial cameras have incorporated the Bayer pattern [1], which is also named as
color filter array (CFA) 1.0. An example of CFA 1.0 is shown in Figure 1a. There are many repetitive
2 × 2 blocks and, in each block, two green, one red, and one blue pixels are present. To save
cost, the Mastcam onboard the Mars rover Curiosity [2–5] also adopted the Bayer pattern. Due to
the popularity of CFA 1.0, Kodak researchers invented a red-green-blue-white (RGBW) pattern or
CFA 2.0 [6,7]. An example of the RGBW pattern is shown in Figure 1b. In each 4 × 4 block, eight white
pixels, four green pixels, and two red and blue pixels are present. Numerous other CFA patterns have
been invented in the past few decades [8–10].

Researchers working on CFAs believe that CFA 2.0 is more suitable for taking images in low
lighting environments. Recently, some researchers [11] have further explored the possibility of adding
more white pixels to the CFA 2.0. The new pattern has 75% white pixels and the RGB pixels are
randomly distributed among the remaining 25% pixels.

Motivated by the work in [11], we propose a simple CFA pattern in which the RGB pixels are evenly
distributed, instead of using randomly distributed RGB pixels. In particular, as shown in Figure 1c,
each 4 × 4 block has 75% or 12 white pixels, 12.5% or two green pixels, 6.25% or one red and blue
pixels. We identify this CFA pattern as the CFA 3.0. There are three key advantages of using fixed
CFA patterns. For the random pattern case, each camera will have a different pattern. In contrast,
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the first advantage is that the proposed fixed pattern allows a camera manufacturer to mass produce
the cameras without changing the RGBW patterns for each camera. This can save manufacturing
cost quite significantly. The second advantage is that the demosaicing software can be the same in all
cameras if the pattern is fixed. Otherwise, each camera needs to have a unique demosaicing software
tailored to a specific random pattern. This will seriously affect the cost. The third advantage is that
some of the demosaicing algorithms for CFA 2.0 can be applied with little modifications. This can be
easily seen if one puts the standard demosaicing block diagrams for CFA 2.0 and CFA 3.0 side by side.
One can immediately notice that the reduced resolution color image and the panchromatic images can
be similarly generated. As a result, the standard approach for CFA 2.0, all the pan-sharpening based
algorithms for CFA 2.0, and the combination of pan-sharpening, and deep learning approaches for
CFA 2.0, that we developed earlier in [12] can be applied to CFA 3.0.Sensors 2020, 20, x  2 of 44 

 

 
(a) 

 
(b) 

 
(c)  

Figure 1. Three CFA patterns. (a) CFA 1.0; (b) CFA 2.0; (c) CFA 3.0. 
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and CFA 2.0 using IMAX and Kodak images and observed that CFA 1.0 was better than CFA 2.0. One 
may argue that our comparison was not fair because IMAX and Kodak datasets were not collected in 
low lighting conditions and CFA 2.0 was designed for taking images in low lighting environments. 
Due to the dominance of white pixels in CFA 2.0, the SNR of the collected image is high and hence 
CFA 2.0 should have better demosaicing performance in dark environments. 

Recently, we systematically and thoroughly compared CFA 1.0 and CFA 2.0 under dark 
conditions [13]. We observed that CFA 2.0 indeed performed better under dark conditions. We also 
noticed that denoising can further improve the demosaicing performance.  

The aforementioned discussions immediately lead to several questions concerning the different 
CFAs. First, we enquired how demosaic CFA 3.0. Although there are universal debayering algorithms 
[8–10], those codes are not accessible to the public or may require customization. Here, we propose 
quite a few algorithms that can demosaic CFA 3.0, and this can be considered as our first contribution. 
Second, regardless of whether the answer to the first question is positive or negative, will more white 
pixels in the CFA pattern help the demosaicing performance for low lighting images? In other words, 
will CFA 3.0 have any advantages over CFA 1.0 and CFA 2.0? It will be a good contribution to the 
research community to answer the question: Which CFA out of the three is most suitable for low 
lighting environments? Third, the low lighting images contain Poisson noise and demosaicing does 
not have denoising capability. To improve the demosaicing performance, researchers usually carry 
out some denoising and contrast enhancement. It is important to know where one should perform 
denoising. Denoising can be performed either after or before demosaicing. Which choice can yield 
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In our recent paper on the demosaicing of CFA 2.0 (RGBW) [12], we have compared CFA 1.0 and
CFA 2.0 using IMAX and Kodak images and observed that CFA 1.0 was better than CFA 2.0. One may
argue that our comparison was not fair because IMAX and Kodak datasets were not collected in low
lighting conditions and CFA 2.0 was designed for taking images in low lighting environments. Due to
the dominance of white pixels in CFA 2.0, the SNR of the collected image is high and hence CFA 2.0
should have better demosaicing performance in dark environments.

Recently, we systematically and thoroughly compared CFA 1.0 and CFA 2.0 under dark
conditions [13]. We observed that CFA 2.0 indeed performed better under dark conditions. We also
noticed that denoising can further improve the demosaicing performance.

The aforementioned discussions immediately lead to several questions concerning the different CFAs.
First, we enquired how demosaic CFA 3.0. Although there are universal debayering algorithms [8–10],
those codes are not accessible to the public or may require customization. Here, we propose quite a
few algorithms that can demosaic CFA 3.0, and this can be considered as our first contribution. Second,
regardless of whether the answer to the first question is positive or negative, will more white pixels in
the CFA pattern help the demosaicing performance for low lighting images? In other words, will CFA 3.0
have any advantages over CFA 1.0 and CFA 2.0? It will be a good contribution to the research community
to answer the question: Which CFA out of the three is most suitable for low lighting environments?
Third, the low lighting images contain Poisson noise and demosaicing does not have denoising capability.
To improve the demosaicing performance, researchers usually carry out some denoising and contrast
enhancement. It is important to know where one should perform denoising. Denoising can be performed
either after or before demosaicing. Which choice can yield better overall image quality? Answering
the above questions will assist designers understand the next generation of cameras that have adaptive
denoising capability to handle diverse lighting environments.

In this paper, we will address the aforementioned questions. After some extensive research
and experiments, we found that some algorithms for CFA 2.0 can be adapted to demosaic CFA 3.0.
For instance, the standard approach for CFA 2.0 is still applicable to CFA 3.0. The pan-sharpening based
algorithms for CFA 2.0 [12] and deep learning based algorithms for CFA 2.0 [14] are also applicable to
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CFA 3.0. We will describe those details in Section 2. In Section 3, we will first present experiments to
demonstrate that CFA 3.0 can work well for low lighting images. Denoising using block matching in
3D (BM3D) [15] can further enhance the demosaicing performance. We also summarize a comparative
study that compares the performance of CFA 1.0, CFA 2.0, and CFA 3.0 using normal and emulated
low lighting images. We have several important findings. First, having more white pixels does not
always improve the demosaicing performance. CFA 2.0 achieved the best performance. CFA 3.0
performs better than CFA 1.0 and is slightly inferior to CFA 2.0. Second, denoising can further enhance
the demosaicing performance in all CFAs. Third, we observed that the final image quality relies
heavily on the location of denoising. In particular, denoising after demosaicing is worse than denoising
before demosaicing. Fourth, when the SNR is low, denoising has more influence on demosaicing.
Some discussions on those findings are also included. In Section 4, some remarks and future research
directions will conclude our paper.

2. Demosaicing Algorithms

We will first review some demosaicing algorithms for CFA 2.0. We will then answer the first
question mentioned in Section 1: how one can demosaic the CFA 3.0 pattern shown in Figure 1c.
It turns out that some of the existing algorithms for CFA 2.0 can be used for CFA 3.0 with some
minor modifications.

2.1. Demosaicing Algorithms for CFA 2.0

The baseline approach is a simple demosaicing operation on the CFA, followed by an upsampling
of the reduced resolution color image shown in Figure 2 of [13]. The standard approach consists of four
steps as shown in Figure 2 of [13]. Step 1 interpolates the luminance image with half of the white pixels
missing. Step 2 subtracts the reduced color image from the down-sampled interpolated luminance
image. Step 3 upsamples the difference image in Step 2. Step 4 fuses the full resolution luminance with
the upsampled difference image in Step 3. In our implementation, the demosaicing of the reduced
resolution color image is done using local directional interpolation and nonlocal adaptive thresholding
(LDI-NAT) [16] and the pan interpolation is also done using LDI-NAT [16].

In our recent paper [12], a pan-sharpening approach, as shown in Figure 2 of [13], was proposed
to demosaicing CFA 2.0. The demosaicing of the reduced resolution color image is done using
LDI-NAT [16]. The panchromatic (luminance) band with missing pixels is interpolated using
LDI-NAT [16]. After those steps, pan-sharpening is performed to generate the full resolution color
image. It should be noted that many pan-sharpening algorithms have been used in our experiments,
including Principal Component Analysis (PCA) [17], Smoothing Filter-based Intensity Modulation
(SFIM) [18], Modulation Transfer Function Generalized Laplacian Pyramid (GLP) [19], MTF-GLP with
High Pass Modulation (HPM) [20], Gram Schmidt (GS) [21], GS Adaptive (GSA) [22], Guided Filter
PCA (GFPCA) [23], PRACS [24] and hybrid color mapping (HCM) [25–29].

In a recent paper by us [14], the pan-sharpening approach has been improved by integrating
with deep learning. As shown in Figure 4 of [13], a deep learning method was incorporated in two
places. First, deep learning has been used to demosaic the reduced resolution CFA image. Second,
deep learning has been used to improve the interpolation of the pan band. We adopted a deep learning
algorithm known as Demonet [30]. Good performance improvement has been observed.

Moreover, the least-squares luma-chroma demultiplexing (LSLCD) [31] algorithm was used in
our experiments for CFA 2.0.

In the past, we also developed two pixel-level fusion algorithms known as fusion of 3 (F3)
algorithms and alpha trimmed mean filter (ATMF), which were used in our earlier studies [12–14,32].
Three best performing algorithms are fused in F3 and seven high performing algorithms are fused in
ATMF. These fusion algorithms are applicable to any CFAs.
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2.2. Demosaicing Algorithms for CFA 3.0

As opposed to the random color patterns in [11], the CFA 3.0 pattern in this paper has fixed
patterns. One key advantage is that some of the approaches for CFA 2.0 can be easily applied with
little modifications. For instance, the standard approach shown in Figure 2 of [13] for CFA 2.0 can
be immediately applied to CFA 3.0, as shown in Figure 2. In each 4 × 4 block, the four R, G, B
pixels in the CFA 3.0 raw image are extracted to form a reduced resolution CFA image. A standard
demosaicing algorithm, any of those mentioned in Section 2.1 can be applied. In our implementation,
we used LDI-NAT [16] for demosaicing the reduced resolution color image. The missing pan pixels are
interpolated using LDI-NAT [16] to create a full resolution pan image. The subsequent steps will be
the same as before.
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Similarly, the pan-sharpening approach for CFA 2.0 shown in Figure 3 of [13] can be applied to
CFA 3.0 as shown in Figure 3. Here, the four R, G, B pixels are extracted first and then a demosaicing
algorithm for CFA 1.0 is applied to the reduced resolution Bayer image. We used LDI-NAT [16]
for reduced resolution color image. For the pan band, any interpolation algorithms can be applied.
We used LDI-NAT. Afterwards, any pan-sharpening algorithms mentioned earlier can be used to
fuse the pan and the demosaiced reduced resolution color image to generate a full resolution color
image. In our experiments, we have used PCA [17], SFIM [18], GLP [19], HPM [20], GS [21], GSA [22],
GFPCA [23], PRACS [24] and HCM [25] for pan-sharpening.
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The hybrid deep learning and pan-sharpening approach for CFA 2.0 shown in Figure 4 of [13]
can be extended to CFA 3.0, as shown in Figure 4. For the reduced resolution demosaicing step,
the Demonet algorithm is used. In the pan band generation step, we also propose to apply Demonet.
The details are similar to our earlier paper on CFA 2.0 [12]. Hence, we skip the details. After those
two steps, a pan-sharpening algorithm is then applied. In our experiments, Demonet is combined
with different pan-sharpening algorithms in different scenarios. For normal lighting conditions, GSA
is used for pan-sharpening and we call this hybrid approach the Demonet + GSA method. For low
lighting conditions, it is more effective to use GFPCA for pan-sharpening and we term this as the
Demonet + GFPCA method.
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The two fusion algorithms (F3 and ATMF) can be directly applied to CFA 3.0.

2.3. Performance Metrics

Five performance metrics were used in our experiments to compare the different methods and
CFAs. These metrics are well-known in the literature.

• Peak Signal-to-Noise Ratio (PSNR) [33] Separate PSNRs in dBs are computed for each band.
A combined PSNR is the average of the PSNRs of the individual bands. Higher PSNR values
imply higher image quality.

• Structural SIMilarity (SSIM) In [34], SSIM was defined to measure the closeness between two
images. An SSIM value of 1 means that the two images are the same.

• Human Visual System (HVS) metric Details of HVS metric in dB can be found in [35].
• HVSm (HVS with masking) [36] Similar to HVS, HVS incorporates the visual masking effects in

computing the metrics.
• CIELAB We also used CIELAB [37] for assessing demosaicing and denoising performance in

our experiments.

3. Experiments

In Section 2, we answer the first question about how one can demosaic CFA 3.0. Here, we will
answer the two remaining questions mentioned in Section 1. One of the questions is whether or not the
new CFA 3.0 can perform well for demosacing low lighting images. The other question is regarding
whether CFA 3.0 has any advantages over the other two CFAs. Simply put, we will answer which one
of the three CFAs is the best method for low light environments.

3.1. Data

A benchmark dataset (Kodak) was downloaded from a website (http://r0k.us/graphics/kodak/) and
12 images were selected. The images are shown in Figure 5 of [13]. We will use them as reference images
for generating objective performance metrics. In addition, noisy images emulating images collected

http://r0k.us/graphics/kodak/
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from dark conditions will be created using those clean images. It should be noted that the Kodak
images were collected using films and then converted to digital images. We are absolutely certain that
the images were not created using CFA 1.0. Many researchers in the demosaicing community have
used Kodak data sets in their studies.

Emulating images in low lighting conditions is important because ground truth (clean) images
can then be used for a performance assessment. In the literature, some researchers used Gaussian
noise to emulate low lighting images. We think the proper way to emulate low lighting images is by
using Poisson noise, which is simply because the noise introduced in low lighting images follows a
Poisson distribution.

The differences between Gaussian and Poisson noises are explained as follows. Gaussian noise
is additive, independent at each pixel, and independent of the pixel intensity. It is caused primarily
by Johnson–Nyquist noise (thermal noise) [38]. Poisson noise is pixel intensity dependent and is
caused by the statistical variation in the number of photons. Poisson noise is also known as photon
shot noise [39]. As the number of photons at the detectors of cameras follows a Poisson distribution,
and hence, the name of Poisson noise, when the number of photons increases significantly, the noise
behavior then follows a Gaussian distribution due to the law of large numbers. However, the shot
noise behavior of transitioning from Poisson distribution to Gaussian distribution does not mean that
Poisson noise (photon noise) becomes Gaussian noise (thermal noise) when the number of photons
increases significantly. This may be confusing for many people due to the terminology of Gaussian
distribution. In short, the two noises come from different origins and have very different behaviors.

Poisson distribution has been widely used to characterize discrete events. For example, the arrival
of customers to a bank follows a Poisson distribution; the number of phone calls to a cell phone tower
also follows a Poisson distribution. For cameras, the probability density function (pdf) of photon noise
in an image pixel follows a Poisson distribution, which can be mathematically described as,

P(k) =
λke−λ

k!
(1)

where λ is the mean number of photons per pixel and P(k) is the probability when there are k photons.
Based on the above pdf, one can interpret the actual number of photons arriving at a detector pixel
fluctuates around the mean (λ), which can be used to characterize the lighting conditions. That is, a
small λ implies the lighting is low and vice versa.

In statistics, when λ increases to a large number, the pdf in (1) will become a continuous pdf
known as the Gaussian distribution, which is given by,

P(x) =
1
√

2πλ
e−

1
2λ (x−λ)

2
(2)

where x denotes the continuous noise variable and λ is the same for both mean and variance in Poisson
noise. In [40], central limit theorem is used to connect (1) and (2) by assuming λ >> 1. The derivation
of (2) from (1) can be found in [41]. Figure 5 [42] clearly shows that the Poisson distribution gradually
becomes a Gaussian distribution when λ increases. It appears that when λ = 10, the Poisson pdf
already looks like a Gaussian distribution.

However, it must be emphasized here that although (2) follows the normal or Gaussian distribution,
the noise is still photon shot noise, not Gaussian noise due to thermal noise.

In contrast, Gaussian noise (thermal noise) follows the following distribution,

P(z) =
1
√

2πσ
e−

1
2 (

z−µ
σ )

2

(3)

where z is the noise variable, µ is the mean, and σ is the standard deviation. As mentioned earlier,
Gaussian noise is thermal noise and is independent of pixels and pixel intensity. To introduce Gaussian
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noise to a clean image, one can use a Matlab function: imnoise (I, “Gaussian”, µ, σ2) where I is a clean
image and µ is set to zero.
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Here, we describe a little more about the imaging model in low lighting conditions. As mentioned
earlier, Poisson noise is related to the average number of photons per pixel, λ. To emulate the low
lighting images, we vary λ. It should be noted that the SNR in dB of a Poisson image is given by [40]:

SNR = 10 log(λ) (4)

A number of images with different levels of Poisson noise or SNR can be seen in the table in
Appendix A.

The process of how we introduced Poisson noise is adapted from code written by Erez Posner
(https://github.com/erezposner/Shot-Noise-Generator) and it is summarized as follows.

Given a clean image and the goal of generating a Poisson noisy image with a target signal-to-noise
(SNR) value in dB, we first compute the full-well (FW) capacity of the camera, which is related to the
SNR through:

FW = 10SNR/10 (5)

For a pixel I(i,j), we then compute the average photons per pixel (λ) for that pixel by,

λ = I(i,j) × FW/255 (6)

where 255 is the number of intensity levels in an image. Using a Poisson noise function created by
Donald Knuth [43], we can generate an actual photon number k through the Poisson distribution
described by Equation (1). This k value changes randomly whenever a new call to the Poisson noise
function is being made.

Finally, the actual noisy pixel amplitude (In(i,j)) is given by:

In(i,j) = 255 × k/FW (7)

A loop iterating over every (i,j) in the image will generate the noisy Poisson image with the target
SNR value.

Although Gaussian and Poisson noises have completely different characteristics, it will be
interesting to understand when the two noises will become indistinguishable. To achieve that and
to save some space, we include noisy images between 20 dBs and 38 dBs. It should be noted that
the Gaussian noise was generated using Matlab’s noise generation function (imnoise). The Poisson

https://github.com/erezposner/Shot-Noise-Generator
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noise was generated following an open source code [44]. The SNRs are calculated by comparing the
noisy images to the ground truth image. From Table A1 in Appendix A, we can see that when SNR
values are less than 35 dBs, the two types of noisy images are visually different. Poisson images are
slightly darker than Gaussian images. When SNR increases beyond 35 dBs, the two noisy images are
almost indistinguishable.

From this study, we can conclude that 35-dB SNR is the threshold for differentiating Poisson noise
(photon shot noise) from Gaussian noise (thermal). At 35 dBs, the average number of photons per
pixel arriving at the detector is 3200 for Poisson noise and the standard deviation of the Gaussian noise
is 0.0177. The image pixels are in double precision and normalized between 0 and 1.

To create a consistent level of noise close to our SNR levels of 10 dBs and 20 dBs, we followed a
technique described in [44,45]. For each color band, we added Poisson noise separately. The noisy and
low lighting images at 10 dBs and 20 dBs are shown in Figures 6 and 7 of [13], respectively.

In this paper, denoising is done via BM3D [15], which is a well-known method in the research
community. The particular BM3D is specifically for Poisson noise. We performed denoising in a
band by band manner. The BM3D package we used is titled ‘Denoising software for Poisson and
Poisson-Gaussian data,” released on March 16th 2016. See the link (http://www.cs.tut.fi/~{}foi/invansc/).
We used this code as packaged, which requires the input to be a single band image. This package
would not require any input other than a single band noisy image. We considered using the standard
BM3D package titled “BM3D Matlab” in this link (http://www.cs.tut.fi/~{}foi/GCF-BM3D/) released on
February 16th 2020. This package would allow denoising 3-band RGB images. This package, however,
assumes Gaussian noise and required a parameter based on the noise level.

3.2. CFA 3.0 Results

Here, we will first present demosaicing of CFA 3.0 for clean images, which are collected under
normal lighting conditions. We will then present demosaicing of low lighting images at two SNRs
with and without denoising.

3.2.1. Demosaicing Clean Images

There are 14 methods in our study. The baseline and standard methods are mentioned in Section 2.2.
The other 12 methods include two fusion methods, one deep learning (Demonet + GSA), and nine
pansharpening methods.

The three best methods used for F3 are Demonet + GSA, GSA, and GFPCA. The ATMF uses those
three methods as well as Standard, PCA, GS, and PRACS.

From the PSNR and SSIM metrics in Table A2, the best performing algorithm is the Demonet +

GSA method. The fusion methods of F3 and ATMF have better scores in Cielab, HVS and HVSm.
Figure 6 shows the averaged metrics for all images.

In subjective comparisons shown in Figure 7, we can see the performance of the three selected
methods (Demonet + GSA, ATMF and F3) varies a lot. Visually speaking, Demonet + GSA has the best
visual performance. There are some minor color distortions in the fence area of the lighthouse image
for F3 and ATMF.

http://www.cs.tut.fi/~{}foi/invansc/
http://www.cs.tut.fi/~{}foi/GCF-BM3D/
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3.2.2. 10 dBs SNR

There are three cases in this sub-section. In the first case, we focus on the noisy images and there
is no denoising. The second case includes denoising after demosaicing operation. The third case is
about denoising before demosaicing operation.
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• Case 1: No Denoising

There are 14 methods for demosaicing CFA 3.0. The F3 method is a fusion method that fused
the results of Standard, Demonet+GFPCA, and GFPCA, which are the best performing individual
methods for this case. The ATMF fusion method used the seven high performing methods, which
are Standard, Demonet+GFPCA, GFPCA, Baseline, PCA, GS, and PRACS. Table A3 in Appendix A
summarizes the PSNR, the CIELAB, SSIM, HVS, and HVSm metrics. The PSNR and CIELAB values
vary a lot. All the SSIM, HVS, and HVSm values are not high.

The averaged PSNR, CIELAB, SSIM, HVS, and HVSm scores of all the 14 methods are shown
in Figure 8. Big variations can be observed in the metrics.
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The demosaiced results of Images 1 and 8 are shown in Figure 9. There are color distortion, noise,
and contrast issues in the demosaiced images.

It can be observed that, if there is no denoising, all the algorithms have big fluctuations and the
demosaiced results are not satisfactory.

• Case 2: Denoising after Demosaicing

In this case, we applied demosaicing first, followed by denoising. The denoising algorithm is
BM3D. The denoising was done one band at a time. The F3 method fused the results from Demonet +

GFPCA, GFPCA, and GSA. ATMF fused results from Demonet + GFPCA, GFPCA, GSA, PCA, GLP,
GS, and PRACS. From Table A4 in Appendix A, the averaged PSNR score of Demonet + GFPCA and
GFPCA have much higher scores than the rest. The other methods also yielded around 4 dBs higher
scores than those numbers in Table A3.

Figure 10 illustrates the averaged performance metrics, which look much better than those
in Figure 8.
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• Case 3: Denoising before Demosaicing 
In this case, we first performed denoising and then demosaicing by pansharpening. The 

denoising is applied to two places. One is to the luminance image, which is the image after 
interpolation. The other place is to the reduced resolution color image. Denoising using Akiyama et 
al. approach [46] is a good alternative and will be a good future direction. The F3 method fused the 
results from the Standard, Demonet + GFPCA, GSA. ATMF fused the results from Standard, Demonet 
+ GFPCA, GSA, HCM, GFPCA, GLP, and PRACS. From Table A5, we can see that the Demonet + 
GFPCA algorithm yielded the best averaged PSNR score, which is close to 26 dBs. This is almost 6 
dBs better than those numbers in Table A4 and 16 dBs more than those in Table A3. The other metrics 
in Table A5 are all significantly improved over Table A4. As we will explain later, denoising after 
demosaicing performs worse than that of before demosaicing. 

Figure 10. Averaged performance metrics for all the low light images at 10 dBs SNR (Poisson noise).
(a) PNSR; (b) CIELAB; (c) SSIM; (d) HVS and HVSm.

The denoised and demosaiced images of three methods are shown in Figure 11. We observe that
the artifacts in Figure 9 have been reduced significantly. Visually speaking, the distortion in the images
of Demonet + GFPCA is quite small for the fence area of Image 8.
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• Case 3: Denoising before Demosaicing

In this case, we first performed denoising and then demosaicing by pansharpening. The denoising
is applied to two places. One is to the luminance image, which is the image after interpolation.
The other place is to the reduced resolution color image. Denoising using Akiyama et al. approach [46]
is a good alternative and will be a good future direction. The F3 method fused the results from the
Standard, Demonet + GFPCA, GSA. ATMF fused the results from Standard, Demonet + GFPCA, GSA,
HCM, GFPCA, GLP, and PRACS. From Table A5, we can see that the Demonet + GFPCA algorithm
yielded the best averaged PSNR score, which is close to 26 dBs. This is almost 6 dBs better than those
numbers in Table A4 and 16 dBs more than those in Table A3. The other metrics in Table A5 are all
significantly improved over Table A4. As we will explain later, denoising after demosaicing performs
worse than that of before demosaicing.

Figure 12 shows the averaged performance metrics. The metrics are significantly better than those
in Figures 8 and 10.

Figure 13 shows the demosaiced images of three methods. We can observe that the demosaiced
images have better contrast than those in Figure 11. The Demonet + GFPCA method has less
color distortion.

3.2.3. 20 dBs SNR

We have three cases here.

• Case 1: No Denoising (20 dBs SNR)

There are 14 methods. The F3 method fused the three best performing methods: Demonet+GFPCA,
GFPCA, and PRACS. ATMF fused the seven best performing methods: Demonet+GFPCA, GFPCA,
PRACS, Baseline, GSA, PCA, and GLP. From Table A6 in Appendix A, we can see that the averaged
PSNR score of PRACS is the best, which is 21.8 dBs.
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Figure 13. Visual comparison of three high performing demosaicing algorithms at 10 dBs SNR (Poisson
noise). The top row is the bird image and the bottom row is the lighthouse image. (a) Ground Truth;
(b) Demonet + GFPCA; (c) ATMF; (d) F3.
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The average performance metrics are shown in Figure 14. The results are reasonable because there
is no denoising capability in demosaicing methods. Figure 15 shows the demosaiced images of three
methods: GFPCA, ATMF, and F3. One can easily see some artifacts (color distortion).
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Figure 15. Visual comparison of three high performing demosaicing algorithms at 20 dBs SNR (Poisson
noise). The top row is the bird image and the bottom row is the lighthouse image. (a) Ground Truth;
(b) GFPCA; (c) ATMF; (d) F3.
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• Case 2: Denoising after Demosaicing (20 dBs SNR)

The F3 method performed pixel level fusion using the results of Demonet + GFPCA, GFPCA,
and GLP. ATMF fused the results of Demonet + GFPCA, GFPCA, GLP, Standard, GSA, PCA, and GS.
From Table A7, we can observe that the Demonet + GFPCA achieved the highest averaged PSNR score
of 21.292 dBs. This is better than most of PSNR numbers in Table A6, but only slightly better than
the Demonet + GFPCA method (20.573 dBs) in Table A4 (10 dBs SNR case). This clearly shows that
denoising has more dramatic impact for low SNR case than with high SNR case. The other metrics in
Table A7 are all improved over those numbers in Table A6.

Figure 16 shows the averaged performance metrics. The numbers are than those in Figure 14.
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Figure 16. Averaged performance metrics for all the low light images at 20 dBs SNR (Poisson noise).
(a) PNSR; (b) CIELAB; (c) SSIM; (d) HVS and HVSm.

The demosaiced images of three methods are shown in Figure 17. We can see that the artifacts
in Figure 17 have been reduced as compared to Figure 15. The color distortions are still noticeable.

• Case 3: Denoising before Demosaicing (20 dBs SNR)

The F3 method fused the results of three best performing methods: Standard, GSA, and GFPCA.
ATMF fused the 7 best performing methods: Standard, GSA, GFPCA, HCA, SFIM, GS, and HPM. From
Table A8, we can see that F3 yielded 27.07 dBs of PSNR. This is 7 dBs better than the best method in
Table A6 and 6 dBs better than the best method in Table A7. The other metrics in Table A8 are all
improved over Table A7 quite significantly. This means that the location of denoising is quite critical
for improving the overall demosaicing performance.
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Figure 17. Visual comparison of three high performing demosaicing algorithms at 20 dBs SNR
(Poisson noise). The top row is the bird image and the bottom row is the lighthouse image. (a) Ground
Truth; (b) Demonet + GFPCA; (c) ATMF; (d) F3.

Figure 18 shows the average performance metrics. The numbers are better than those in Figures 14
and 16.
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3.3. Comparison of CFAs 1.0, 2.0, and 3.0 

As mentioned in Section 1, it will be important to compare the three CFAs and answer the 
question; which is the best for low lighting images? Given that different algorithms were used in each 
CFA, selecting the best performing method for each CFA and comparing them against one another 
will be a good strategy. 

We evaluated the following algorithms for CFA 1.0 d in our experiments. Three of them are deep 
learning based algorithms (Demonet, SEM, and DRL). 
• Linear Directional Interpolation and Nonlocal Adaptive Thresholding (LDI-NAT) [16]. 
• Demosaicnet (Demonet) [30]. 
• Fusion using 3 best (F3) [32]. 
• Bilinear [47]. 

Figure 18. Averaged performance metrics for all the low light images at 20 dBs SNR (Poisson noise).
(a) PNSR; (b) CIELAB; (c) SSIM; (d) HVS and HVSm.
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Figure 19 displays the demosaiced images of three selected methods. It is hard to say whether
or not the demosaiced images in Figure 19 is better than that of Figure 17 because there are some
color distortions.
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3.3. Comparison of CFAs 1.0, 2.0, and 3.0

As mentioned in Section 1, it will be important to compare the three CFAs and answer the question;
which is the best for low lighting images? Given that different algorithms were used in each CFA,
selecting the best performing method for each CFA and comparing them against one another will be a
good strategy.

We evaluated the following algorithms for CFA 1.0 d in our experiments. Three of them are deep
learning based algorithms (Demonet, SEM, and DRL).

• Linear Directional Interpolation and Nonlocal Adaptive Thresholding (LDI-NAT) [16].
• Demosaicnet (Demonet) [30].
• Fusion using 3 best (F3) [32].
• Bilinear [47].
• Malvar–He–Cutler (MHC) [47].
• Directional Linear Minimum Mean Square-Error Estimation (DLMMSE) [48].
• Lu and Tan Interpolation (LT) [49].
• Adaptive Frequency Domain (AFD) [50].
• Alternate Projection (AP). [51].
• Primary-Consistent Soft-Decision (PCSD) [52].
• Alpha Trimmed Mean Filtering (ATMF) [32,53].
• Sequential Energy Minimization (SEM) [54].
• Deep Residual Network (DRL) [55].
• Exploitation of Color Correlation (ECC) [56].
• Minimized-Laplacian Residual Interpolation (MLRI) [57].
• Adaptive Residual Interpolation (ARI) [58].
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• Directional Difference Regression (DDR) [59].

3.4. Noiseless Case (Normal Lighting Conditions)

Here, we compare the performance of CFAs in the noiseless case. The 12 clean Kodak images were
used in our study. To save space, we do not provide the image by image performance metrics. Instead,
we only summarize the averaged metrics of the different CFAs in Table 1 and Figure 20. In each cell of
Table 1, we provide the metric values as well as the name of the best performance method for that
metric. One can see that CFA 1.0 is the best in every performance metric, followed by CFA 2.0. CFA
3.0 has the worst performance. We had the same observation for CFA 1.0 and CFA 2.0 in our earlier
studies [12].

Table 1. Comparison of CFAs for different demosaicing method in the noiseless case (normal lighting
conditions). Bold numbers indicate the best performing methods in each row.

Metrics CFA 1.0/Best Algorithm CFA 2.0/Best Algorithm CFA 3.0/Best Algorithm

PSNR 42.068/ATMF 36.554/F3 34.162/Demonet + GSA
Cielab 0.996/ATMF 1.956/F3 2.372/Demonet + GSA
SSIM 0.922/ATMF 0.892/F3 0.857/Demonet + GSA
HVS 38.101/ATMF 32.590/F3 30.641/Demonet + GSA

HVSm 42.788/ATMF 35.325/F3 33.580/Demonet + GSA
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Figure 20. Best against the best comparison between CFAs 1.0, 2.0, and 3.0 in the noiseless case.
(a) PSNR metrics; (b) Cielab metrics; (c) SSIM metrics; (d) HVS and HVSm metrics.

3.5. 10 dBs SNR

Table 2 and Figure 21 summarize the averaged performance metrics for 10 dBs SNR case in our
earlier studies in Section 3.2 for CFA 3.0 and our earlier paper [13] for CFAs 1.0 and 2.0. In Table 2,
we include the name of the best performing algorithm. We have the following observations:
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• Without denoising, CFAs 1.0, 2.0, and 3.0 have big differences. CFA 2.0 is more than 4 dBs higher
than CFA 1.0 and CFA 3.0 is 1.2 dBs lower than CFA 2.0.

• Denoising improves the demosaicing performance independent of the denoising location. For CFA
1.0, the improvement over no denoising is 4 dBs; for CFA 2.0, the improvement is more than
2.7 dBs to 5 dBs; for CFA 3.0, we see 0.57 dBs to 5.6 dBs of improvement in PSNR. We also see
dramatic improvements in other metrics,

• Denoising after demosaicing is worse than that of denoising before demosaicing. For CFA 1.0,
the improvement is 1.1 dBs with denoising before demosaicing; for CFA 2.0, the improvement is
2.1 dBs with denoising before demosaicing; for CFA 3.0, the improvement is over 5 dBs in PSNR
with denoising before demosaicing.

• One important finding is that CFAs 2.0 and 3.0 definitely have advantages over CFA 1.0.
• CFA 2.0 is better than CFA 3.0.
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Table 2. Comparison of CFA patterns for the various demosaicing cases at 10 dBs SNR. Bold numbers
indicate the best performing methods in each row.

Metrics CFA No Denoising/Best
Algorithm

Denoising After
Demosaicing/Best

Algorithm

Denoising Before
Demosaicing/Best

Algorithm

PSNR (dB) 1.0 16.889/F3 20.826/F3 21.978/F3
2.0 21.249/F3 24.050/LSLCD 26.141/Demonet+GFPCA
3.0 20.018/GFPCA 20.573/Demonet+GFPCA 25.614/Demonet+GFPCA

CIELAB 1.0 10.149/GFPCA 6.664/F3 6.545/Demonet
2.0 6.354/GFPCA 5.516/F3 4.310/Demonet+GFPCA
3.0 7.288/GFPCA 7.236/Demonet+GFPCA 4.596/Demonet+GFPCA

SSIM 1.0 0.455/F3 0.476/ATMF 0.463/ATMF
2.0 0.451/ATMF 0.459/LSLCD 0.467/Standard
3.0 0.429/GFPCA 0.366/F3 0.461/Standard

HVS (dB) 1.0 12.285/SEM 16.229/F3 16.833/ARI
2.0 16.531/F3 19.056/LSLCD 22.053/Demonet+GFPCA
3.0 15.294/GFPCA 16.277/Demonet+GFPCA 21.346/Demonet+GFPCA

HVSm (dB) 1.0 12.403/SEM 16.494/F3 17.116/ARI
2.0 16.868/F3 19.568/LSLCD 23.121/Demonet+GFPCA
3.0 15.551/HPM 16.611/Demonet+GFPCA 22.245/Demonet+GFPCA

3.6. 20 dBs SNR

In Table 3 and Figure 22, we summarize the best results for different CFAs under different
denoising/demosaicing scenarios presented in earlier sections. Some numbers for CFAs 1.0 and 2.0 in
Table 3 came from our earlier paper [13]. The following observations can be drawn:

• Without denoising, CFA 2.0 is the best, followed by CFA 3.0 and CFA 1.0.
• Denoising improves the demosaicing performance in all scenarios. For CFA 1.0, the improvement

is over 2 to 4 dBs; for CFA 2.0, the improvement is more than 1 to close to 5 dBs; for CFA 3.0,
the improvement is 6 dBs in terms of PSNR. Other metrics have been improved with denoising.

• Denoising after demosaicing is worse than that of denoising before demosaicing. For CFA 1.0,
the improvement is 1.2 dBs with denoising before demosaicing; for CFA 2.0, the improvement is
close to 4 dBs with denoising before demosaicing; for CFA 3.0, the improvement is close to 6 dBs
in PSNR with denoising before demosaicing.

• We observe that CFAs 2.0 and 3.0 definitely have advantages over CFA 1.0.
• CFA 2.0 is better than CFA 3.0.

Table 3. Comparison of CFA patterns for the various demosaicing cases at 20 dBs SNR. Bold numbers
indicate the best performing methods in each row.

Metrics CFA No Denoising/Best
Algorithm

Denoising After
Demosaicing/Best

Algorithm

Denoising Before
Demosaicing/Best

Algorithm

PSNR (dB) 1.0 20.488/ATMF 22.821/F3 24.059/Bilinear
2.0 23.290/F3 24.391/GSA 28.172/LSLCD
3.0 21.821/GFPCA 21.292/F3 27.070/Demonet

CIELAB 1.0 6.713/Demonet 5.256/Demonet 4.935/Demonet
2.0 5.121/GFPCA 5.268/LSLCD 3.584/F3
3.0 6.214/GFPCA 6.605/Demonet+GFPCA 4.008/GFPCA

SSIM 1.0 0.517/ATMF 0.548/F3 0.574/F3
2.0 0.535/PCA 0.535/LSLCD 0.539/GSA
3.0 0.532/F3 0.509/GLP 0.535/Standard

HVS (dB) 1.0 16.130/Demonet 18.204/Bilinear 19.142/Demonet
2.0 18.646/F3 19.415/LSLCD 24.382/ATMF
3.0 17.061/GPCA 17.030/Demonet+GFPCA 22.621/GFPCA

HVSm (dB) 1.0 16.365/Demonet 18.734/Bilinear 19.444/ARI
2.0 19.112/F3 19.881/LSLCD 25.516/ATMF
3.0 17.400/GFPCA 17.313/Demonet+GFPCA 23.576/GFPCA
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3.7. Discussions

Here, some qualitative analyses/explanations for some of those important findings in Sections 3.5
and 3.6 are provided:

• The reason denoising before demosaicing is better that after demosaicing

We explained this phenomenon in our earlier paper [13]. The reason is simply because noise is
easier to suppress early than later. Once noise has propagated down the processing pipeline, it is
harder to suppress it due to some nonlinear processing modules. For instance, the rectified linear units
(ReLu) are nonlinear in some deep learning methods. We have seen similar noise behavior in our
active noise suppression project for NASA. In that project [60,61], we noticed that noise near the source
was suppressed more effectively than noise far away from the source.

• The reasons why CFA 2.0 and CFA 3.0 are better than CFA 1.0 in low lighting conditions

To the best of our knowledge, we are not aware of any theory explaining why CFA 2.0 and CFA 3.0
have better performance than CFA 1.0. Intuitively, we agree with the inventors of CFA 2.0 that having
more white pixels improves the sensitivity of the imager/detector. Here, we offer another explanation.
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We use the bird image at 10 dBs condition (Image 1 in Figure 6 of [13]) for explanations. Denoising
was not used in the demosaicing process. Figure 23 contains three histograms and the means of the
residual images (residual = reference − demosaiced) for CFAs 1.0, 2.0, and 3.0 are also computed.
We can see that the histograms of CFA 2.0 and CFA 3.0 are centered near zero whereas the histogram of
CFA 1.0 is biased towards to right, meaning that CFA 2.0 and CFA 3.0 are closer to the ground truth,
because of their better light sensitivity, than that of CFA 1.0.
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• Why CFA 3.0 is NOT better than CFA 2.0 in low lighting conditions

We observe that CFA 3.0 is better than CFA 1.0, but is slightly inferior to CFA 2.0 in dark conditions,
which means that having more white pixels can only improve the demosaicing performance to certain
extent. Too many white pixels means fewer color pixels and this may degrade the demosaicing
performance by having more color distortion. CFA 2.0 is the best compromise between sensitivity and
color distortion.

4. Conclusions

In this paper, we first introduce a RGBW pattern with 75% of the pixels white, 12.5% of the pixels
green, and 6.25% of the pixels red and blue. This is known as the CFA 3.0. Unlike a conventional RGBW
pattern with 75% white and the rest pixels are randomly red, green and blue, our pattern is fixed. One
key advantage of our pattern is that some of the algorithms for demosaicing CFA 2.0 can be easily
adapted to CFA 3.0. Other advantages are also mentioned in Section 1. We then performed extensive
experiments to evaluate the CFA 3.0 using clean and emulated low lighting images. After that, we
compared the CFAs for various clean and noisy images. Using five objective performance metrics
and subjective evaluations, it was observed that, the demosacing performance in CFA 2.0 and CFA
3.0 is indeed better than CFA 1.0. However, more white pixels do not guarantee better performance
because CFA 3.0 is slightly worse than CFA 2.0. This is because the color information is less in CFA
3.0, compared to CFA 2.0, causing the loss of color information in the CFA 3.0 case. Denoising further
improves the demosaicing performance. In our research, we have experimented with two denoising
scenarios: before and after demosaicing. We have seen dramatic performance gain of more than 3 dBs
improvement in PSNR for the 10 dBs case when denoising was applied. One important observation is
that denoising after demosaicing is worse than denoising before demosaicing. Another observation is
that CFA 2.0 with denoising is the best performing algorithm for low lighting conditions.
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One potential future direction for research is to investigate different denoising algorithms, such as
color BM3D and deep learning based denoising algorithms [62]. Another direction is to investigate joint
denoising and demosaicing for CFAs 2.0 and 3.0 directly. Notably, joint denoising and demosaicing
has been mostly done for CFA 1.0. The extension of joint denoising and demosaicing to CFAs 2.0 and
3.0 may be non-trivial and needs some further research.
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prepared all the figures and tables. B.A. helped with the Poisson noise generation. All authors have read and
agreed to the published version of the manuscript.
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Table A2. Performance metrics of 14 algorithms for clean images. Bold numbers indicate the best performing method in each row. Red numbers indicate those
methods used in F3 and those red and green numbers indicate those methods used in ATMF. Bold numbers indicate the best performing methods in each row.

Image Metrics Baseline Standard Demonet + GSA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img1 PSNR 31.936 33.894 35.192 34.126 33.526 33.123 33.828 33.158 33.810 33.066 34.130 33.466 36.171 37.716 37.716
Cielab 2.659 2.374 2.250 2.393 2.481 2.699 2.445 2.773 2.429 2.724 2.351 2.453 1.853 1.560 1.560
SSIM 0.739 0.859 0.832 0.854 0.831 0.838 0.845 0.806 0.853 0.834 0.858 0.820 0.839 0.857 0.859
HVS 28.233 27.610 29.428 28.438 28.309 28.453 28.481 27.947 28.353 28.468 28.403 28.407 32.176 33.731 33.731

HVSm 29.767 29.031 31.056 29.881 29.830 29.975 29.934 28.834 29.822 29.983 29.836 29.868 34.065 36.274 36.274
Img2 PSNR 26.771 30.585 34.464 30.581 30.211 29.918 30.406 30.136 30.089 29.896 30.521 30.230 30.737 32.027 34.464

Cielab 4.860 3.766 2.416 3.803 3.874 3.901 3.891 3.219 3.906 3.904 3.830 3.903 2.826 2.738 2.416
SSIM 0.685 0.868 0.885 0.867 0.856 0.856 0.845 0.823 0.857 0.853 0.850 0.852 0.825 0.858 0.885
HVS 23.976 24.331 30.067 24.486 24.304 24.264 24.726 27.637 24.398 24.228 24.403 24.445 28.565 28.822 30.067

HVSm 25.515 25.629 32.745 25.803 25.665 25.666 26.076 29.840 25.721 25.613 25.703 25.762 31.724 31.215 32.745
Img3 PSNR 30.815 33.017 34.369 32.997 32.156 32.420 32.995 34.055 32.698 32.395 33.037 32.648 35.838 36.886 36.886

Cielab 3.758 3.378 2.836 3.313 3.535 3.432 3.324 2.949 3.345 3.459 3.303 3.398 2.196 1.907 1.907
SSIM 0.786 0.888 0.880 0.884 0.870 0.879 0.877 0.873 0.878 0.873 0.877 0.870 0.883 0.894 0.894
HVS 27.087 27.099 28.646 27.266 27.081 27.211 27.403 29.897 27.192 27.218 27.366 27.221 32.691 33.472 33.472

HVSm 28.861 28.734 30.760 28.928 28.894 28.976 29.065 31.435 28.870 28.973 29.023 28.900 35.473 36.595 36.595
Img4 PSNR 22.762 26.980 30.511 27.496 27.090 26.808 26.884 26.873 26.762 26.771 26.884 26.933 29.365 29.546 30.511

Cielab 7.484 5.434 3.775 5.327 5.178 5.314 5.662 4.841 5.664 5.364 5.644 5.371 3.585 3.597 3.585
SSIM 0.752 0.925 0.946 0.925 0.919 0.915 0.901 0.891 0.913 0.911 0.903 0.913 0.914 0.925 0.946
HVS 20.315 20.370 25.427 21.077 21.064 21.160 20.986 24.117 21.095 21.203 20.867 20.918 26.657 25.799 26.657

HVSm 21.997 21.682 27.751 22.476 22.526 22.656 22.377 26.303 22.547 22.706 22.240 22.337 29.826 28.261 29.826
Img5 PSNR 30.816 34.107 36.762 33.952 33.686 33.558 33.825 34.541 33.694 33.469 34.132 33.766 36.599 37.045 37.045

Cielab 2.568 2.100 1.593 2.172 2.054 2.107 2.180 1.914 2.132 2.123 2.070 2.136 1.488 1.459 1.459
SSIM 0.668 0.868 0.858 0.852 0.859 0.859 0.845 0.798 0.855 0.852 0.859 0.838 0.816 0.827 0.868
HVS 27.733 27.824 31.730 28.155 28.083 28.083 28.344 30.514 28.154 28.083 28.132 28.146 33.628 33.670 33.670

HVSm 29.444 29.335 34.093 29.707 29.676 29.772 29.912 32.085 29.750 29.775 29.662 29.688 36.534 36.333 36.534
Img6 PSNR 27.706 30.874 33.168 31.031 30.391 30.382 30.980 31.381 30.647 30.278 30.926 30.601 32.511 33.125 33.168

Cielab 5.555 4.605 3.393 4.721 4.528 4.464 4.657 3.797 4.619 4.544 4.698 4.575 3.004 3.049 3.004
SSIM 0.711 0.896 0.909 0.879 0.877 0.881 0.864 0.848 0.882 0.873 0.860 0.869 0.870 0.890 0.909
HVS 24.678 24.823 27.010 25.114 24.877 25.031 25.034 27.599 25.159 25.047 25.097 24.967 28.985 29.193 29.193

HVSm 26.353 26.293 28.953 26.606 26.470 26.603 26.520 29.306 26.665 26.611 26.591 26.495 31.643 31.803 31.803
Img7 PSNR 30.446 34.517 38.658 34.469 34.081 33.701 34.351 33.767 33.917 33.680 34.391 34.183 34.389 35.691 38.658

Cielab 3.639 2.751 1.687 2.773 2.809 2.855 2.799 2.501 2.854 2.857 2.785 2.841 2.141 2.078 1.687
SSIM 0.731 0.904 0.920 0.903 0.896 0.894 0.897 0.853 0.894 0.891 0.897 0.892 0.861 0.894 0.920
HVS 27.968 28.395 34.885 28.409 28.323 28.199 28.497 32.017 28.321 28.159 28.411 28.415 32.584 32.357 34.885

HVSm 29.538 29.687 37.761 29.696 29.661 29.579 29.800 34.461 29.628 29.517 29.706 29.727 36.020 34.752 37.761
Img8 PSNR 26.939 30.748 33.682 31.078 30.419 30.253 30.568 30.319 30.390 30.123 30.670 30.439 33.479 33.700 33.700

Cielab 4.697 3.707 2.707 3.566 3.769 3.704 3.758 3.200 3.746 3.734 3.707 3.812 2.407 2.441 2.407
SSIM 0.733 0.900 0.910 0.899 0.885 0.890 0.883 0.860 0.891 0.886 0.888 0.877 0.880 0.890 0.910
HVS 24.460 24.087 28.285 25.013 24.854 24.969 25.039 28.845 25.004 24.996 24.866 24.883 31.045 29.955 31.045

HVSm 26.141 25.461 30.690 26.453 26.378 26.496 26.473 30.948 26.476 26.519 26.277 26.335 34.113 32.146 34.113
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Table A2. Cont.

Image Metrics Baseline Standard Demonet + GSA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img9 PSNR 29.775 32.268 34.974 32.682 32.117 31.742 32.676 33.783 32.316 31.669 32.668 32.318 35.220 35.620 35.620
Cielab 3.062 2.705 2.017 2.592 2.601 2.911 2.561 2.202 2.669 2.974 2.566 2.595 1.707 1.683 1.683
SSIM 0.508 0.634 0.643 0.637 0.623 0.623 0.582 0.615 0.577 0.564 0.582 0.616 0.624 0.631 0.643
HVS 26.329 26.028 29.823 26.753 26.632 26.808 26.748 30.150 26.823 26.820 26.779 26.621 32.389 32.588 32.588

HVSm 27.955 27.482 31.906 28.234 28.181 28.362 28.228 31.987 28.331 28.365 28.264 28.115 35.387 35.453 35.453
Img10 PSNR 27.054 30.354 33.931 30.547 29.970 29.885 30.350 31.177 30.014 29.822 30.309 30.118 31.819 32.689 33.931

Cielab 4.808 3.975 2.552 3.930 3.927 3.915 3.991 3.223 4.075 3.940 3.959 3.936 2.625 2.598 2.552
SSIM 0.687 0.867 0.868 0.867 0.856 0.857 0.832 0.802 0.858 0.853 0.855 0.848 0.825 0.848 0.868
HVS 24.184 24.135 28.936 24.517 24.440 24.459 24.450 28.393 24.508 24.441 24.515 24.458 29.661 29.396 29.661

HVSm 25.796 25.521 31.336 25.928 25.963 25.969 25.867 30.357 25.931 25.936 25.935 25.910 33.182 32.163 33.182
Img11 PSNR 29.027 32.011 33.458 32.234 31.703 31.707 32.121 31.682 31.835 31.655 32.143 31.687 33.209 33.702 33.702

Cielab 4.282 3.556 3.004 3.529 3.654 3.606 3.545 3.412 3.628 3.627 3.543 3.605 2.753 2.686 2.686
SSIM 0.722 0.882 0.894 0.883 0.866 0.875 0.875 0.840 0.875 0.871 0.876 0.862 0.861 0.877 0.894
HVS 26.763 26.320 28.596 27.143 27.134 27.175 27.080 28.744 27.177 27.215 27.085 27.089 30.413 30.445 30.445

HVSm 28.417 27.778 30.488 28.626 28.708 28.724 28.548 30.402 28.693 28.762 28.552 28.586 32.997 32.899 32.997
Img12 PSNR 25.845 28.451 30.776 29.115 28.779 28.769 28.796 29.171 28.807 28.733 28.782 28.712 30.169 29.939 30.776

Cielab 4.525 3.669 2.741 3.558 3.610 3.621 3.786 3.176 3.707 3.649 3.783 3.620 2.588 2.664 2.588
SSIM 0.770 0.909 0.925 0.910 0.903 0.902 0.880 0.883 0.891 0.889 0.880 0.902 0.895 0.900 0.925
HVS 24.168 23.290 27.638 24.590 24.674 24.658 24.384 27.561 24.584 24.652 24.385 24.521 28.899 28.102 28.899

HVSm 25.807 24.728 29.843 26.100 26.219 26.227 25.842 29.625 26.115 26.211 25.843 26.026 31.990 30.705 31.990
Average PSNR 28.324 31.484 34.162 31.692 31.178 31.022 31.482 31.670 31.248 30.963 31.550 31.258 33.292 33.974 34.162

Cielab 4.325 3.502 2.581 3.473 3.502 3.544 3.550 3.101 3.564 3.575 3.520 3.520 2.431 2.372 2.372
SSIM 0.708 0.867 0.873 0.863 0.853 0.856 0.844 0.824 0.852 0.846 0.849 0.846 0.841 0.857 0.873
HVS 25.491 25.359 29.206 25.913 25.815 25.872 25.931 28.618 25.897 25.878 25.859 25.841 30.641 30.628 30.641

HVSm 27.132 26.780 31.449 27.370 27.347 27.417 27.387 30.465 27.379 27.414 27.303 27.312 33.580 33.217 33.580
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Table A3. Performance metrics of 14 algorithms at 10 dBs SNR. Bold numbers indicate the best performing methods in each row. Red numbers indicate those methods
used in F3 and those red and green numbers indicate those methods used in ATMF.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img1 PSNR 14.003 16.938 16.684 13.050 11.754 9.868 13.250 19.722 12.629 9.869 13.115 13.624 18.233 15.051 19.722
Cielab 16.956 16.675 12.626 19.269 22.974 30.931 18.550 8.456 20.411 30.928 18.907 17.823 11.417 14.372 8.456
SSIM 0.253 0.255 0.240 0.224 0.193 0.134 0.227 0.337 0.209 0.136 0.225 0.252 0.303 0.300 0.337
HVS 8.433 11.451 11.214 7.483 6.179 4.288 7.667 14.274 7.064 4.287 7.559 8.049 12.463 9.416 14.274

HVSm 8.468 11.521 11.274 7.511 6.200 4.302 7.696 14.370 7.090 4.302 7.588 8.079 12.533 9.454 14.370
Img2 PSNR 14.138 17.558 15.974 13.947 11.826 11.352 13.448 20.151 13.626 11.236 13.988 14.157 18.113 15.236 20.151

Cielab 13.866 9.674 11.089 14.472 18.717 19.841 15.036 6.291 14.997 20.152 14.122 14.104 7.967 11.474 6.291
SSIM 0.312 0.492 0.456 0.484 0.413 0.397 0.470 0.478 0.475 0.392 0.483 0.471 0.504 0.460 0.504
HVS 9.381 12.136 11.360 9.143 7.045 6.579 8.646 15.254 8.832 6.463 9.167 9.353 13.080 10.381 15.254

HVSm 9.478 12.287 11.456 9.211 7.090 6.620 8.707 15.536 8.896 6.503 9.237 9.427 13.238 10.476 15.536
Img3 PSNR 15.795 20.115 18.598 14.278 11.922 10.052 14.552 19.590 14.173 12.771 14.483 15.557 20.337 16.976 20.337

Cielab 14.500 11.636 10.824 17.166 23.320 31.084 16.403 8.648 17.410 20.671 16.538 14.949 9.372 12.038 8.648
SSIM 0.377 0.351 0.383 0.340 0.256 0.160 0.343 0.437 0.340 0.298 0.341 0.373 0.417 0.424 0.437
HVS 10.597 14.944 13.688 9.089 6.724 4.846 9.370 14.482 8.988 7.577 9.301 10.364 14.868 11.766 14.944

HVSm 10.672 15.165 13.811 9.141 6.757 4.870 9.427 14.621 9.040 7.615 9.358 10.433 15.031 11.847 15.165
Img4 PSNR 10.088 14.211 14.391 10.306 10.012 10.039 10.178 18.433 10.204 10.042 10.319 10.206 15.782 11.786 18.433

Cielab 24.012 12.199 14.541 24.316 25.080 24.840 23.819 8.165 24.683 24.823 23.431 24.210 9.892 17.360 8.165
SSIM 0.235 0.414 0.483 0.363 0.339 0.343 0.346 0.554 0.356 0.344 0.355 0.335 0.518 0.403 0.554
HVS 5.410 9.014 10.008 5.576 5.291 5.325 5.440 13.711 5.490 5.326 5.577 5.483 10.962 7.032 13.711

HVSm 5.537 9.282 10.236 5.685 5.395 5.429 5.551 14.282 5.597 5.431 5.691 5.596 11.285 7.186 14.282
Img5 PSNR 16.916 21.224 17.470 14.163 11.114 11.393 14.693 22.393 13.676 9.984 14.249 16.729 20.799 17.823 22.393

Cielab 10.360 7.301 9.646 14.069 20.711 19.935 13.049 5.184 14.891 24.430 13.751 10.656 6.514 8.863 5.184
SSIM 0.267 0.311 0.296 0.297 0.244 0.251 0.300 0.371 0.290 0.213 0.295 0.318 0.350 0.341 0.371
HVS 12.644 16.258 13.366 9.950 6.905 7.190 10.449 18.072 9.470 5.780 10.009 12.476 16.414 13.535 18.072

HVSm 12.758 16.524 13.464 10.007 6.935 7.222 10.513 18.329 9.522 5.804 10.069 12.577 16.615 13.647 18.329
Img6 PSNR 17.726 20.076 18.567 16.210 13.238 14.560 16.054 22.636 16.131 10.268 16.374 17.433 21.515 18.790 22.636

Cielab 13.170 12.025 11.708 15.276 21.065 17.836 14.915 6.505 15.380 33.388 14.554 13.681 8.691 10.560 6.505
SSIM 0.316 0.390 0.380 0.390 0.294 0.345 0.387 0.442 0.387 0.107 0.390 0.401 0.439 0.422 0.442
HVS 13.266 16.102 14.382 11.751 8.822 10.148 11.623 18.036 11.690 5.859 11.939 12.933 17.168 14.265 18.036

HVSm 13.482 16.479 14.576 11.882 8.891 10.238 11.755 18.506 11.820 5.903 12.080 13.110 17.554 14.483 18.506
Img7 PSNR 19.036 22.679 18.003 18.817 17.649 18.024 19.394 22.679 18.984 18.439 19.216 19.408 22.200 20.065 22.679

Cielab 9.992 6.905 10.548 10.272 11.420 10.948 9.637 5.470 10.122 10.564 9.765 9.826 5.956 8.312 5.470
SSIM 0.307 0.402 0.341 0.397 0.383 0.384 0.398 0.393 0.394 0.389 0.398 0.400 0.417 0.404 0.417
HVS 14.648 18.350 13.822 14.501 13.344 13.730 15.070 18.337 14.669 14.130 14.874 15.037 17.860 15.673 18.350

HVSm 14.807 18.701 13.924 14.657 13.459 13.863 15.248 18.619 14.842 14.279 15.045 15.208 18.106 15.840 18.701
Img8 PSNR 11.581 15.178 17.590 11.734 10.788 10.041 11.971 20.682 11.644 10.042 11.765 11.633 17.696 13.332 20.682

Cielab 21.357 13.557 10.492 21.184 24.372 27.258 20.200 6.492 21.492 27.259 20.777 21.450 9.445 16.127 6.492
SSIM 0.227 0.371 0.400 0.322 0.271 0.230 0.327 0.452 0.319 0.230 0.319 0.299 0.437 0.357 0.452
HVS 6.592 9.667 12.841 6.723 5.785 5.041 6.956 15.729 6.640 5.041 6.751 6.627 12.521 8.260 15.729

HVSm 6.651 9.772 12.981 6.772 5.826 5.078 7.008 16.030 6.688 5.078 6.802 6.678 12.670 8.330 16.030
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Table A3. Cont.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img9 PSNR 10.053 11.090 14.208 10.068 10.062 10.064 10.027 17.474 10.071 10.065 10.026 10.066 14.001 11.048 17.474
Cielab 17.176 15.676 10.481 17.232 17.270 17.509 17.109 7.037 17.242 17.513 17.104 17.207 10.216 14.392 7.037
SSIM 0.194 0.251 0.292 0.266 0.259 0.258 0.267 0.314 0.265 0.258 0.267 0.257 0.308 0.281 0.314
HVS 5.504 6.472 9.733 5.517 5.514 5.524 5.479 12.883 5.523 5.524 5.479 5.513 9.405 6.479 12.883

HVSm 5.530 6.505 9.776 5.540 5.537 5.547 5.502 12.965 5.546 5.547 5.502 5.537 9.448 6.506 12.965
Img10 PSNR 13.625 19.239 17.815 13.493 11.736 12.040 13.348 19.483 13.289 12.158 13.645 13.876 20.142 15.465 20.142

Cielab 16.194 9.271 10.115 16.750 20.876 19.974 16.644 7.487 17.188 19.669 16.111 15.937 7.392 12.291 7.392
SSIM 0.264 0.344 0.395 0.354 0.294 0.309 0.350 0.433 0.349 0.314 0.354 0.349 0.422 0.387 0.433
HVS 9.662 15.279 14.100 9.501 7.766 8.077 9.370 15.398 9.312 8.194 9.659 9.883 16.333 11.467 16.333

HVSm 9.769 15.657 14.267 9.584 7.825 8.138 9.455 15.663 9.391 8.256 9.748 9.977 16.678 11.589 16.678
Img11 PSNR 14.825 19.458 15.178 14.240 11.081 10.053 14.255 18.317 14.172 10.053 14.349 14.901 18.144 15.610 19.458

Cielab 14.903 10.783 14.288 16.157 24.628 28.967 15.864 9.108 16.304 28.966 15.687 14.906 9.864 13.027 9.108
SSIM 0.321 0.421 0.365 0.400 0.270 0.209 0.397 0.425 0.397 0.210 0.399 0.407 0.438 0.414 0.438
HVS 9.652 14.350 10.008 9.035 5.862 4.830 9.066 13.151 8.974 4.830 9.160 9.697 12.659 10.372 14.350

HVSm 9.717 14.531 10.066 9.085 5.888 4.852 9.117 13.272 9.024 4.852 9.212 9.756 12.766 10.437 14.531
Img12 PSNR 12.443 16.404 16.748 12.545 11.357 11.462 12.647 18.653 12.397 11.704 12.579 12.529 17.472 13.971 18.653

Cielab 19.343 9.549 11.380 19.458 23.079 22.681 18.746 8.613 19.897 21.887 18.927 19.410 8.795 14.948 8.613
SSIM 0.284 0.435 0.457 0.379 0.307 0.317 0.379 0.511 0.373 0.333 0.376 0.368 0.497 0.422 0.511
HVS 7.785 11.524 12.328 7.826 6.645 6.752 7.934 14.199 7.686 6.994 7.866 7.820 12.814 9.296 14.199

HVSm 7.861 11.682 12.455 7.888 6.696 6.803 7.999 14.415 7.746 7.048 7.930 7.885 12.976 9.382 14.415
Average PSNR 14.186 17.847 16.769 13.571 11.878 11.579 13.651 20.018 13.416 11.386 13.676 14.176 18.703 15.429 20.018

Cielab 15.986 11.271 11.478 17.135 21.126 22.650 16.664 7.288 17.501 23.354 16.639 16.180 8.793 12.814 7.288
SSIM 0.280 0.370 0.374 0.351 0.294 0.278 0.349 0.429 0.346 0.269 0.350 0.353 0.421 0.385 0.429
HVS 9.465 12.962 12.237 8.841 7.157 6.861 8.922 15.294 8.695 6.667 8.945 9.436 13.879 10.662 15.294

HVSm 9.561 13.176 12.357 8.913 7.208 6.914 8.998 15.551 8.767 6.718 9.022 9.522 14.075 10.765 15.551
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Table A4. Performance metrics of 14 algorithms at 10 dBs SNR (Poisson noise). Bold numbers indicate the best performing methods in each row. Bold numbers indicate
the best performing methods in each row. Red numbers indicate those methods used in F3 and those red and green numbers indicate those methods used in ATMF.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img1 PSNR 13.054 13.763 20.419 13.821 12.359 9.859 13.482 22.570 13.670 9.902 13.537 13.451 18.180 14.655 22.570
Cielab 18.647 16.976 7.829 16.870 20.590 30.676 17.467 6.312 17.244 30.447 17.380 17.691 9.786 15.006 6.312
SSIM 0.263 0.298 0.378 0.300 0.251 0.135 0.287 0.393 0.302 0.138 0.289 0.282 0.373 0.320 0.393
HVS 7.477 8.178 14.962 8.233 6.773 4.272 7.917 17.219 8.081 4.314 7.977 7.867 12.654 9.077 17.219

HVSm 7.500 8.204 15.040 8.258 6.792 4.286 7.941 17.350 8.105 4.327 8.002 7.891 12.706 9.106 17.350
Img2 PSNR 14.691 14.245 22.164 14.243 12.354 11.945 13.758 20.236 13.946 11.807 14.358 14.446 18.371 15.213 22.164

Cielab 12.513 13.303 5.076 13.363 16.937 17.877 13.987 6.190 13.864 18.219 12.983 13.015 7.658 11.564 5.076
SSIM 0.298 0.402 0.359 0.401 0.340 0.330 0.379 0.341 0.398 0.324 0.394 0.377 0.380 0.389 0.402
HVS 9.984 9.449 18.107 9.457 7.586 7.176 9.009 15.742 9.165 7.039 9.597 9.681 13.746 10.449 18.107

HVSm 10.074 9.523 18.542 9.527 7.637 7.222 9.074 16.024 9.231 7.084 9.670 9.756 13.916 10.535 18.542
Img3 PSNR 14.199 15.322 23.477 15.261 12.855 10.311 15.116 23.322 15.238 13.884 15.161 14.948 19.909 16.347 23.477

Cielab 16.573 14.459 6.137 14.560 19.881 29.327 14.695 6.050 14.634 17.259 14.621 15.147 8.333 12.554 6.050
SSIM 0.356 0.417 0.510 0.417 0.322 0.170 0.402 0.506 0.423 0.376 0.404 0.396 0.495 0.441 0.510
HVS 9.001 10.106 18.703 10.043 7.648 5.098 9.943 18.380 10.015 8.666 9.987 9.742 14.811 11.159 18.703

HVSm 9.048 10.160 18.944 10.096 7.684 5.124 9.997 18.636 10.067 8.708 10.041 9.793 14.930 11.224 18.944
Img4 PSNR 10.189 6.944 18.732 10.505 10.126 10.284 10.372 17.658 10.450 10.170 10.526 10.305 14.975 11.560 18.732

Cielab 23.401 40.595 8.485 23.191 24.114 23.606 22.890 9.357 23.442 23.937 22.463 23.334 12.094 19.078 8.485
SSIM 0.269 0.069 0.568 0.374 0.346 0.359 0.354 0.549 0.370 0.350 0.364 0.336 0.527 0.419 0.568
HVS 5.533 2.237 14.723 5.776 5.406 5.555 5.684 13.327 5.725 5.442 5.836 5.596 10.439 6.860 14.723

HVSm 5.646 2.304 15.210 5.885 5.508 5.660 5.794 13.726 5.833 5.545 5.947 5.704 10.666 6.989 15.210
Img5 PSNR 11.887 14.896 20.735 14.899 11.747 11.955 14.294 20.445 15.314 10.399 14.592 12.938 18.303 15.653 20.735

Cielab 18.195 12.349 6.012 12.384 18.598 18.101 13.195 6.191 11.796 22.657 12.719 15.824 7.919 11.070 6.012
SSIM 0.191 0.285 0.290 0.287 0.220 0.231 0.269 0.289 0.297 0.182 0.272 0.240 0.297 0.288 0.297
HVS 7.681 10.661 16.575 10.667 7.534 7.740 10.088 16.263 11.080 6.189 10.381 8.722 14.099 11.433 16.575

HVSm 7.716 10.715 16.728 10.718 7.566 7.771 10.135 16.415 11.135 6.214 10.432 8.760 14.194 11.492 16.728
Img6 PSNR 17.145 18.931 22.062 19.160 15.673 17.544 18.980 22.510 19.092 10.482 18.896 18.884 21.256 19.642 22.510

Cielab 12.344 10.555 6.888 10.281 14.512 11.813 10.388 6.350 10.408 31.443 10.518 10.501 7.320 9.252 6.350
SSIM 0.270 0.362 0.291 0.368 0.293 0.345 0.349 0.297 0.373 0.071 0.344 0.336 0.332 0.351 0.373
HVS 12.763 14.422 17.955 14.627 11.252 13.084 14.572 18.354 14.566 6.073 14.510 14.415 16.945 15.192 18.354

HVSm 12.922 14.634 18.374 14.855 11.360 13.241 14.799 18.840 14.787 6.120 14.734 14.636 17.291 15.441 18.840
Img7 PSNR 20.804 21.559 28.587 21.513 20.219 20.428 21.585 27.927 21.191 20.557 21.383 21.165 26.306 22.678 28.587

Cielab 7.713 7.211 3.255 7.257 8.033 7.914 7.111 3.511 7.470 7.836 7.204 7.501 4.089 6.180 3.255
SSIM 0.310 0.406 0.332 0.406 0.395 0.401 0.393 0.325 0.407 0.400 0.392 0.379 0.372 0.392 0.407
HVS 16.526 17.130 25.750 17.087 15.847 16.036 17.276 24.619 16.779 16.165 17.059 16.797 22.404 18.355 25.750

HVSm 16.718 17.331 27.238 17.284 15.993 16.188 17.483 25.799 16.962 16.322 17.257 16.985 23.043 18.613 27.238
Img8 PSNR 12.238 12.295 19.205 12.285 11.176 10.361 11.770 18.268 12.361 10.397 11.970 12.300 16.076 13.164 19.205

Cielab 19.157 19.098 7.794 19.126 22.505 25.510 20.395 8.565 18.963 25.372 19.810 19.081 11.231 16.677 7.794
SSIM 0.234 0.285 0.347 0.284 0.230 0.190 0.250 0.331 0.294 0.193 0.259 0.268 0.334 0.296 0.347
HVS 7.269 7.279 14.530 7.272 6.172 5.354 6.784 13.440 7.347 5.390 6.983 7.301 11.161 8.171 14.530

HVSm 7.326 7.333 14.705 7.325 6.216 5.394 6.834 13.596 7.400 5.429 7.034 7.355 11.260 8.233 14.705
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Table A4. Cont.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img9 PSNR 9.974 9.187 17.493 10.204 10.298 10.177 10.155 16.885 10.148 10.155 10.166 10.072 14.214 11.165 17.493
Cielab 17.009 18.860 6.902 16.519 16.314 16.811 16.487 7.365 16.669 16.869 16.460 16.784 9.822 14.392 6.902
SSIM 0.187 0.206 0.273 0.227 0.226 0.226 0.226 0.263 0.230 0.225 0.226 0.213 0.255 0.236 0.273
HVS 5.434 4.639 13.022 5.652 5.748 5.630 5.618 12.352 5.595 5.607 5.629 5.523 9.679 6.619 13.022

HVSm 5.454 4.656 13.084 5.672 5.768 5.650 5.638 12.413 5.615 5.627 5.649 5.543 9.716 6.642 13.084
Img10 PSNR 13.846 14.159 19.044 14.502 12.749 12.486 14.401 20.421 14.368 12.863 14.432 14.260 17.685 15.207 20.421

Cielab 15.269 14.796 7.789 14.230 17.673 18.275 14.128 6.745 14.524 17.390 14.117 14.555 9.090 12.623 6.745
SSIM 0.257 0.323 0.326 0.334 0.279 0.278 0.321 0.335 0.337 0.291 0.319 0.304 0.342 0.332 0.342
HVS 9.910 10.169 15.340 10.503 8.780 8.511 10.451 16.645 10.372 8.887 10.487 10.286 13.806 11.251 16.645

HVSm 10.004 10.262 15.568 10.605 8.851 8.580 10.553 16.970 10.469 8.960 10.590 10.385 13.983 11.364 16.970
Img11 PSNR 14.151 15.449 17.674 15.399 12.933 10.055 15.312 16.688 15.444 10.137 15.307 14.756 16.562 15.622 17.674

Cielab 15.534 13.262 9.881 13.350 18.342 28.579 13.321 10.893 13.312 28.180 13.329 14.411 11.154 12.713 9.881
SSIM 0.251 0.331 0.254 0.332 0.255 0.128 0.317 0.241 0.344 0.133 0.316 0.294 0.286 0.315 0.344
HVS 8.972 10.247 12.554 10.196 7.724 4.832 10.161 11.590 10.241 4.914 10.156 9.562 11.413 10.460 12.554

HVSm 9.023 10.310 12.657 10.257 7.762 4.856 10.224 11.678 10.302 4.938 10.218 9.617 11.493 10.525 12.657
Img12 PSNR 12.461 13.288 17.288 13.318 11.758 12.120 13.142 16.750 13.281 12.222 13.095 12.842 15.660 13.835 17.288

Cielab 18.954 16.971 10.784 16.903 21.173 20.054 17.016 11.564 17.035 19.758 17.130 18.012 12.756 15.710 10.784
SSIM 0.257 0.350 0.416 0.352 0.268 0.294 0.332 0.404 0.357 0.300 0.330 0.314 0.400 0.360 0.416
HVS 7.811 8.578 13.113 8.609 7.053 7.410 8.465 12.450 8.572 7.511 8.418 8.150 11.206 9.189 13.113

HVSm 7.880 8.651 13.249 8.683 7.110 7.470 8.539 12.580 8.645 7.573 8.491 8.219 11.309 9.268 13.249
Average PSNR 13.720 14.170 20.573 14.593 12.854 12.294 14.364 20.306 14.542 11.914 14.452 14.197 18.125 15.395 20.573

Cielab 16.276 16.536 7.236 14.836 18.223 20.712 15.090 7.424 14.947 21.614 14.894 15.488 9.271 13.068 7.236
SSIM 0.262 0.311 0.362 0.340 0.285 0.257 0.323 0.356 0.344 0.249 0.326 0.312 0.366 0.345 0.366
HVS 9.030 9.425 16.278 9.843 8.127 7.558 9.664 15.865 9.795 7.183 9.752 9.470 13.530 10.685 16.278

HVSm 9.109 9.507 16.612 9.931 8.187 7.620 9.751 16.169 9.879 7.237 9.839 9.554 13.709 10.786 16.612
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Table A5. Performance metrics of 14 algorithms at 10 dBs SNR (Poisson noise). Bold numbers indicate the best performing methods in each row. Red numbers
indicate those methods used in F3 and those red and green numbers indicate those methods used in ATMF.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img1 PSNR 21.413 21.576 25.348 21.575 21.542 20.811 21.472 21.408 21.620 21.253 21.478 21.520 22.802 21.636 25.348
Cielab 7.003 6.968 5.285 6.970 7.012 7.027 6.862 7.185 6.977 7.032 6.964 6.975 6.231 6.924 5.285
SSIM 0.408 0.427 0.384 0.427 0.420 0.430 0.425 0.414 0.431 0.429 0.425 0.420 0.422 0.425 0.431
HVS 15.983 16.049 19.960 16.051 16.038 16.076 15.861 15.917 16.089 16.082 15.972 16.033 17.300 16.136 19.960

HVSm 16.121 16.163 20.235 16.165 16.154 16.188 15.969 16.029 16.199 16.194 16.085 16.154 17.442 16.248 20.235
Img2 PSNR 23.326 24.749 25.720 24.728 24.646 24.671 24.473 24.481 24.713 24.679 24.520 24.519 25.430 24.828 25.720

Cielab 5.144 4.796 3.706 4.827 4.907 4.848 4.857 4.195 4.835 4.850 4.845 4.887 4.203 4.580 3.706
SSIM 0.355 0.505 0.399 0.504 0.499 0.503 0.500 0.451 0.504 0.502 0.499 0.483 0.480 0.493 0.505
HVS 19.126 19.932 21.434 19.986 19.917 20.019 19.866 19.865 20.067 20.022 19.743 19.887 20.883 20.212 21.434

HVSm 20.004 20.643 22.707 20.682 20.629 20.737 20.530 20.667 20.784 20.744 20.409 20.614 21.781 20.957 22.707
Img3 PSNR 28.287 29.290 28.498 29.287 29.044 29.157 29.201 29.841 29.176 29.127 29.201 29.059 29.503 29.557 29.841

Cielab 4.998 4.908 4.659 4.910 5.039 4.775 4.950 4.376 4.857 4.778 4.946 4.928 4.574 4.679 4.376
SSIM 0.535 0.566 0.523 0.566 0.558 0.566 0.562 0.574 0.565 0.564 0.562 0.558 0.563 0.567 0.574
HVS 24.189 24.566 24.453 24.569 24.490 24.333 24.580 25.612 24.282 24.286 24.521 24.493 25.242 25.136 25.612

HVSm 25.468 25.701 25.513 25.702 25.656 25.489 25.697 26.834 25.432 25.442 25.633 25.646 26.423 26.319 26.834
Img4 PSNR 18.115 19.491 20.725 19.491 19.315 19.455 19.081 19.584 19.492 19.472 19.087 19.266 20.295 19.810 20.725

Cielab 12.058 11.913 6.315 11.904 11.702 11.465 11.690 7.298 11.894 11.458 11.702 11.636 8.996 10.120 6.315
SSIM 0.442 0.621 0.594 0.621 0.606 0.615 0.608 0.606 0.617 0.614 0.608 0.593 0.634 0.625 0.634
HVS 13.571 14.226 16.202 14.231 14.160 14.318 13.898 14.798 14.351 14.325 13.837 14.103 15.352 14.783 16.202

HVSm 14.298 14.799 17.053 14.803 14.756 14.922 14.446 15.441 14.950 14.934 14.385 14.711 16.005 15.384 17.053
Img5 PSNR 27.738 29.195 27.871 29.189 28.964 29.083 28.794 29.213 29.180 29.066 28.857 28.935 29.113 29.348 29.348

Cielab 3.564 3.447 3.578 3.437 3.424 3.401 3.563 3.287 3.402 3.403 3.527 3.429 3.328 3.306 3.287
SSIM 0.309 0.362 0.312 0.362 0.359 0.362 0.358 0.351 0.361 0.360 0.358 0.354 0.353 0.359 0.362
HVS 23.941 24.909 23.775 24.937 24.747 24.935 24.542 25.109 25.054 24.898 24.476 24.789 25.122 25.329 25.329

HVSm 25.218 25.996 24.688 26.018 25.873 26.095 25.513 26.217 26.191 26.065 25.466 25.907 26.190 26.446 26.446
Img6 PSNR 22.216 22.790 26.248 22.790 22.729 22.809 22.608 22.670 22.830 22.812 22.602 22.677 24.363 22.876 26.248

Cielab 6.988 6.826 5.124 6.835 6.870 6.736 6.977 6.269 6.787 6.744 6.993 6.829 5.794 6.575 5.124
SSIM 0.315 0.396 0.334 0.396 0.391 0.398 0.391 0.375 0.398 0.397 0.389 0.379 0.383 0.392 0.398
HVS 18.162 18.526 21.866 18.496 18.529 18.604 18.374 18.394 18.590 18.612 18.346 18.421 20.089 18.674 21.866

HVSm 18.748 19.018 23.111 18.997 19.016 19.100 18.872 18.906 19.093 19.110 18.837 18.946 20.811 19.184 23.111
Img7 PSNR 26.556 27.545 26.766 27.552 27.510 27.475 27.623 27.511 27.484 27.459 27.620 27.449 27.506 27.603 27.623

Cielab 4.571 4.375 4.284 4.381 4.416 4.403 4.369 4.074 4.389 4.407 4.365 4.411 4.219 4.278 4.074
SSIM 0.370 0.471 0.359 0.471 0.468 0.471 0.467 0.439 0.470 0.469 0.467 0.460 0.447 0.462 0.471
HVS 22.670 23.285 22.958 23.297 23.293 23.285 23.434 23.481 23.284 23.271 23.377 23.236 23.509 23.474 23.509

HVSm 23.537 24.040 23.825 24.050 24.051 24.052 24.212 24.332 24.051 24.040 24.151 24.005 24.327 24.263 24.332
Img8 PSNR 24.878 27.449 26.633 27.431 27.113 27.169 26.931 26.854 27.281 27.118 26.971 26.997 28.302 27.760 28.302

Cielab 4.656 4.376 3.770 4.382 4.438 4.329 4.474 3.727 4.342 4.337 4.466 4.432 3.782 4.087 3.727
SSIM 0.405 0.497 0.395 0.496 0.491 0.497 0.487 0.466 0.498 0.495 0.488 0.480 0.476 0.491 0.498
HVS 20.886 22.153 22.682 22.182 21.976 22.040 21.972 22.889 22.135 21.941 21.771 21.992 23.938 23.161 23.938

HVSm 22.170 23.285 23.983 23.308 23.147 23.251 23.017 24.227 23.342 23.156 22.805 23.150 25.448 24.424 25.448
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Table A5. Cont.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img9 PSNR 26.090 27.195 25.893 27.199 26.962 26.001 26.958 27.534 27.185 24.740 26.949 27.029 27.094 27.444 27.534
Cielab 3.906 3.830 3.691 3.832 3.803 3.916 3.871 3.323 3.791 4.015 3.876 3.778 3.544 3.556 3.323
SSIM 0.254 0.304 0.312 0.304 0.299 0.299 0.303 0.306 0.298 0.293 0.303 0.295 0.303 0.305 0.312
HVS 21.795 22.290 21.378 22.289 22.173 22.310 22.051 23.058 22.376 22.321 22.072 22.179 22.485 22.803 23.058

HVSm 22.649 22.955 21.837 22.956 22.871 23.013 22.689 23.693 23.065 23.027 22.708 22.879 23.059 23.443 23.693
Img10 PSNR 23.651 24.859 24.761 24.856 24.734 24.856 24.592 24.947 24.888 24.850 24.581 24.601 25.080 24.975 25.080

Cielab 5.637 5.408 4.592 5.413 5.452 5.353 5.489 4.599 5.410 5.358 5.478 5.434 4.877 5.087 4.592
SSIM 0.339 0.421 0.359 0.421 0.415 0.424 0.417 0.407 0.423 0.422 0.414 0.404 0.408 0.417 0.424
HVS 20.205 20.975 21.145 20.916 20.967 21.069 20.602 21.417 21.053 21.074 20.672 20.760 21.438 21.311 21.438

HVSm 21.280 21.863 22.176 21.821 21.856 21.981 21.482 22.415 21.977 21.991 21.548 21.712 22.405 22.246 22.415
Img11 PSNR 23.264 23.807 25.878 23.805 23.747 23.817 23.642 23.617 23.833 23.817 23.639 23.696 24.728 23.853 25.878

Cielab 5.797 5.695 4.920 5.699 5.736 5.680 5.713 5.547 5.687 5.681 5.710 5.696 5.205 5.579 4.920
SSIM 0.344 0.407 0.311 0.407 0.403 0.413 0.402 0.387 0.414 0.413 0.402 0.392 0.383 0.403 0.414
HVS 18.656 18.887 21.200 18.887 18.885 18.936 18.741 18.771 18.946 18.943 18.736 18.842 19.899 19.013 21.200

HVSm 19.116 19.278 22.031 19.277 19.278 19.328 19.123 19.177 19.339 19.337 19.118 19.248 20.405 19.407 22.031
Img12 PSNR 21.292 22.242 23.025 22.234 22.129 22.209 22.003 22.171 22.248 22.213 22.006 22.086 22.711 22.350 23.025

Cielab 6.368 6.190 5.230 6.195 6.229 6.167 6.145 5.601 6.198 6.168 6.145 6.203 5.646 5.958 5.230
SSIM 0.451 0.551 0.450 0.551 0.547 0.553 0.543 0.528 0.553 0.552 0.543 0.538 0.528 0.546 0.553
HVS 17.419 17.757 19.104 17.750 17.733 17.793 17.542 17.964 17.820 17.804 17.539 17.705 18.449 18.019 19.104

HVSm 18.029 18.253 19.786 18.245 18.234 18.306 18.021 18.462 18.326 18.318 18.018 18.217 18.984 18.509 19.786
Average PSNR 23.902 25.016 25.614 25.011 24.870 24.793 24.782 24.986 24.994 24.717 24.793 24.820 25.577 25.170 25.614

Cielab 5.891 5.728 4.596 5.732 5.752 5.675 5.747 4.957 5.714 5.686 5.752 5.720 5.033 5.394 4.596
SSIM 0.377 0.461 0.394 0.460 0.455 0.461 0.455 0.442 0.461 0.459 0.455 0.446 0.448 0.457 0.461
HVS 19.717 20.296 21.346 20.299 20.242 20.310 20.122 20.606 20.337 20.298 20.088 20.203 21.142 20.671 21.346

HVSm 20.553 20.999 22.245 21.002 20.960 21.039 20.798 21.367 21.062 21.030 20.764 20.932 21.940 21.403 22.245
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Table A6. Performance metrics of 14 algorithms at 20 dBs SNR. Bold numbers indicate the best performing methods in each row. Red numbers indicate those methods
used in F3 and those red and green numbers indicate those methods used in ATMF.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img1 PSNR 20.006 18.180 19.961 20.041 19.986 19.888 19.902 20.873 20.005 19.905 19.903 20.077 20.396 20.192 20.873
Cielab 8.565 15.640 8.622 8.674 8.750 9.004 8.600 7.482 8.740 8.996 8.643 8.567 7.786 8.190 7.482
SSIM 0.384 0.357 0.353 0.368 0.353 0.335 0.368 0.432 0.348 0.340 0.368 0.400 0.432 0.403 0.432
HVS 14.494 13.248 14.562 14.523 14.493 14.514 14.328 15.396 14.523 14.514 14.404 14.525 14.902 14.651 15.396

HVSm 14.607 13.338 14.647 14.632 14.612 14.636 14.431 15.499 14.641 14.635 14.511 14.628 14.988 14.747 15.499
Img2 PSNR 19.452 17.330 20.121 20.016 19.956 19.968 19.771 23.036 20.002 19.986 19.801 19.971 21.184 20.308 23.036

Cielab 8.113 9.800 7.196 8.008 8.135 8.011 7.950 4.715 8.008 8.001 7.933 8.023 5.947 7.215 4.715
SSIM 0.399 0.524 0.554 0.604 0.593 0.593 0.601 0.545 0.599 0.596 0.601 0.591 0.598 0.600 0.604
HVS 14.772 11.877 15.691 15.089 15.053 15.084 14.893 18.085 15.100 15.083 14.837 15.054 16.439 15.458 18.085

HVSm 15.082 12.013 15.882 15.307 15.278 15.317 15.095 18.577 15.328 15.317 15.047 15.281 16.695 15.682 18.577
Img3 PSNR 20.056 20.564 20.186 20.157 20.079 20.142 19.977 20.357 20.178 20.156 19.980 20.154 20.355 20.239 20.564

Cielab 9.147 10.971 8.616 9.127 9.410 9.188 9.116 7.899 9.144 9.187 9.118 9.158 8.042 8.569 7.899
SSIM 0.490 0.431 0.486 0.489 0.474 0.480 0.486 0.525 0.487 0.483 0.486 0.498 0.527 0.511 0.527
HVS 14.957 15.233 15.275 15.027 15.011 15.058 14.857 15.239 15.059 15.061 14.860 15.018 15.284 15.120 15.284

HVSm 15.117 15.435 15.386 15.167 15.157 15.204 14.995 15.369 15.203 15.207 14.999 15.159 15.399 15.247 15.435
Img4 PSNR 17.301 13.215 18.361 18.081 17.905 17.999 17.659 18.283 18.069 18.048 17.665 18.062 18.644 18.318 18.644

Cielab 13.625 13.165 11.044 13.971 13.782 13.514 13.549 8.185 14.044 13.471 13.579 13.582 9.092 11.537 8.185
SSIM 0.440 0.407 0.552 0.577 0.562 0.564 0.569 0.565 0.572 0.568 0.568 0.571 0.602 0.588 0.602
HVS 12.619 8.090 14.590 13.121 13.050 13.172 12.666 13.515 13.183 13.177 12.621 13.010 14.133 13.472 14.590

HVSm 13.240 8.306 15.143 13.661 13.614 13.749 13.163 14.050 13.751 13.754 13.119 13.557 14.666 14.006 15.143
Img5 PSNR 20.089 22.475 20.305 20.213 20.164 20.176 20.011 27.076 20.203 20.190 20.024 20.232 22.275 20.571 27.076

Cielab 7.277 6.346 7.003 7.297 7.311 7.278 7.310 3.337 7.291 7.273 7.316 7.279 5.317 6.754 3.337
SSIM 0.317 0.377 0.369 0.385 0.379 0.375 0.385 0.440 0.380 0.378 0.384 0.391 0.431 0.403 0.440
HVS 15.802 17.356 16.304 15.942 15.909 15.947 15.704 22.586 15.950 15.943 15.697 15.925 18.081 16.311 22.586

HVSm 16.006 17.653 16.442 16.117 16.088 16.131 15.867 23.176 16.133 16.129 15.866 16.099 18.283 16.479 23.176
Img6 PSNR 19.763 20.526 20.291 20.212 20.133 20.186 19.974 25.261 20.223 20.193 19.972 20.137 21.847 20.483 25.261

Cielab 9.761 11.355 8.837 9.720 9.866 9.634 9.574 4.999 9.732 9.643 9.613 9.693 6.977 8.757 4.999
SSIM 0.411 0.504 0.547 0.590 0.574 0.576 0.586 0.584 0.585 0.578 0.584 0.570 0.603 0.593 0.603
HVS 15.392 16.551 16.064 15.619 15.622 15.685 15.426 20.473 15.676 15.691 15.427 15.565 17.387 15.960 20.473

HVSm 15.692 16.911 16.253 15.845 15.847 15.913 15.657 21.128 15.905 15.920 15.652 15.810 17.673 16.198 21.128
Img7 PSNR 24.564 21.571 21.880 21.975 20.143 20.149 22.559 25.615 21.809 20.157 22.446 23.495 23.804 23.147 25.615

Cielab 5.943 6.857 6.706 7.141 8.356 8.292 6.716 4.024 7.222 8.285 6.770 6.436 5.061 6.016 4.024
SSIM 0.407 0.511 0.481 0.530 0.516 0.513 0.530 0.507 0.525 0.516 0.531 0.532 0.544 0.540 0.544
HVS 20.236 17.426 17.841 17.554 15.768 15.782 18.128 21.242 17.404 15.779 17.993 19.014 19.558 18.729 21.242

HVSm 20.730 17.619 18.006 17.752 15.897 15.917 18.355 21.698 17.605 15.915 18.216 19.300 19.811 18.967 21.698
Img8 PSNR 19.384 14.232 19.984 19.971 19.884 19.935 19.672 21.107 19.973 19.943 19.691 19.881 20.496 20.121 21.107

Cielab 8.753 14.864 7.886 8.595 8.815 8.594 8.571 6.139 8.627 8.590 8.559 8.682 6.946 7.856 6.139
SSIM 0.421 0.414 0.504 0.543 0.528 0.532 0.537 0.527 0.539 0.534 0.539 0.530 0.555 0.549 0.555
HVS 14.576 8.817 15.441 14.928 14.911 14.973 14.652 16.187 14.974 14.973 14.630 14.867 15.682 15.171 16.187

HVSm 14.874 8.900 15.623 15.143 15.130 15.200 14.857 16.486 15.200 15.202 14.840 15.097 15.899 15.388 16.486
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Table A6. Cont.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img9 PSNR 20.116 10.893 20.463 20.201 20.131 20.071 20.035 20.541 20.183 20.089 20.032 20.214 20.560 20.375 20.560
Cielab 6.612 15.724 5.883 6.571 6.656 6.970 6.533 5.224 6.609 6.976 6.533 6.547 5.327 5.947 5.224
SSIM 0.265 0.270 0.333 0.338 0.327 0.324 0.338 0.343 0.333 0.325 0.338 0.335 0.359 0.348 0.359
HVS 15.468 6.264 16.152 15.560 15.535 15.574 15.401 15.875 15.575 15.575 15.406 15.538 16.001 15.726 16.152

HVSm 15.686 6.294 16.287 15.753 15.737 15.775 15.589 16.016 15.774 15.776 15.593 15.735 16.138 15.894 16.287
Img10 PSNR 19.471 19.766 20.069 19.933 19.858 19.899 19.679 20.694 19.933 19.911 19.672 19.874 20.384 20.088 20.694

Cielab 8.810 8.728 7.784 8.734 8.795 8.653 8.646 6.476 8.770 8.648 8.683 8.704 6.973 7.867 6.476
SSIM 0.374 0.413 0.477 0.491 0.479 0.481 0.489 0.498 0.486 0.483 0.487 0.482 0.518 0.502 0.518
HVS 15.573 15.812 16.434 15.836 15.843 15.905 15.575 16.626 15.884 15.905 15.592 15.787 16.488 16.055 16.626

HVSm 15.926 16.202 16.640 16.097 16.102 16.170 15.840 16.942 16.152 16.172 15.851 16.067 16.736 16.316 16.942
Img11 PSNR 19.895 17.081 20.129 20.185 20.124 20.149 19.988 19.942 20.173 20.157 19.986 20.163 20.200 20.184 20.200

Cielab 8.557 12.064 8.265 8.544 8.687 8.552 8.501 7.619 8.568 8.549 8.499 8.495 7.577 8.015 7.577
SSIM 0.440 0.477 0.527 0.570 0.553 0.558 0.567 0.530 0.565 0.562 0.567 0.563 0.576 0.576 0.576
HVS 14.937 11.423 15.190 15.053 15.042 15.073 14.886 14.849 15.071 15.076 14.882 15.038 15.137 15.084 15.190

HVSm 15.123 11.508 15.317 15.201 15.194 15.226 15.030 14.998 15.224 15.229 15.026 15.190 15.267 15.222 15.317
Img12 PSNR 19.406 16.116 20.155 20.087 20.004 20.057 19.828 19.068 20.091 20.070 19.830 20.007 19.928 20.008 20.155

Cielab 8.416 9.817 7.663 8.348 8.439 8.322 8.172 8.473 8.377 8.317 8.174 8.330 7.472 7.891 7.472
SSIM 0.499 0.504 0.591 0.622 0.612 0.614 0.617 0.598 0.618 0.616 0.617 0.619 0.632 0.628 0.632
HVS 15.138 11.211 16.013 15.381 15.372 15.425 15.131 14.657 15.426 15.428 15.132 15.347 15.512 15.427 16.013

HVSm 15.490 11.347 16.220 15.640 15.634 15.695 15.383 14.863 15.694 15.699 15.385 15.619 15.724 15.672 16.220
Average PSNR 19.959 17.662 20.159 20.089 19.864 19.885 19.921 21.821 20.070 19.900 19.917 20.189 20.839 20.336 21.821

Cielab 8.632 11.278 7.959 8.728 8.917 8.834 8.603 6.214 8.761 8.828 8.618 8.625 6.877 7.885 6.214
SSIM 0.404 0.432 0.481 0.509 0.496 0.495 0.506 0.508 0.503 0.498 0.506 0.507 0.532 0.520 0.532
HVS 15.330 12.776 15.796 15.303 15.134 15.183 15.137 17.061 15.319 15.184 15.123 15.391 16.217 15.597 17.061

HVSm 15.631 12.960 15.987 15.526 15.358 15.411 15.355 17.400 15.551 15.413 15.342 15.628 16.440 15.818 17.400
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Table A7. Performance metrics of 14 algorithms at 20 dBs SNR (Poisson noise). Bold numbers indicate the best performing methods in each row. Red numbers
indicate those methods used in F3 and those red and green numbers indicate those methods used in ATMF.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img1 PSNR 19.835 19.873 20.240 19.459 19.739 19.588 19.369 21.244 19.444 19.734 19.283 19.412 20.325 19.555 21.244
Cielab 9.075 8.939 7.816 8.571 8.301 8.715 8.504 7.056 8.634 8.593 8.630 8.575 7.664 8.311 7.056
SSIM 0.339 0.345 0.425 0.459 0.458 0.463 0.454 0.435 0.467 0.464 0.454 0.444 0.457 0.459 0.467
HVS 14.435 14.452 14.777 13.867 14.164 14.052 13.823 15.777 13.843 14.200 13.746 13.851 14.803 14.012 15.777

HVSm 14.545 14.556 14.841 13.930 14.231 14.118 13.885 15.862 13.904 14.267 13.808 13.915 14.869 14.072 15.862
Img2 PSNR 19.541 19.942 20.976 18.936 18.833 19.497 18.958 20.783 19.328 19.441 18.900 19.002 20.440 19.340 20.976

Cielab 8.903 8.298 5.777 8.106 8.200 7.710 7.945 5.883 7.851 7.754 7.964 8.029 6.210 7.352 5.777
SSIM 0.477 0.601 0.429 0.550 0.545 0.557 0.541 0.418 0.557 0.555 0.540 0.518 0.485 0.527 0.601
HVS 15.087 15.148 16.727 14.065 13.971 14.622 14.173 16.270 14.461 14.568 14.078 14.197 15.860 14.573 16.727

HVSm 15.322 15.354 16.984 14.214 14.123 14.790 14.326 16.534 14.621 14.733 14.229 14.355 16.070 14.734 16.984
Img3 PSNR 19.889 19.965 21.471 19.893 20.157 20.180 19.822 21.395 20.125 20.132 19.904 19.987 21.027 20.188 21.471

Cielab 9.724 9.532 7.055 8.705 8.615 8.510 8.678 7.031 8.559 8.560 8.615 8.654 7.299 8.142 7.031
SSIM 0.459 0.472 0.558 0.562 0.559 0.568 0.554 0.555 0.570 0.568 0.555 0.549 0.573 0.565 0.573
HVS 14.919 14.939 16.531 14.688 15.006 14.981 14.694 16.315 14.909 14.931 14.773 14.830 15.935 15.048 16.531

HVSm 15.060 15.072 16.653 14.788 15.110 15.084 14.796 16.449 15.010 15.032 14.877 14.935 16.046 15.149 16.653
Img4 PSNR 17.405 17.944 19.685 17.759 17.804 17.748 17.485 18.901 17.758 17.839 17.522 17.855 19.012 17.926 19.685

Cielab 15.784 15.404 8.803 13.954 13.631 13.641 13.570 9.380 14.108 13.579 13.562 13.431 9.722 12.096 8.803
SSIM 0.473 0.558 0.595 0.601 0.592 0.594 0.593 0.586 0.598 0.597 0.593 0.591 0.621 0.610 0.621
HVS 13.229 13.377 15.841 12.912 13.016 12.946 12.787 14.696 12.953 13.022 12.793 13.014 14.676 13.316 15.841

HVSm 13.836 13.943 16.458 13.342 13.478 13.390 13.212 15.216 13.389 13.470 13.221 13.471 15.174 13.735 16.458
Img5 PSNR 19.942 20.022 21.798 20.122 19.746 19.916 20.298 21.657 19.946 19.400 20.152 20.318 21.149 20.403 21.798

Cielab 7.929 7.701 5.367 6.837 7.058 6.970 6.632 5.422 6.974 7.352 6.724 6.675 5.751 6.406 5.367
SSIM 0.326 0.369 0.332 0.370 0.365 0.371 0.362 0.330 0.373 0.369 0.362 0.356 0.355 0.364 0.373
HVS 15.843 15.874 17.760 15.828 15.469 15.632 16.061 17.479 15.660 15.126 15.895 16.049 16.983 16.164 17.760

HVSm 16.019 16.039 17.918 15.948 15.587 15.746 16.189 17.645 15.774 15.229 16.021 16.181 17.118 16.287 17.918
Img6 PSNR 19.772 20.076 20.922 20.175 20.028 20.148 19.994 20.344 20.120 19.981 19.964 19.984 20.526 20.086 20.922

Cielab 10.727 10.270 7.443 8.869 9.037 8.835 9.009 7.760 9.001 8.991 9.075 8.975 7.703 8.444 7.443
SSIM 0.473 0.581 0.403 0.521 0.511 0.525 0.503 0.395 0.526 0.522 0.500 0.478 0.457 0.493 0.581
HVS 15.547 15.601 16.711 15.613 15.546 15.629 15.536 16.007 15.569 15.468 15.521 15.501 16.155 15.637 16.711

HVSm 15.775 15.806 16.947 15.829 15.743 15.833 15.751 16.235 15.778 15.665 15.734 15.717 16.372 15.844 16.947
Img7 PSNR 19.847 19.985 29.058 26.350 21.086 20.872 25.651 29.190 25.921 20.208 26.357 22.369 28.456 27.001 29.190

Cielab 9.161 8.743 2.957 4.699 7.064 7.227 4.843 3.011 4.855 7.718 4.629 6.294 3.249 4.158 2.957
SSIM 0.419 0.511 0.462 0.560 0.526 0.531 0.548 0.450 0.562 0.521 0.551 0.513 0.513 0.549 0.562
HVS 15.653 15.681 26.259 21.730 16.687 16.464 21.225 26.075 21.346 15.813 21.869 17.976 24.761 22.585 26.259

HVSm 15.787 15.803 27.349 22.148 16.821 16.591 21.599 27.271 21.729 15.924 22.307 18.161 25.527 23.075 27.349
Img8 PSNR 19.438 19.846 19.835 19.319 19.355 19.193 19.503 20.319 19.396 19.115 19.339 19.293 19.931 19.448 20.319

Cielab 9.564 9.027 7.249 8.423 8.448 8.521 8.140 6.865 8.421 8.591 8.262 8.450 7.215 7.869 6.865
SSIM 0.445 0.531 0.416 0.522 0.519 0.524 0.509 0.417 0.531 0.523 0.508 0.490 0.472 0.502 0.531
HVS 14.856 14.919 15.267 14.283 14.363 14.183 14.580 15.657 14.364 14.108 14.389 14.339 15.160 14.555 15.657

HVSm 15.093 15.129 15.441 14.442 14.525 14.335 14.753 15.861 14.524 14.258 14.557 14.507 15.329 14.714 15.861
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Table A7. Cont.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img9 PSNR 20.041 20.098 21.274 19.210 19.487 19.078 18.979 20.657 19.442 19.143 19.031 19.085 20.486 19.452 21.274
Cielab 7.247 6.991 4.785 6.386 6.230 6.770 6.417 5.097 6.323 6.751 6.390 6.432 5.143 5.925 4.785
SSIM 0.286 0.332 0.303 0.322 0.318 0.317 0.320 0.293 0.325 0.317 0.320 0.305 0.308 0.316 0.332
HVS 15.620 15.631 16.878 14.540 14.843 14.473 14.368 16.115 14.774 14.536 14.423 14.440 15.940 14.843 16.878

HVSm 15.820 15.826 16.995 14.638 14.946 14.570 14.463 16.231 14.875 14.633 14.518 14.538 16.043 14.936 16.995
Img10 PSNR 19.519 19.827 21.257 19.511 19.212 19.411 19.314 20.395 19.603 19.455 19.254 19.213 20.483 19.599 21.257

Cielab 9.597 9.095 6.246 8.418 8.615 8.436 8.360 6.780 8.439 8.408 8.444 8.548 6.768 7.811 6.246
SSIM 0.411 0.485 0.411 0.466 0.457 0.469 0.457 0.397 0.472 0.469 0.453 0.437 0.441 0.455 0.485
HVS 15.803 15.859 17.678 15.441 15.219 15.387 15.339 16.626 15.543 15.432 15.297 15.225 16.668 15.657 17.678

HVSm 16.070 16.100 17.936 15.659 15.409 15.584 15.556 16.882 15.758 15.631 15.511 15.437 16.898 15.867 17.936
Img11 PSNR 19.815 20.030 19.751 19.717 19.591 19.827 19.644 20.053 19.844 19.804 19.537 19.634 19.934 19.632 20.053

Cielab 9.263 8.863 7.810 8.190 8.302 8.109 8.126 7.433 8.134 8.133 8.211 8.216 7.549 7.931 7.433
SSIM 0.472 0.556 0.375 0.501 0.493 0.510 0.488 0.373 0.513 0.510 0.486 0.464 0.437 0.472 0.556
HVS 14.961 14.983 14.849 14.558 14.470 14.683 14.574 15.101 14.687 14.662 14.463 14.539 14.921 14.584 15.101

HVSm 15.113 15.124 14.977 14.679 14.583 14.802 14.697 15.245 14.809 14.781 14.584 14.662 15.048 14.702 15.245
Img12 PSNR 19.572 20.079 19.241 19.740 19.654 19.760 19.599 19.093 19.697 19.685 19.557 19.566 19.422 19.369 20.079

Cielab 9.242 8.757 7.950 7.951 7.988 7.914 7.796 7.927 8.036 7.977 7.831 8.012 7.703 7.828 7.703
SSIM 0.529 0.610 0.530 0.614 0.611 0.617 0.598 0.522 0.618 0.616 0.598 0.589 0.570 0.589 0.618
HVS 15.383 15.429 15.087 15.018 14.985 15.062 14.976 14.754 14.988 14.986 14.932 14.934 15.023 14.835 15.429

HVSm 15.646 15.673 15.263 15.232 15.192 15.277 15.194 14.943 15.199 15.198 15.147 15.149 15.207 15.028 15.673
Average PSNR 19.551 19.807 21.292 20.016 19.558 19.602 19.885 21.169 20.052 19.495 19.900 19.643 20.933 20.167 21.292

Cielab 9.685 9.301 6.605 8.259 8.457 8.447 8.168 6.637 8.278 8.534 8.195 8.358 6.831 7.689 6.605
SSIM 0.426 0.496 0.437 0.504 0.496 0.504 0.494 0.431 0.509 0.502 0.493 0.478 0.474 0.492 0.509
HVS 15.111 15.158 17.030 15.212 14.812 14.843 15.178 16.739 15.258 14.738 15.181 14.908 16.407 15.484 17.030

HVSm 15.340 15.369 17.314 15.404 14.979 15.010 15.368 17.031 15.447 14.902 15.376 15.086 16.642 15.679 17.314
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Table A8. Performance metrics of 14 algorithms at 20 dBs SNR (Poisson noise). Bold numbers indicate the best performing methods in each row. Red numbers
indicate those methods used in F3 and those red and green numbers indicate those methods used in ATMF.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img1 PSNR 26.266 26.848 26.045 26.856 26.732 26.798 26.620 26.482 26.932 26.807 26.672 26.659 26.854 26.863 26.932
Cielab 4.427 4.363 4.861 4.358 4.429 4.444 4.301 4.615 4.370 4.458 4.360 4.379 4.366 4.364 4.301
SSIM 0.471 0.500 0.434 0.500 0.488 0.503 0.497 0.484 0.504 0.501 0.497 0.488 0.497 0.497 0.504
HVS 21.159 21.329 20.686 21.389 21.355 21.432 21.045 21.124 21.441 21.443 21.234 21.329 21.387 21.401 21.443

HVSm 21.587 21.685 20.956 21.731 21.705 21.777 21.357 21.417 21.785 21.788 21.567 21.696 21.729 21.741 21.788
Img2 PSNR 24.881 27.626 26.995 27.632 27.465 27.414 27.346 27.188 27.503 27.416 27.372 27.224 27.649 27.612 27.649

Cielab 4.596 4.141 3.222 4.158 4.265 4.195 4.213 3.309 4.185 4.200 4.205 4.244 4.148 4.155 3.222
SSIM 0.399 0.586 0.463 0.584 0.578 0.581 0.580 0.520 0.582 0.579 0.579 0.560 0.584 0.583 0.586
HVS 21.028 22.441 22.852 22.537 22.394 22.484 22.629 22.752 22.596 22.481 22.259 22.370 22.518 22.538 22.852

HVSm 22.408 23.591 24.415 23.667 23.557 23.690 23.743 24.196 23.796 23.695 23.329 23.542 23.653 23.682 24.415
Img3 PSNR 28.060 29.353 30.667 29.379 29.024 29.334 29.031 29.724 29.425 29.335 29.046 29.030 29.375 29.381 30.667

Cielab 4.606 4.490 3.731 4.421 4.665 4.400 4.492 3.926 4.426 4.407 4.496 4.508 4.428 4.399 3.731
SSIM 0.563 0.609 0.580 0.609 0.598 0.608 0.604 0.615 0.609 0.607 0.604 0.596 0.607 0.607 0.615
HVS 23.811 24.302 26.429 24.380 24.317 24.355 24.110 25.147 24.334 24.354 24.092 24.268 24.379 24.403 26.429

HVSm 24.911 25.215 27.665 25.287 25.255 25.314 24.955 26.012 25.291 25.318 24.943 25.213 25.286 25.315 27.665
Img4 PSNR 18.786 20.395 20.640 20.450 20.215 20.343 19.984 20.845 20.398 20.377 19.987 20.208 20.452 20.434 20.845

Cielab 12.202 12.236 6.391 11.990 11.882 11.642 11.773 6.786 12.140 11.624 11.801 11.809 11.981 11.750 6.391
SSIM 0.456 0.636 0.614 0.636 0.619 0.625 0.625 0.631 0.629 0.626 0.624 0.613 0.636 0.634 0.636
HVS 14.151 14.843 16.086 14.948 14.885 15.024 14.567 15.990 15.034 15.036 14.488 14.765 14.948 14.963 16.086

HVSm 15.014 15.558 16.904 15.661 15.626 15.786 15.236 16.813 15.789 15.803 15.154 15.506 15.661 15.682 16.904
Img5 PSNR 27.318 28.808 29.054 28.825 28.634 28.749 28.383 28.744 28.818 28.748 28.448 28.546 28.829 28.816 29.054

Cielab 3.399 3.270 2.950 3.204 3.243 3.216 3.330 3.046 3.220 3.218 3.305 3.243 3.206 3.201 2.950
SSIM 0.325 0.389 0.346 0.389 0.385 0.389 0.385 0.375 0.387 0.386 0.384 0.378 0.388 0.388 0.389
HVS 23.466 24.370 24.902 24.446 24.363 24.536 24.014 24.512 24.568 24.538 23.966 24.273 24.442 24.488 24.902

HVSm 24.548 25.213 25.890 25.278 25.227 25.426 24.756 25.353 25.447 25.433 24.734 25.154 25.275 25.325 25.890
Img6 PSNR 25.857 28.142 28.335 28.213 27.878 28.024 27.841 28.194 28.141 27.992 27.851 27.708 28.214 28.179 28.335

Cielab 5.375 5.111 4.159 4.964 5.105 4.926 5.204 4.111 5.022 4.952 5.223 5.073 4.974 4.939 4.111
SSIM 0.418 0.568 0.477 0.568 0.559 0.567 0.561 0.531 0.567 0.564 0.559 0.537 0.567 0.567 0.568
HVS 22.006 23.068 23.951 23.067 23.069 23.157 22.646 23.579 23.199 23.177 22.799 22.793 23.091 23.145 23.951

HVSm 23.434 24.276 25.353 24.295 24.302 24.438 23.809 24.871 24.484 24.466 23.971 24.081 24.313 24.370 25.353
Img7 PSNR 26.971 28.543 27.003 28.579 28.490 28.436 28.706 28.500 28.475 28.419 28.699 28.403 28.578 28.560 28.706

Cielab 4.068 3.765 3.589 3.772 3.823 3.802 3.755 3.268 3.783 3.807 3.747 3.827 3.774 3.777 3.268
SSIM 0.437 0.590 0.473 0.588 0.584 0.587 0.585 0.538 0.587 0.585 0.585 0.573 0.587 0.586 0.590
HVS 23.317 24.178 23.444 24.239 24.212 24.170 24.462 24.712 24.206 24.159 24.348 24.160 24.237 24.246 24.712

HVSm 24.260 24.908 24.172 24.977 24.967 24.951 25.234 25.621 24.980 24.942 25.112 24.926 24.976 24.990 25.621
Img8 PSNR 25.298 28.544 27.792 28.723 28.383 28.325 28.265 27.953 28.416 28.276 28.314 28.087 28.723 28.677 28.723

Cielab 4.431 4.120 3.250 4.015 4.161 4.034 4.114 3.262 4.053 4.044 4.090 4.157 4.018 4.009 3.250
SSIM 0.453 0.571 0.477 0.571 0.563 0.570 0.561 0.537 0.571 0.568 0.561 0.548 0.570 0.570 0.571
HVS 21.405 22.734 23.977 23.371 23.370 23.361 23.214 24.116 23.332 23.369 22.960 22.951 23.353 23.416 24.116

HVSm 22.819 23.953 25.568 24.639 24.691 24.740 24.414 25.658 24.716 24.770 24.134 24.239 24.620 24.698 25.658
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Table A8. Cont.

Image Metrics Baseline Standard Demonet + GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF Best Score

Img9 PSNR 26.606 27.968 27.180 28.051 27.819 27.839 27.779 28.388 28.019 27.745 27.771 27.812 28.047 28.048 28.388
Cielab 3.649 3.564 3.242 3.469 3.524 3.632 3.521 2.993 3.514 3.738 3.523 3.497 3.477 3.465 2.993
SSIM 0.264 0.323 0.345 0.323 0.317 0.318 0.322 0.325 0.316 0.311 0.322 0.313 0.327 0.326 0.345
HVS 22.272 22.829 22.590 23.017 22.987 23.133 22.751 23.768 23.146 23.146 22.774 22.846 23.015 23.066 23.768

HVSm 23.228 23.573 23.141 23.746 23.728 23.893 23.446 24.480 23.903 23.909 23.467 23.621 23.745 23.796 24.480
Img10 PSNR 24.774 26.876 25.963 26.915 26.681 26.815 26.514 27.096 26.883 26.804 26.512 26.459 26.919 26.908 27.096

Cielab 5.106 4.821 3.933 4.762 4.848 4.730 4.864 3.731 4.811 4.737 4.843 4.833 4.765 4.732 3.731
SSIM 0.375 0.482 0.431 0.482 0.474 0.483 0.478 0.465 0.483 0.481 0.475 0.461 0.482 0.482 0.483
HVS 21.234 22.249 22.291 22.283 22.350 22.427 21.779 23.305 22.400 22.421 21.958 22.054 22.305 22.375 23.305

HVSm 22.565 23.299 23.324 23.357 23.415 23.538 22.796 24.565 23.522 23.542 22.981 23.201 23.370 23.439 24.565
Img11 PSNR 26.150 27.606 26.454 27.650 27.499 27.611 27.389 27.309 27.647 27.596 27.386 27.321 27.648 27.646 27.650

Cielab 4.713 4.534 4.568 4.505 4.600 4.510 4.538 4.267 4.518 4.514 4.536 4.547 4.511 4.502 4.267
SSIM 0.421 0.524 0.416 0.524 0.517 0.529 0.519 0.496 0.530 0.529 0.518 0.500 0.523 0.524 0.530
HVS 22.398 22.906 21.891 23.125 23.164 23.220 22.867 23.069 23.225 23.238 22.859 22.963 23.124 23.164 23.238

HVSm 23.440 23.781 22.668 23.984 24.018 24.097 23.687 23.963 24.108 24.118 23.678 23.866 23.983 24.020 24.118
Img12 PSNR 22.103 23.523 24.317 23.555 23.418 23.507 23.243 23.423 23.558 23.513 23.245 23.317 23.554 23.530 24.317

Cielab 5.753 5.514 4.447 5.488 5.541 5.468 5.435 4.788 5.506 5.470 5.435 5.519 5.495 5.479 4.447
SSIM 0.508 0.647 0.559 0.647 0.641 0.646 0.637 0.616 0.646 0.644 0.637 0.629 0.646 0.645 0.647
HVS 18.482 18.928 20.675 19.040 19.045 19.115 18.743 19.380 19.126 19.125 18.742 18.951 19.040 19.047 20.675

HVSm 19.240 19.512 21.479 19.603 19.605 19.697 19.285 19.970 19.707 19.709 19.284 19.546 19.603 19.609 21.479
Average PSNR 25.256 27.019 26.704 27.069 26.853 26.933 26.758 26.987 27.018 26.919 26.775 26.731 27.070 27.054 27.070

Cielab 5.194 4.994 4.029 4.926 5.007 4.917 4.961 4.008 4.962 4.931 4.964 4.970 4.929 4.898 4.008
SSIM 0.424 0.535 0.468 0.535 0.527 0.534 0.529 0.511 0.534 0.532 0.529 0.516 0.534 0.534 0.535
HVS 21.227 22.015 22.481 22.153 22.126 22.201 21.902 22.621 22.217 22.207 21.873 21.977 22.153 22.188 22.621

HVSm 22.288 22.880 23.461 23.019 23.008 23.112 22.726 23.577 23.127 23.124 22.696 22.883 23.018 23.055 23.577
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