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Abstract: The foreground segmentation method is a crucial first step for many video analysis methods
such as action recognition and object tracking. In the past five years, convolutional neural network
based foreground segmentation methods have made a great breakthrough. However, most of them
pay more attention to stationary cameras and have constrained performance on the pan-tilt-zoom
(PTZ) cameras. In this paper, an end-to-end deep features homography transformation and fusion
network based foreground segmentation method (HTFnetSeg) is proposed for surveillance videos
recorded by PTZ cameras. In the kernel of HTFnetSeg, there is the combination of an unsupervised
semantic attention homography estimation network (SAHnet) for frames alignment and a spatial
transformed deep features fusion network (STDFFnet) for segmentation. The semantic attention mask
in SAHnet reinforces the network to focus on background alignment by reducing the noise that comes
from the foreground. STDFFnet is designed to reuse the deep features extracted during the semantic
attention mask generation step by aligning the features rather than only the frames, with a spatial
transformation technique in order to reduce the algorithm complexity. Additionally, a conservative
strategy is proposed for the motion map based post-processing step to further reduce the false
positives that are brought by semantic noise. The experiments on both CDnet2014 and Lasiesta show
that our method outperforms many state-of-the-art methods, quantitively and qualitatively.

Keywords: moving object segmentation; PTZ camera; convolutional neural network; image
alignment

1. Introduction

Foreground segmentation is an activate research topic in computer vision [1], as it is a stepping
stone for video surveillance and many video analysis methods by extracting useful information from
videos. During the process of foreground segmentation, moving and informative objects are separated
from the static or periodic moving background objects (e.g., road or waving water), which is the first
step for many hot applications, such as action recognition [2], clothing recolouring [3], and intelligent
transportation system [4].

Traditionally, the foreground segmentation methods are designed under the assumption that
cameras are stationary. However, the field of view (FOV) of the stationary camera is limited by its
fixed location. The multi-cameras systems are adopted for video surveillance and object tracking tasks
to overcome this limitation, because it can cover different angles and shots. Despite these advantages,
the multi-camera also brought challenge issues, such as installation cost, multi-camera collaboration,
and object re-identity. In contrast, the PTZ camera can both avoid the issue brought by multi-cameras
and take the advantages of the broad vision field and focusing the region of interest with a high
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resolution. Therefore, in the last few years, PTZ cameras began to be widely used in many surveillance
circumstances. Meanwhile, the background change brought by the panning, tilting and zooming of
cameras also raises the challenge, named PTZ camera challenge, to foreground segmentation methods.

Under this circumstance, many efforts are made to extend the proven methods from stationary
cameras to PTZ cameras. For example, the sample-based background subtraction method PAWCS [5]
shows its robustness to moving cameras by storing the various background representations as
background words. Instead of changing the inner mechanism, the panoramic background image [6]
enables the traditional methods to be directly used for PTZ cameras by simply registering the current
frame to the background model. In order to better adapt to the moving camera, some inner mechanisms
are also designed to combine with the panoramic background. In [7], keypoints are not only used for
feature matching, a key step for panoramic image generation, but also used for clustering prepared
for foreground detection and also a spatio-temporal tracking of keypoints are attached to distinguish
the background. Similar to the panoramic-based method, the motion compensation techniques are
also a good choice for moving camera foreground segmentation methods, in which the current image
is also registered with the background model, but the background model is not an extended image
as a panorama, so this decreases the computation time and the memory allocation [8]. The recent
method [9] further reduces the computation load by grid-based keypoints and factors proposed for
static camera background subtraction, such as local pixel difference and Gaussian filter, are also used
for finer performance. Be contrast to the thought dealing with the PTZ camera challenge by frames
alignment, the motion segmentation based methods [10,11] are proposed based on the dense optical
flow or motion trajectories. The optical flow estimation based method [10] proposed a constrained
RANSAC algorithm to distinguish the background optical flow field in order to extract the foreground
mask. The motion segmentation is further fused with appearance-based foreground estimation in [11],
where an innovative Mega-pixel denoising process acts as a key part in this fusion by smoothing the
probability estimates while using colour segmentation. Comparing with compensation-based methods,
they do not rely on explicit camera motion models but they are usually based on the two assumptions
that the majority of the pixels in a scene belongs to the background, and foreground objects and camera
motion differ in terms of motion pattern.

When comparing with the traditional moving object segmentation method, the convolutional
neural network (CNN) based methods show a great advantage in terms of performance, which
benefits from the data-driven feature extractor and classifier. Even on the PTZ camera challenge, some
CNN-based methods [12,13] still get far higher F-Measure on the PTZ category of CDnet2014 dataset
than other traditional methods. However, as these CNN-based methods are supervised, they face the
trade-off between accuracy and generalization ability. For example, the performance of FgSegNet [12]
drops greatly on unseen videos, although it reaches human-level performance on seen videos. For one
method, the unseen videos are the videos whose background and foreground objects have never used
in the setup stage of the method. To pursue the generalization ability, the universal DFFnetSeg [14]
is proposed for the sudden scene change challenge, whereas it is not robust to the continuous scene
change situation which is common in PTZ camera video.

Inspired by the unsupervised homography estimator model [15], we propose a deep features
homography transformation and fusion network for foreground segmentation (HTFnetSeg) to tackle
the PTZ camera challenge, which can both offset the camera motion by homography transformation
and take the advantage of the generality of DFFnetSeg. In detail, the differentiable Tensor Direct
Linear Transform (TDLT) layer and Spatial Transformation (ST) layer proposed in [15] enable the
homography estimator to be trained in an unsupervised manner, which avoids the demand for the
time-consuming manual ground truth labelling. In many cases, the homography ground truth is not
available from the surveillance videos, so the unsupervised manner also extends the usage field of this
homography estimator. However, when the most parts in the centre region of one image are covered
by the foreground (which is common in surveillance videos), the network in [15] might align the image
based on the foreground motion instead of the background motion, since it crops the centre regions of
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two images as its input patches. As our deep features homography transformation and fusion network
(HTFnet) aims to align the deep feature inputs of fusion network (FusionNet) to adapt it to the moving
surveillance camera challenge, the homography estimation part of it is demanded to be robust to
the occlusion of large foreground objects. Therefore, a semantic attention mask, based on a semantic
segmentation network PSPNet, is proposed to pre-process the input pair and modify the loss function
of the homography regression model. The input pair in our homography estimator consists of two
original frames without cropping, so, to further deal with the black boundary of the warped image, the
masked loss function combining with a constraint element is proposed, which enables the input pair
to well replace the cropping strategy in [15] with the benefit of a bigger receipt field. The deep features
generated during the semantic attention mask generation step are reused inside the spatial transformed
deep features fusion network (STDFFnet), which aligns the deep features by spatial transformation
layer to predict the foreground mask by the FusionNet, in order to reduce the computing complexity.
Finally, the key post-processing step designed for semantic noise restraint in DFFnetSeg method is
modified to adapt to the PTZ camera challenge. Specifically, a relatively conservative strategy for
region-based motion map generation is proposed comparing with the original version proposed in [14],
as the alignment deviation exists in the aligned images. This deviation could be overcome during
the FusionNet stage, but, during the post-process stage, the greedy motion map that is proposed in
DFFnetSeg is too sensitive to the deviation, because it just activates one location depending on a very
weak hint of motion. Therefore, in HTFnetSeg, the motion map is modified to demand a stronger hint
to activate its pixel location to tackle the noise brought by the alignment deviation.
The contributions of this paper are three folds:

e A semantic attention based homography estimator is proposed to reduce the foreground object
noise to the image alignment. The semantic attention masked inputs enable the regression
network to receive fewer foreground objects than original images and the masked loss function is
also combined to focus on backpropagating the gradient from the “background region” defined
by the semantic prediction. Two additional elements are also proposed for the loss function to
enhance the model to converge stably and evenly during training.

e A spatial transformed deep features fusion network (STDFFnet) is proposed to estimate the
foreground mask based on features comparison. It warps the deep features as the input of
FusionNet instead of just warping the images as the input of the feature extractor in DFFnet. This
deep features warping strategy can reduce the calculation load of our method by enabling the
reuse of the features generated during homography estimation stage.

e A conservative strategy for region-based motion map generation is proposed to enable our
post-processing step to be robust to the camera motion by demanding the stronger motion hint
than the corresponding in DFFnetSeg method. The region-based motion map generation step acts
as the post-processing step to reduce the false positives that are caused by the semantic noise.

The paper is structured, as follows. In Section 2, the related works are discussed. In Section 3,
the HTFnetSeg method is presented in detail. In Section 4, the experimental settings including
the implementation detail of parameters training and hyper-parameters settings are introduced.
In Section 5, the results of our method on two public datasets are compared with state-of-the-art
methods quantitively and qualitatively. In Section 6, the relevant inferences that are obtained from the
development are discussed. In Section 7, the HTFnetSeg method is concluded and the future work
is discussed.

2. Related Work

These years, a trend shows that the attention of surveillance video analysis tasks is moving
from the stationary cameras to moving cameras such as widely used PTZ cameras. The foreground
segmentation method also follows this trend. Besides, the convolutional neural network based
methods that take advantage of data-driven feature extraction have shown great success in computer
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vision tasks. Therefore, since 2016, increasing CNN-based background subtraction methods have
been proposed and have shown a great breakthrough in this field. However, similar to the trend of
traditional methods, more efforts of deep learning methods tend to be paid for the moving camera
challenge these days.

In terms of the traditional methods, the foreground extraction methods that are designed
for stationary cameras commonly consist of three main parts: background model design and
initialization, the comparison between the current frame and background model, and background
model maintenance. The competitive methods include Gaussian mixture model (GMM) based [16],
sample-based [5], and codebook based [17] methods. They are designed to tackle different traditional
challenges such as hard shadow, illumination change, dynamic background, and camera jitter, but
their applications are limited by the assumption that the camera is stationary. Among them, many
sample-based methods normally keep about 50 different samples as the background model, which
enables them to be robust to the background changing in a certain range, and as in PAWCS [5],
a feedback control scheme is proposed based on the background dynamics, which further makes
PAWCS robust to background change, especially when the background in the background model
appears in the current frame again. SWCD [18] tried to deal with the PTZ camera challenge
by the background model updating strategy who detects the scene change based on histogram
equalization and Sobel operator. In addition to the background maintenance strategies of methods
that may be robust to the PTZ camera challenge to some degree, the panoramic image construction
technique is widely used [6,19,20], because, after generating the panoramic image and registering
the observed frames, the static scene background subtraction methods can be directly modified
to the PTZ camera background subtraction. For example, [20] constructs a panoramic frame by
SIFT features [21] and Random Sample Consensus (RANSAC) [22] technique before modelling it by
Gaussian probability density function, and the foreground is detected after registering the observed
frames to its panoramic Gaussian mixture model (PGMM). However, panorama-based approaches
tend to suffer from the error accumulation that is caused by stitching error. Besides, when the field
of view (FOV) of a PTZ camera is large, a considerable amount of memory is needed for storing
the big panoramic image and the searching space of feature matching for image registration is also
large. To overcome this drawback, a compensation-based approach is proposed for moving cameras
by finding a transformation matrix that indicates the displacements of two consecutive frames that
are caused by the camera movement. Typically, the scene conditional background update moving
object detection method (SCBU) [23] defines three scene condition variables: background motion,
foreground motion and illumination changes as the evidence for background warping and update,
respectively, in which the Kanade-Lucas-Tomasi Feature Tracker (KLT) and RANSAC are used for
detecting and matching motion. In addition to the background model based methods that compare
the reference frame with the current frame, the trajectory-based methods [24] are proposed on the
trajectories over up to t frames. After the trajectory clustering, MLBS [24] uses the Kernal density
Estimation (KDE) method on the appearance model to infer the probability map and generate the final
pixel-wise segmentation based on Graph-cut technique.

Recently, the CNN-based methods are widely researched because of their high-quality
performance and data-driven features. The first CNN-based background subtraction method [25]
was proposed in 2016, which provided a new frames comparison method based on a convolutional
neural network whose architecture is similar to LeNet-5. Based on this work, many deep learning
moving object segmentation methods spring out and surpass the traditional methods with a great gap
(around 20% in terms of F-Measure), as shown on the benchmark website provided by CDnet2014 [26].
However, the background model based methods, like [25,27], show a great drawback on PTZ camera
challenge, because even with a powerful classifier, the networks are still hard to get a good result
without the matched reference frame or background model. To avoid the reference frame matching
problem, the foreground segmentation methods [12,13] are designed to segment the foreground object
based only on a single frame other than the comparison, which obtains high-quality results and is
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robust to various challenges. For example, FgSegNet [12] and its variants occupy first several entries
on CDnet2014 with F-Measure around 0.98, even in the PTZ camera challenge where the F-Measure of
DeepBS [27] drops by 43% when compared with its average performance over 11 different challenges.
FgSegNet is constructed in an encoder-decoder manner, with triplet VGG-16 as the encoder and a
transposed CNN as the decoder, but its good performance highly relies on the training data: 200 frames
selected randomly from the same videos as test videos by focusing more on the frames that contain
some foreground objects. It means when FgSegNet is tried to be implemented on an installed camera,
the frames with foreground objects are demanded to be captured and labelled in pixel-wise as training
data to achieve its human-level performance. However, this condition cannot always be fulfilled.
To avoid the demand for the pixel-wise label from unseen videos, a reconstruction-based CNN
method [28] is proposed to construct the reference image patch by the image-completion network
(ICNET), which can fill in the masked centre region of the input patch by reconstruction. The change
detection network (CDNET) in [28] is a general model for comparing the difference between the input
patches, whereas when ICNET-CDNET needs to be applied to a new scene, the ICNET needs to be
trained on the background patches from the new scene to get proper performance. When comparing
with FgSegNet, the advantage of background patches demanded in [28] is that the background frames
are relatively easier to pick than the pixel-wise label. However, the demand for background patches
indicates that the ICNET is still not general enough.

To deal with the dependence of supervised methods on the training data, transferring the
pre-trained model from other tasks can enhance the generality ability of CNNs. The semantic features
extracted by the pre-trained PSPNet [29] are successfully used as the evidence for comparing, as shown
in DFFnetSeg [14]. With the help of the deep features trained on the semantic segmentation task,
the fusion network shows its generality to the unseen videos and robustness to the dynamic noise
and ghost problem. DFFnetSeg can also adapt to the sudden scene change fastly by combining with
a scene change detector based background update strategy, whereas this strategy is not enough for
the continuous scene change and PTZ camera challenge. Similar to the solution for the PTZ camera
challenge in traditional methods, the reference frame alignment based foreground segmentation
methods are proposed. A CNN-based change detection method [30] that is designed for Unmanned
Aerial Vehicle (UAV) ultilizes the ORB [31] and descriptor matcher algorithm to align the camera motion
caused by the lack of GPS precision or weather variantions. Besides, the CNN-based homography
estimation networks are also proposed in both the supervised manner [32] and the unsupervised [15]
manner, with more stable image alignment performance when comparing with the traditional SIFT and
ORB features based methods. The stable unsupervised homography estimator [15] provides an ideal
reference frame alignment method to combine with the DFFnetSeg for pursuing a general foreground
segmentation network under the PTZ camera challenge. However, the real-world application of
the unsupervised homography estimator [15] focuses more on the UAV and does not consider the
foreground influence on the alignment. Therefore, in this paper, a semantic attention mask is proposed
to deal with the foreground influence, as the large scale foregrounds appear very frequently in
surveillance videos and may cause the wrong prediction of homography matrices. Based on the
generality of the foreground segmentation method DFFnetSeg and the unsupervised manner of the
homography estimator [15], a deep features homography transformation and fusion network based
foreground segmentation method (HTFnetSeg) is proposed to robustly process the unseen videos with
PTZ cameras.

3. Methodology

Let us denote the f-th RGB frame in a T frames video by F() ¢ Rhxwx3 4 ¢ [1,T], where h
and w are height and width, respectively. The HTFnetSeg aims to produce a foreground mask
M®) € {0,1}'*%, where 0 denotes the background pixel and 1 denotes the foreground pixel, from the

input group which is composed of the current frame F(), the previous frames F(=k1) and F(-R),
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The HTFnetSeg method consists of four parts, as shown in Figure 1: a feature extractor,
a homography extractor, a spatial transformed deep features fusion network (STDFFnet) and a
region-based motion map generator.

(d) Feat (f) Spatial Transformed
; —T > cature Deep Features Fusion | —— “ame
Extractor Network L

(a) F® j f (h) prediction pM/met
> | (€) Homography
E Estimator *
—k1
(b) Flt=F1) T (j) final prediction
M®
- (g) Region-based
: “~ |Motion Map Generator
(c) E(t=k2) (i) motion Map M"Y

Figure 1. An illustration of the pipeline of HTFnetSeg method. Our method takes a group of frames
(a), (b) and (c) as input, and produces a binary mask (j) as the output. Three major parts (d), (e), and (f)
construct the HTFnet, which aligns and compares the frames to predict the raw foreground mask (h)
(up). The post-process step (g) further boosts the final prediction to (j) by generating the region-based
motion map (i) (down). The detail functions of (d), (e), and (f) are that: (d) takes the frames as input
and passes the deep features to (e) and (f); (e) takes the frames and features as input and generates the
homography matrices for (f); and, (f) uses the homography matrices to align the input deep features
and finally generates the prediction (h).

In detail, the first part is a pre-trained semantic segmentation network PSPNet to extract four
deep levels features F; (FU)), 1 € [1,4] from the single frame F(). The deepest semantic feature maps
denoted by F; (F)) act as the input for semantic attention layer in a homography estimator to generate
the semantic attention mask and the rest act as the input for STDFFnet to generate the foreground mask.

The second part is a homography extractor that could generate the homography matrix
Hyp = H(ly, 1o, Fa(lh), Fa(l2)), which could warp the pixel coordinates of image |; to that of image I,.
To adapt the unsupervised deep homography estimation model [15] to the PTZ camera foreground
segmentation problem, the semantic attention mask is introduced to both the input and the loss
function of the original homography estimation model to both reduce the noise that is brought by
moving objects and reserve its advantage of unsupervised manner, which can avoid the demand for
extra human labelled ground truth. Besides, a mask constraint is proposed for the loss function to
avoid the influence of the black boundaries in the warped image.

The third part is a spatial transformed deep features fusion network (STDFFnet), which utilizes
the spatial transformation technique [15] to align the input entries of the FusionNet [14] to fulfil its
basic assumption that the current frame, previous frame and reference frame share the same scene.
The homography matrices extracted between two previous frames and current frame are used to warp
the previous frames and the deep features extracted from them to the current frame plane, respectively.
Subsequently, the warped frames and features together with the current frame and its features are fed
to the FusionNet to generate the predicted foreground mask. Combining the spatial transformation
with DFFnet can both tackle the weakness of DFFnet to continuous changing background and benefit
from the generality of DFFnet.

The final part is a region-based motion map generator, a post-process step, which is similar to
the one in DFFnetSeg method [14] whose function is to eliminate the false positives that are caused
by the semantic noise. The semantic noise means that the semantic hint of some regions leads to the
misclassification of foreground, because these regions have a high possibility of motion in terms of
their semantic classes. The region-level comparison among the input group of frames is also adapted
to get the potential motion region, but, different from the corresponding in the DFFnetSeg method,
the region-based motion map generator here is based on a conservative strategy. It is because the
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unavoidable alignment deviation makes the motion map noisy and the conservative strategy is more
robust to this noise.
These four parts are discussed in detail as follows.

3.1. Feature Extractor

The semantic information acts as an important element for moving object segmentation, as shown
in the state-of-the-art moving object segmentation methods [33,34]. In the homography transformation
based foreground segmentation methods, the transformed reference video frames are easy to have
the deviation when comparing with its corresponding in the current frame plane. Therefore,
when the foreground mask is extracted by comparing the reference frames with the current frame,
the background regions with relative strong edges are easy to be classified as foreground. Besides,
some boundary regions of the current frame cannot find the reference from the previous frames
because they may newly appear. In this case, these regions lack the evidence to make the classification
decision. Sometimes, even when the reference frames are well aligned without any deviation, the
camouflage problem might appear if the foreground object shares a similar colour and intensity with
the background region. However, these problems are easy to be tackled if the semantic information are
available in the potential moving region. For example, if a “building region” is classified as foreground,
then it is easy to be removed based on its semantic feature “building” and, if a “human region” is partly
activated, then it is easy to activate all region of this person based on its semantic mask. Therefore,
the semantic information extracted by a CNN-based semantic segmentation method PSPNet is used
in this paper, but, different from [29], who sets a hard rule to combine the semantic information
with foreground mask predictions, the semantic information from the feature extractor is utilized by
constructing the semantic attention layer and fusion network.

Specifically, during the homography estimation stage, the correct frame transformation demands
that the homography estimator emphasises on the background region because the foreground objects
always have different motion type with the camera. The background region can be roughly extracted
only based on the semantic information by the semantic attention layer with the deep semantic features
as input. Besides, as the FusionNet in STDFFnet demands the usage of the deep features as well,
our HTFnetSeg method utilizes a semantic segmentation network, PSPNet, as the feature extractor
to extract feature maps for homography estimator and STDFFnet at same time. STDFFnet can be
regarded as an extended version of DFFnet for the PTZ camera challenge. Thus, for the STDFFnet part,
the feature maps are chosen from the PSPNet in the same way as DFFnet [14], while, for a homography
estimator, a deeper layer is chosen to constrain it to only use pure semantic information, as detailed in
Section 3.2.

Same as [14], the PSPNet is trained on ADE20K dataset [35,36] without fine-tuning to avoid
overfitting. It is because the semantic classes in ADE20K are enough for most surveillance videos and
their image domains are also similar. In terms of the architecture, as w is 320 and & is 240 in HTFnetSeg,
the architecture parameters of PSPNet are slightly modified, as shown in Table 1, and its detailed
connection is shown in [29]. Batch normalizations are applied after each convolutional layer and the
activation function is ReLU.



Sensors 2020, 20, 3420 8 of 23

Table 1. The details of the architecture of the modified PSPNet.

ResNet Pyramid Pool Module
layer name  output size layers info layer name  output size layers info
CONV1.1 240 x 320 3 x 3, 64, stridel pooll 1x1 60 x 80 avgpool, stride 60 x 80
CONV1.2 240 x 320 3 x 3, 64, stride 1 pooll_conv 1x1 1x1, 512, stride 1
CONV1.3 240 x 320 3 x 3, 128, stride 1 upsamplel 60 x 80 bilinear
3 x 3 maxpool, stride 2 pool2 2x2 30 x 40 avgpool, stride 30 x 40
1x1, 64 .
CONV2x 120 x 160 pool2_conv 2x2 1x 1,512, stride 1
3x3,64)x3 o
upsample2 60 x 80 bilinear
1x1, 256
1x1,128 pool3 4x4 15 x 20 avgpool, stride 15 x 20
CONV3.x 60 x 80 3x3, 128 % x4 pool3_conv 4 x4 1 x 1, 512, stride 1
1x1,512 upsample3 60 x 80 bilinear
1x1, 256 pool4 10 x 10 6 x 8 avgpool, stride 6 x 8
CONV4.x 60 x 80 3x3,25 p x6 pool4_conv 10 x 10 1 x 1, 512, stride 1
1x1, 1024 upsampled 60 x 80 bilinear
1x1, 512 CONV5.3 60 x 80 concatenation
CONV5.x 60 x 80 3x3,512, x3 CONV5.4 60 x 80 3 x 3, 512, stride 1
1x1, 2048 CONV6 60 x 80 1x 1, 150, stride 1

3.2. Homography Estimator

To take advantage of the auto feature extraction property of data-driven methods and to avoid
the costly ground-truth labelling, the unsupervised deep network is an ideal model for homography
estimation. Inspired by a fast and robust homography estimation model [15], a semantic attention
based deep homography estimator, denoted by 7{(-), is proposed to extract the homography matrix,
denoted by Hip = H(ly, 1o, Fa(l1), Fa(l2)), when the paired input images are denoted by |y and I,,
where Fy(-) denotes the output of CONV6 shown in Table 1. The whole architecture of it is proposed
in Figure 2. In detail, it consists of three main parts: the semantic attention layer, the regression model,
and a differentiable Tensor Direct Linear Transform (TDLT).

g(h) ? (d) Regression

et

Model
(a) Iy Mﬁll) / 1
Fa(hh), Fa(l2) (c) semantic CONCATE

AC4pt

attention layer|

5 %@»H
” 2

¥
= ke~ G(ly) ® Cypt

(b) I2

Figure 2. Architecture of the proposed homography estimator. The estimator takes as inputs the paired
images (a) | and (b) I, and their corresponding deep features Fy(l1) and Fu(l2), and gets as the output
the homography matrix Hy,. Specifically, the semantic attention layer (c) generates the attention mask
M(17) and M (I) based on Fy(ly) and Fy(ly), respectively. Then, the greyscale of images 11 and I,
denoted by G(11) and G(ly), are masked by M(l;) and M(l,), respectively. After that, the regression
model (d) takes as inputs the concatenation of the masked greyscale images and predicts as the output
the offset of four keypoints, denoted by Acyy;. Finally, the TDLT (e) obtains the homography matrix
based on the 4 keypoints ¢4, and its offset Acyp.

The semantic attention layer is a convolutional layer with kernel size 1 x 1 and two maps
followed by a bilinear upsampling layer, which resizes the semantic attention mask to the size of
original images. After that, a softmax function is used to distinct the attention region denoted by
the class label 1. This layer aims to roughly remove the foreground objects from the input images
based on the semantic information. The weights in this layer have the shape of (1,1,150,2), which
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means that the value of each output neuron is the weighted sum of the 150 semantic predictions
from the previous layer. The raw output of the PSPNet is 150 classes, including building, car, water,
and so on (details in ADE20k dataset). Obviously, the classes, like “building” and “water”, tend to be
regarded as background, which should get higher weights to activate higher values on the neurons
denoting the background. However, instead of manually generating a subset of semantically relevant
foreground classes, like [34], the semantic attention layer is trained to activate the background region
by minimizing the cross-entropy function,

hw
L=~ ;[Pilogﬁi‘i‘(1_Pi)log(1_75i)] , @
i=
where p; is the ground truth label and p; is the output of the prediction at pixel location i. After
training, the parameters of the semantic attention layer will be frozen for the following training of the
regression model. The PSPNet, together with the semantic attention layer, is regarded as an attention
mask generator that is denoted by M(-) € R*>*®,

In terms of the regression model, following the trend of [15], the VGGNet backbone (details in
Table 2) is used to regress the offset of keypoints, where the keypoints is the four corners cyy; € 78x1
of the input image. To prepare the input of the regression model, the greyscale of the original image,
denoted as G(-), is extracted. Subsequently, given the greyscale image G(l;) and the attention mask
M(1;), the corresponding masked image denoted as I'm; is obtained by:

Im; = G(l;) © M(Ly) 2

where t € {1,2} and ® denote the element-wise multiply. Im; and Im, are concatenated as the input
of the regression model to obtain the offset Acy); of the four corners ¢y in 11 Therefore, in the plane
of I, the corresponding keypoints é4p; of c4p; is defined as:

Capt = Capt + Deapr - 3)

Table 2. The details of the architecture of the regression model.

Layer Name Output Size Layers Info Layer Name Output Size Layers Info
convl.1 240 x 320 3 x 3, 64, stride 2 pool3 15 x 20 2 x 2 maxpool, stride 2
convl.2 120 x 160 3 x 3, 64, stride 1 conv4.1 15 x 20 3 x 3, 128, stride 1

pooll 60 x 80 2 x 2 maxpool, stride 2 conv4.2 15 x 20 3 x 3, 128, stride 1
conv2.1 60 x 80 3 x 3, 64, stride 1 dropout 15 x 20 0.5
conv.2 60 x 80 3 x 3, 64, stride 1 flattern 38,400 —

pool2 30 x 40 2 x 2 maxpool, stride 2 fcl 1024 -
conv3.1 30 x 40 3 x 3, 128, stride 1 fc2 8 -
conv3.2 30 x 40 3 x 3, 128, stride 1

After regression, a differentiable Tensor Direct Linear Transform (TDLT) layer is applied,
as proposed in [15], to solve for the homography matrix Hy, € R3*3 given a set of four 2D points
correspondences, ¢4, and &4y, between the plane of I; and I,. In this TDLT layer, the last elemant of
H1; is assumped to be 1. The first 8 elements in Hj,, denoted by h, is calculated by solving the function:

Ah = [A1/A2/A3/A4}Th = [bll b2/ b3/ b‘dT/ (4)

. . o T _ A T s oo o1T &  (noa
where given denotation cqp; = [x1, X2, X3, 4", x; = (u;,0;), E4pr = [R1, %2, %3, %4]", % = (1;,0;), the

matrix A; is defined as:

0O 0o 0 - u, —v - 1 73,‘1/{,‘ ﬁivi
Ai ~ ~ 7 (5)
up v 1 0 0 0 — Uju; — U;0;
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and vector b; is defined as:
b = [-0;, 1] . (6)

Based on Equation (4), Hy; can be solved for using A™, the pseudo-inverse of A.

For generally supervised homography estimator, L1 or L2 loss between homography matrix
ground truth and its prediction may be chosen as the loss function for the regression model of
homography estimator. However, as the homography matrix ground truth is hard to be labelled, even
by human and in most circumstances, the homography matrix ground truth is not available in change
detection datasets. Therefore, an unsupervised homography estimator seems to be a better choice for
the PTZ camera foreground segmentation task. To fulfil the unsupervised training [15], proposed a
loss function by comparing the difference between the warped frame with the target frame. Similarly,
our loss function is also based on the comparison of the warped frame and target frame, but, to avoid
the influence of the foreground objects motion on the offset prediction, a masked loss function that is
based on the semantic attention mask is further proposed to only backpropagate the loss belonging to
the attention region. That is:

LM () © M(lp) ©abs(G(hh) — G(1))] ,
Ly (i, ) = i M) © M(1p)] LiMh) © M(12)] #0 ;@)
0 otherwise

where G(1;) and M(l;) are the warped G(l;) and M (1) by the transformation matrix Hy,, and the
abs(-) denotes an element-wise absolute value function. Images are warped by a differentiable spatial
transformation layer [15] which is based on the two-dimensional (2D) coordinate transformation with
bilinear interpolation to enable the training of networks. In addition to focusing on the background
region, the loss function can also avoid the influence of the black boundaries of the warped image.
In homography estimation networks like [15], they crop the centre of the images as the network
input patches and also crop the centre of the warped image to calculate the loss function to avoid the
black boundaries in the warped image, but this strategy might cause the wrong prediction in two
circumstances: one is when a big foreground object appears in the centre of a surveillance scene and
the other is when the black boundaries appear in the cropped region of the warped image because
of the large scale scene motion. Benefiting from the masked loss function, our method do not need
to crop the images, which enable our method to be robust to those two circumstances, because the
foreground objects have a quite lower possibility to cover the most parts of a scene than of the centre
region in the scene.

However, when no activated location overlaps between M (l;) and M(1,), the masked loss
function £, ,, (11, 12) will be 0, which might lead the model converging to a wrong place. Therefore,
a constraint element is proposed as

L (k) = =) M) oM(K)] ®)

for the masked loss function to encourage the larger overlap of activated locations. Subsequently, the
overall loss function for homography estimation network is defined as:

Ly(1,0) = Ly (h,12) + Ly (2, 1) + Ly (1, 12) + Ly (12, 1) +y|[HipHyy — 1], €

where as the corresponding for 1y, G(I) and M(l,) are the warped G(I,) and M (l,) by the transform
matrix Hy = H(Ip, 11, F4(12), F4(1)) in Ly (I, 1) and £ (I, 17). I € R¥*3 is an identity matrix
to restrict the Hy; to be the inverse of Hy;, which could enhance the stability of the homography
prediction, where v is used to control the strength of this restrict (y = 0.01 in our experiment).
The parameters of the regression model in our semantic attention based homography estimator can be
optimized by minimizing £;,.
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3.3. Spatial Transformed Deep Features Fusion Network

The deep feature fusion network (DFFnet) [14] has shown its robustness and generality for
foreground segmentation tasks, but its performance relies on the assumption that the reference frame,
previous frame and current frame are from the same scene. The DFFnet can tackle the sudden scene
change by reference frame update strategy, but it has difficulty to deal with the continuous scene
change situation. A spatial transformed deep features fusion network (STDFFnet) is proposed in order
to both fully exploit the advantage of DFFnet and overcome its weakness on continuous scene change.
Its inputs consist of the current frame F), the previous frames F('=%1) and F(""%2)  and the homography
matrices Hy, = H(F'=%), F), Fy(FU=k)), Fy(F®))) and Hy, = H(FUE2), FO), 7y (FUER)), F(FD)),
Its architecture is shown in Figure 3. Specifically, the deep features are firstly extracted by PSPNet, being
denoted by F;(F(")), I € [1,3] corresponding to the output of CONV1.3, CONV2.3, and CONV5.4
layers of the PSPNet, respectively. The Hj, and H,, are the estimation of the homography matrices,

t=ka) plane to the corresponding of F) plane.

which can map the pixel coordinates of F(=k1) and F!
As the deep convolutional neural network reserves the spatial distribution of the input image, and the
coordinates are normalized to range [—1, 1] [15] in the spatial transformation layer, the homography
matrices Hy, and H¢, can be used to map the 2D coordinates of each single feature map. Therefore,
feature maps are directly transformed rather than being re-extracted from the warped image, because
this strategy can reuse the features extracted during the attention mask generation step to reduce the
computational complexity of HTFnetSeg. As the original frames are also regarded as a kind of features,
here, for the unity of denotation, the original frames F() are denoted by Fo(FO)). Subsequently,
the transformed features F;(F!"%1)) and F;(F(!~%2)), together with features of the current frame
Fi(F®), where | € [0,3], act as the input set of the FusionNet, getting the foreground mask prediction
M7t € {0,1}7%% (where 1 denotes foreground) for frame F(*). In STDFFnet, only the FusionNet
part has parameters to be trained by the change detection data. The detail hyper-parameters of
FusionNet is shown in Table 3, and, in FusionNet, the batch normalization layer is used after each
convolutional layer and the ReLU activation function is used (see [14] for more implementation details
of the FusionNet part).

The cross-entropy loss that is described in Equation (1) is a widely used loss function to optimize
the classification model, whereas, in HTFnet, the regression model and the fusion network are aimed
to be trained in an end-to-end manner, because, as a homography transformation based foreground
segmentation network, the HTFnet demands the homography estimator to produce an applicable
matrix H for foreground segmentation task. Thus, the union loss function is defined as:

L= aly+ L,(FER) O 4 £, (Ft-k) gy (10)

where L, is the cross-entropy loss for training the mask M/ and a is used to balance the
backpropagation from the loss function for mask prediction and homography matrix prediction.
In our experiment, « is 100, which enables the £, to have the same order of magnitude as £ and
to be slightly higher than £, to pay more attention to optimizing the mask prediction loss, because,
during the experiment, the homography estimator is first pre-trained by Equation (9) before end-to-end
training and only need to be fine-tuned during this stage.

Table 3. The details of the hyper-parameter setting of the FusionNet.

Layer Name Output Size Layers Info Layer Name Output Size Layers Info
conv6.1 240 x 320 3 x 3, 32, stride 1 upsample 240 x 320 bilinear
conv6.2 120 x 160 3 x 3, 32, stride 1 conv7 240 x 320 3 x 3, 32, stride 1
conv6.3 60 x 80 3 x 3, 32, stride 1 conv8 240 x 320 1x1, 2, stride 1

conv6.4 60 x 80 3 x 3, 32, stride 1
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Figure 3. The architecture of our proposed STDFFnet. Firstly, features from chosen layers of PSPNet
(d) are extracted, given inputs, including a current frame (a), previous frames (b), and (c), respectively.
After that, the spatial transformations (ST) that are based on matrices Hy,, and H,, are conducted for
the features from corresponding chosen layers. The spatial transformed feature maps, instead of the
raw feature maps as used in DFFnet, are used as the inputs of the FusionNet (e). Finally, based on the
features from (a) and the transformed features from (b) and (c), the FusionNet generates the foreground
mask (f). The architecture of the comparing operator (COMPARE) is shown in the upper-right corner.

3.4. Region-Based Motion Map

The fusion network is easy to get the false-positive classification, which suffers from the semantic
noise, as mentioned in DFFnetSeg [14]. Therefore, a region-based motion map is proposed to reduce
the influence of the semantic noise. However, in the PTZ camera video, the scene which may keep
changing is more dynamic than the situation the DFFnetSeg designed for. The motion map generated
by the greedy strategy proposed in [14] may activate a large amount of static regions, which is caused
by the deviation of the frame alignment. Although, as shown in [15], the unsupervised homography
estimation method can outperform the traditional methods, such as Scale Invariant Feature Transform
(SIFT) and enhanced correlation coefficient (ECC), the deviation might still exist between the current
frame and the transformed frames, especially near the edges. A conservative strategy is proposed to

extract a region-based motion map from the input group consisting of the current frame F*) and the

warped previous frames g5 and 7R

motion map.

to reduce the effect of this deviation on the region-based

In detail, given denotation F®), £ and Ie(t_kZ), the pixel level difference maps D1 and D2 are
defined by:

(t=ky)

D1, = 1 if 3k, |F1]k Z]k1\>9 where(z])é]B%ll
0 otherwise

(11)

(t—ky)
D2, = 1 if 3k, |F1]k ljk2\>9 where(z])gé]Bﬁzl
0 otherwise
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where (i, j) denotes the location of one pixel. k denotes the colour channel. B; and B, are the sets of

2D coordinates of the black boundary regions in the warped frames £ and Ie(t_kZ), respectively.
The black boundaries are caused by the situation that the corresponding 2D coordinates in the warped
image are outside the original image boundaries. A location is activated when a recognized difference
exists in any colour channel, which can be more robust to camouflage problem than only considering
the grey intensity. To reduce the noise that is caused by the edge deviation, the erosion and dilation
techniques are used to post-process the D1 and D2, with a 5 x 5 disk-shaped kernel. To further reduce
the influence of deviation of the alignment, the pixel level motion map M is generated in a relatively
conservative strategy, which is defined as:

- (12
K 0 otherwise )

pix _ {1 lf Dll‘,]' =1and DZI',]' =1
Thus, one location is only activated when a strong hint of motion is indicated by the difference
maps. However, this strategy might result in the holes in the motion region, which are caused by the
foreground overlapping. The region block can well fill in these holes depending on activation situation
of the neighbours as in [14]. The implementation details is that the whole motion map is divided into
regions with size N x N without overlapping (the boundaries are padded to be valid), denoted by
M C MP™* (with [, My = MP™¥). Subsequently, the region-based map M"®$ is obtained according to
the quantity of motion in each region, as follows:

. pix
MES = b i Yjew, M > B ’
g 0  otherwise (13)

with ¥ = {(i,/)|M!}" € My}

One region block of the map M€ is activated when the quantity of motion in that specific region is
larger than B.
Given the region-based motion map M3, the final foreground prediction M () is defined by:

o _J1 iEMIF=1andM =1 "
& 0 otherwise ‘
Figure 4 shows a sample of the post processing effect. As shown in the figure, in the raw output
of the fusion network, the regions with the cars are quite noisy, because cars have a high possibility
to be foreground in terms of semantic information, but, in the current frame, the cars are parked
there. Therefore, the region-based motion map is used to enhance the motion hint for the final
decision. As the greedy motion map generation strategy proposed in [14] is designed for relatively
static scenes, the greedy motion maps are not clean enough to eliminate the false positive regions of
fusion network prediction for PTZ camera videos. The conservative motion map is still not perfectly
clean, with some false positives being caused by alignment deviation, but it seems good enough to
remove the false positive regions in the output of the FusionNet, as the FusionNet is robust to the
reference frame alignment deviation in the regions who semantically have the low possibility to be
foreground, as shown in the Figure 4. Therefore, the combination of the region-based motion map and
FusionNet can overcome the drawback of each other.
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Figure 4. A sample of the performance of post-process. In this sample, parameters (t,kq,kp,6, B, N)

(289,5,10,20,10, 64), respectively. M/S1et i the predicted foreground mask for the frame F(289>, which
is also the raw output of the fusion network with the input three frames shown in the first raw. M8"®4Y
is the region-based map proposed in a greedy strategy from the DFFnetSeg method, and M’ is the
conservative one proposed in this paper. MPo5:-8"¢4Y and M (289) are post-processed final predictions

by these two maps, respectively.

4. Experimental Setting

4.1. Dataset

The performance of our HTFnetSeg method is evaluated by PTZ camera related video sequences
in two dataset CDnet2014 [26] and LASIESTA [37].

The CDnet2014 dataset is the largest change detection benchmark, including 53 video sequences
categorized to 11 challenges. However, most of the videos are captured by stationary cameras. As the
HTFnetSeg method aims to deal with the continue or intermittent panning, tilting, zooming camera
situation, the videos “continuousPan”, “intermittentPan”, and “zoomInZoomOut” are chosen from
the PTZ camera category of CDnet2014 to test our method. Additionally, the selected videos from
other categories are used to train the homography estimator and the fusion network of the HTFnetSeg
method. The selection of videos is same as [14]. For each video sequence, CDnet2014 provides the
pixel-level ground truth for a subset of it, so only the labelled frames are included in the training and
testing set in this experiment.

Besides, seven objective evaluation metrics are provided by CDnet2014 to evaluate the
performance of algorithms quantitatively. Here, the three most popular metrics are chosen for
this experiment:

Recall (R) : TP / (TP + EN).
Precision (P) : TP / (TP + FP).
F-Measure (F) : (2 * Precision * Recall) / (Precision + Recall).

The LASIESTA dataset provides 17 real indoor and 22 outdoor sequences organized in
12 categories, where all of the videos related to PTZ camera moving are chosen as the testing set
of this experiment and no other sequence is chosen for training, because the sequences chosen from
CDnet2014 are various enough to train a general model. In detail, the chosen videos are “I_MC_01",
“I_SM_01", “1_SM_02”, “1_SM_03”, “O_MC_01", “O_SM_01", “O_SM_02", and “O_SM_03" belonging
to moving camera (MC) and simulated motion (SM) categories, respectively. “I_ SM_01", “I_SM_02"
and “I_SM_03" are videos recorded in an indoor scene with the low, medium, and high strength of
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camera panning, respectively. “O_SM_01", “O_SM_02", and “O_SM_03" are videos recorded in an
outdoor scene with the low, medium, and high strength of camera panning and tilting, respectively.
As the pixel-level ground truth is available for all of the frames in LASIESTA, the whole sequences for
chosen videos are used.

4.2. Training and Testing Set

Many state-of-the-art CNN-based change detection algorithms choose 50% to 80% or fixed number
(i.e., 50, 100) frames from each single video sequence as the training set, with the rest frames from
these sequences as the testing set. This separation cannot test the generality of methods for unseen
scenes and objects, because the same background scenes and foreground objects may coexist in both
the training and testing set. To tackle this drawback, in this experiment, the training set and the testing
set are generated in a way that enables that no same background scenes and foreground objects coexist
in both the training and testing sets.

Only the chosen videos in CDnet2014 are used as the training set, as mentioned in Section 4.1.
The training videos chosen from CDnet2014 are same as the experiment in [14]. However, they
are all captured by the stationary cameras, so, to train the neural network for PTZ cameras, they are
augmented by the homography transformation technique to simulate the panning, tilting, and zooming
camera videos, respectively. In each augmented video, 50 groups of frames with the interval (k,ky) €
{(5,10), (10,20), (20,40), (40, 80) } are randomly chosen to enable the trained model to adapt to the
various scales of camera motion, as under most camera moving circumstances, the larger the interval
is, the smaller the overlap of two scenes is.

For testing, 13 videos are chosen from two datasets and they are classified into three categories
based on the motion pattern of cameras, including panning (Pan), panning and tilting (P&T),
and zooming in and zooming out (Zoom). The categories and chosen frame indices details are
shown in Table 4. The (kq, k) is set to (5,10) during testing.

Table 4. Categories, scenes, and frame indices of testing set.

Category Sequence Frame Indices Sequence Frame Indices
continuousPan 600-1149 intermittentPan 12002349

Pan I_MC_01 1-300 1_.SM_01 1-300
1_SM_02 1-300 1_SM_03 1-300
O_MC_01 1-425

P&T O_SM_01 1-425 O_SM_02 1-425
O_SM_03 1-425

Zoom zoomInZoomOut 500-814

4.3. Compared Methods

To evaluate the accuracy of HIFnetSeg method, is compared with the following state-of-the-art
algorithms:

e PAWCS [5] and SWCD [18], the high-rank traditional background subtraction methods on
CDnet2014 in terms of the PTZ camera category with source code opened to the public,

e  SCBU [23], a traditional moving object detection method designed for a moving camera whose
binary executable file is available online,

e  MLBS [24], a background subtraction method for freely moving cameras based on motion
trajectories clustering with source code opened to the public

e  FgSegNet [12], the top CNN-based foreground segmentation method on CDnet2014 with source
code opened to the public, and

o ICNET-CDNET [28], the deep change detection algorithm based on the collaboration of an image
completion network and a change detection network,
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on the dataset mentioned above. To ensure a fair comparison between the supervised models, all of
the supervised models in this experiment are trained on the same data, the training set described in
Section 4.2. Besides, the hyper-parameters of both supervised methods and traditional methods are
the same as the ones that are described in the source code and papers. The pre-trained model is also
implemented to initialize the model parameters according to the original paper.

4.4. Implementation Details

This experiment is implemented based on TensorFlow framework on a single NVIDIA GeForce
GTX 1080ti GPU. In this experiment, the HTFnet is trained end-to-end by Equation (10) based on
the labelled change detection data, after a series of pre-training. Specifically, the feature extractor
PSPNet is pre-trained on ADE20K as in [29] and no parameter inside the PSPNet is fine-tuned after
that. As the regression model in homography estimator depends on a good semantic attention mask
generator, the semantic attention layer is trained with 24 epochs by the labelled change detection data
in the training set (where the background regions in ground truth masks are set to be class 1 and
others are 0), which enables the layer to learn to decide whether to pay attention to a region or not
only based on the semantic information of a single frame. After that, the parameters of the semantic
attention layer are frozen during the training of the HTFnet, because their job is to produce an attention
mask that can tolerate the wrong classification to roughly remove objects who have the possibility
to move. The reference frame features of the FusionNet are supposed to be the spatial transformed
features matching to the current frame plane, which demands that the proper homography matrices
are available. The regression model in homography estimator is first trained by minimizing the
corresponding loss £;, with 54 epochs in order to enable the parameters of the fusion network to
converge stably. Subsequently, the whole HTFnet is trained by minimizing the loss function £ with
six epochs, which optimizes the fusion network and fine-tunes the homography estimation at the
same time. As the preprocessing, the size of frames are standardized to 240 x 320 and the frames
are normalized by subtracting by the mean. It is worth noting that the stride of CONV1.1 in the
pre-trained PSPNet is changed, but it still does not need fine-tuning because the CNN-based model is
robust to the scale change. During training, the initial learning rate is 5 x 10~> and the RMSProp is
used for optimization.

In order to assess the HTFnetSeg for the parameters 8, N and f8 in region-based motion map stage
mentioned in Section 3.4, the foreground masks generated from FusionNet are post-processed by the
motion maps using each combination of 6 € {20,50,80,110}, N € {8,16,32,64},and p € {5,10,20,40}.
These three parameters of HTFnetSeg method provide enough flexibility to boost the foreground mask
for various motion pattern in video sequences. The raw output of the fusion network mentioned in
Section 3.3 is with average F-Measure 0.7349. When the motion map generator that is mentioned
in [14] is used, the best result is 0.7796 with (6, N, ) = (50, 32,40). However, when the conservative
strategy mentioned in Section 3.4 is used, the region-based motion map achieves a better boost effect
whose corresponding F-Measure is 0.8135, with (6, N,B) = (20,64,10). From the corresponding
parameters for the best F-Measure, it is noticed that the conservative strategy demands the relatively
loose parameters and vice versa. For example, in our conservative strategy, a pixel is regarded as
moving when the difference is bigger than 20, whereas it would be better to be more than 50 when
using the motion map generator in [14], which shows the trade-off between the strictness of the strategy
and parameter values. The results show that the conservative strategy is more applicable to the PTZ
camera situation under this HTFnetSeg architecture and the same conclusion can also be obtained
from Figure 4. In detail, when the three parameters are in the range shown in Table 5, the region-based
motion map can improve the final foreground mask to a different degree. The table shows that 6 = 110
is too large to detect the motion and 6 = 20 seems to be more guaranteed, because, when 6 = 20,
almost all of the combinations of the N and B boost the final results, except for (8,40).
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Table 5. Average F-Measure on the test videos with different parameters range for the motion map.

Parameters Range Best F-Measure  Worst F-Measure
0 =20 NeU B <20 0.8135 0.7613
o N>8 B =40 0.8127 0.7978
6 — 50 N>38 B <10 0.8105 0.7624
N N >16 B> 10 0.8027 0.7782
6 — 80 N >16 B=5 0.7715 0.7385
N N=64 5<pB<20 0.7683 0.7517

5. Results

5.1. Comparison

The performance is compared among methods on the testing data quantitatively and qualitatively.
The parameter setting is as described in Section 4, where (6, N, 8) = (20, 64, 10).

From the perspective of quantitative evaluation, precision, recall, and F-Measure are used.
According to the definition of these metrics, the precision pays greater attention to indicate the
false positives, the recall pays more attention to indicate the false negatives, and the F-Measure
considers both of these two factors. The “Mean” values in Table 6 denote the average values over all of
the test videos. Our method almost achieves the best performance in all categories and evaluation
metrics, except for the precision of P&T category, as shown in Table 6. In detail, the F-Measure
values of HTFnetSeg are 40.59%, 4.43%, and 56.53% greater than the second best results in Pan, P&T,
and Zoom categories, respectively. The overall F-Measure is also 30.67% higher than the second one.
The SCBU and MLBS methods obtain the higher precision than HTFnetSeg in the P&T category, but
their F-Measure is lower than ours because their recall is quite low, which means that these methods
suffer greatly from the false-negative classification. In terms of traditional methods, the background
update based method SCBU and the motion trajectories based MLBS outperform other traditional
methods. Additionally, in terms of the supervised deep learning method, the single image based
FgSegNet performs better than the ICNET-CDNET. The free-moving camera change detection method
ICNET-CDNET seems to perform abnormally on the testing videos, with quite low metrics values.
It is not because the ICNET-CDNET is not suitable for these videos but because this experiment aims
to test the performance of methods on unseen videos and the ICNET has difficulty in reconstructing
the background for one video if no background frame in that video is used for training. Therefore, the
poor performance of ICNET-CDNET here shows its weakness in generality. The evaluation metrics
for the Zoom category of MLBS method are not available, because the experiment shows that the
MLBS method only produces negative results for all of the pixel locations in the frames from the
“zoomInZoomOut” video, which causes both TP and FP are 0. This might be because the motion
pattern of zooming is hard to be clustered based on the difference between trajectories in motion and
spatial location. Therefore, although MLBS achieves the competitive result when comparing with other
methods, it is still not general enough for different motion patterns.

Table 6. Evaluation values of seven methods on the test dataset. The best results are shown in bold.

Pan P&T Zoom Mean
Method P R F P R F P R F P R F
PAWCS [5] 02221 0.8123 03355 0.1413 08797 02433 0.0395 0.8269 0.0754 0.1835 0.8320 0.2867
SWCD [18] 03666 05610 03786 02510 05393 03416 0.0656 03445 01101 03077 05354 0.3441
SCBU [23] 07902 0.3094 04189 08651 04438 05867 07691 02191 03410 0.8087 03378 0.4576
MLBS [24] 05818 0.4431 04381 0.8920 0.5329 0.6671 - - - 0.6749 04701 0.5068

FgSegNet [12] 0.3702 0.7261 0.4323 0.3719 0.8748 0.5165 0.0416 0.9085 0.0796 0.3408 0.7832  0.4232
ICNET-CDNET [28] 0.0963 0.7017 0.1545 0.1040 0.6809 0.1804 0.0044 0.8090 0.0088 0.0900 0.7058 0.1483
HTFnetSeg 0.8946 0.8162 0.8440 0.6001 0.9306 0.7114 0.8925 0.9206 0.9063 0.8141 0.8569 0.8135
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The qualitative details are shown in the sampled visualization Figure 5, where one frame from
each sequence is chosen. The HTFnetSeg almost outperforms others in all samples, except getting
the similar results with the MLBS in Figure 5b,g/h, as shown in the figure. The result in Figure 5f
shows that, when the background and the foreground share a quite similar colour, our difference based
method is still affected by the camouflage problem (there is a misclassification region on the shank),
but, as shown in Figure 5j, the robustness of our method to the camouflage problem is higher than
most of the methods. In contrast, FgSegNet is not influenced by the camouflage problem, because it
generates the foreground mask only based on a single frame other than the comparison. Therefore, it
detects the foreground object highly depending on the appearance of the object, which might cause
the false positives, such as the parked cars in Figure 5g, which is extracted because cars have a high
possibility to move when only considering one frame. Except for HTFnetSeg, the SCBU seems to
obtain the best performance from the perspective of visualization, as it almost catches all of the moving
objects with relatively less false positives and the main weakness of it is those missing foreground
parts. MLBS shows its main drawback of instability, which shows better performance than SCBU in
some sequences, but, in sequences like Figure 5a,f, it shows more false positives and, even in Figure 5k,
it can not catch the foreground at all. The results of PAWCS here are not as good as the ones that
are provided by the CDnet2014, because the results on the CDnet2014 used the additional frames for
method initialization. The PAWCS might perform better if the background pixel value of the current
frame is available in its background model, but, during this comparison experiment, to play fair, no
additional data are used from the test videos to boost the performance. As the PAWCS and SWCD are
not designed for moving camera and they are just more robust to the moving camera, when comparing
with other static camera methods, the performance of them is worse than the other traditional change
detection methods designed for moving cameras. Noticeably, the ICNET-CDNET performs even
worse than PAWCS. As announced above, they need the background frames from the test scene to
train the ICNET to generate a good reference frame, but the background frames are not available in
this experiment, because the experiment aims to evaluate the generality of methods to unseen videos.
Additionally, the prediction of ICNET-CDNET is block-based, which can deal with some noise at the
cost of losing precision.

In conclusion, the HTFnetSeg method outperforms state-of-the-art methods by a great gap in both
quantitative evaluation and qualitative evaluation.

5.2. Ablation Studies

In this subsection, a series of ablation tests are conducted by comparing the performance of the
DFFnetSeg algorithm with our algorithm and also by testing the effect of adding motion map mask
and fine-tuning homography estimator, respectively. It is worth noting that here that the homography
estimator fine-tuning is used to further discover the ability of our HIFnetSeg and it is not used in
the experiment described above. As shown in Table 7, our raw HTFnet can already outperform the
DFFnetSeg by 14.97% in F-Measure, which shows that the proposed elements that are designed for
the PTZ camera challenge can extend the ability of DFFnet to this challenge effectively. Additionally,
the DFFnetSeg shows higher recall and lower precision than our algorithm, which illustrates that
it easy to produce false-positive classification that is caused by the background change. In terms
of the inner design of the HTFnetSeg, the F-Measure is improved by 7.86% when the motion map
mask is conducted on original prediction of HTFnet with parameters (6, N, ) = (20, 64,10) and the
improvement comes from the increase of precision by 12.42%, which corroborates that the motion
map mask can greatly reduce the false-positive classification. Besides, the performance of HTFnet is
attempted to be improved further by fine-tuning the homography estimator. Based on the characters of
the different parts of the homography estimator, only the unsupervised regression model is fine-tuned
in this step. Therefore, only 10 groups of frames are randomly chosen from each testing sequence with
the parameters (kq, k) = (5,10) to fine-tune the regression model in homography estimator. Even the
frames in the testing set are used during the fine-tuning stage, but still, no human labelled data from
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the testing set are used. The main effect of fine-tuning is the increase of the precision by 5.98%, which
benefits from the decrease of the false positives caused by the deviation of image alignment. After being
further processed by the region-based motion map, the precision is also improved by 12.1%, which is
similar to the effect of the motion map mask on the original prediction, 12.42%. It indicates the amount
of semantic noise influence that could be eliminated by the motion map. When both fine-tuning and
motion map steps are conducted, the precision increases 18.08% which boosts the F-Measure by 11.52%,
with only recall reducing by 3.83%. The reason for the recall decrease is that, in some motion regions,
the motion hint is too weak to catch by the motion map. Overall, the fine-tuning and motion map are
both effective in boosting the final prediction and easy to conduct (no additional human label needed),
which is worth being applied in the real-world situation.

frame t frame t-10 GT PAWCS SWCD SCBU MLBS FgSegNet ICNET-CDNET HTFnetSeg

(a) Pan: continuousPan, t=742

LT

(b) Pan: intermittentPan, t=1612

= lﬂ.l--.

Pan: |_MC_01, t=151

E]ﬁ Ml.l]
A ; » 7 ' .

A (d) Pan:1_SM 01, t=256 4 -

| LB A ~ A .

(e) Pan: |_SM_02, t=181

e S

(f) Pan I_SM_03, t=266

mm-m-nn:u::n

(g) Pan: O_MC_01, t=286

(h) P&Z: O_SM 01, t=128

: a a
nn
(i) P&Z: O_SM_02, t=224

v " ﬂ n@--u
. (i) P&Z:0_SM_03, t=308
‘:;’: : ‘,\‘% . .

Figure 5. Qualitative results comparison on the seven algorithms. The first column is the current frame
(t-10)

(k) Zoom: zoomInZoomOut, t=554

F(*) and the second column is one of the reference frames F



Sensors 2020, 20, 3420 20 of 23

Table 7. Evaluation values of the model if the different components are added. The best results are
shown in bold.

Method Precision Recall F-Measure
DFFnetSeg [14] 0.5185 0.9032 0.5852
HTFnet 0.6899 0.8953 0.7349
+Motion Map 0.8141 0.8569 0.8135
+Fine-tune 0.7497 0.8947 0.7841

+Fine-tune+Motion Map 0.8707 0.8570 0.8501

6. Discussion

The primary purpose of this paper is to describe a novel deep learning based foreground
segmentation method for the surveillance videos recorded by the PTZ cameras. As a deep learning
based method, our HTFnetSeg demonstrates its advantage of high-quality performance when
comparing with the state-of-the-art traditional methods, as shown in Table 6. The table also shows
the better generality of the HTFnetSeg comparing with other deep learning based methods because
the HTFnetSeg outperforms them when the test scenes and objects are unseen during the training
stage. This advantage widens the usage field of the HTFnetSeg, because this testing condition is
common in real-world usage. The design of the HTFnetSeg is motivated by overcoming the drawback
of DFFnetSeg [14] on the PTZ camera challenge. Therefore, an unsupervised homography estimator is
combined to align the reference frames without extra training labels. The comparison in Table 7 shows
that the HTFnetSeg performs much better than DFFnetSeg under the PTZ camera challenge. These facts
indicate that our method architecture and training strategy work effectively as they supposed to be.

The mechanism of our HTFnetSeg distinguishing the foreground from the background region
is comparing the current frame with the reference frames. Different from other comparison-based
methods [5,28], who assume that the reference frames are pure background with as few foregrounds
as possible, our method tolerates the existent of foreground objects on the reference frames, but is
under the assumption that the foreground objects moved during the current frame and the reference
frames. In future work, the image completion network from [28] might be considered to improve the
reference frame to further deal with the restrain brought by this assumption. It based on the following
reason. As analysed in Section 5.1, ICNET in [28] does not work well on unseen videos, because no
background frame in that video is used for training. However, if the background patches classified by
our HTFnetSeg is used as the training set of ICNET, it is possible to enable it to reconstruct a good
background reference.

An additional point to be discussed is that the black boundary would appear in the warped
reference frames because of the background scene motion. In the comparison-based change detection
method, the black boundary might cause a lack of evidence to make a decision in these specific regions.
In this case, our method takes advantage of semantic information and spatial connection in the deep
network, which can predict the foreground mask, even when some reference region is not available.
For example, as shown in Figure 6, the region that is covered by blue illustrates that in our method
when some part of the boundary region can not find the matched region in reference frames, the
foreground mask in that region can still be predicted to some extent.

As can be observed in Table 6 and Figure 5, MLBS [24] is designed for freely moving camera
and achieves the second-best mean F-Measure, but it fails to extract the foreground for the
“zoomInZoomOut” video. It might be because MLBS is based on the motion trajectory clustering and
for panning and tilting, the motion trajectories of background tend to be similar, but, for zooming,
the background pixels may move apart from or toward a focus centre which causes the trajectories
of background to be different and hard to be clustered. In contrast, the compensation-based method
SCBU [23] is more robust on different camera motion pattern categories, because its projective
transformation matrix could compensate the camera motion effectively. Therefore, for the PTZ camera
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challenge, the compensation-based methods seem to be more robust to its camera motion pattern.
Similarly, our HTFnetSeg also benefits from compensating the camera motion by image alignment.

groundtruth

M(741)

Figure 6. A sample when there is no matched region from the reference frames for the boundary of
(741)

the current frame. In detail, M denotes the predicted final foreground mask for the current frame
F(741), with the reference previous frames F(736) and F(731). The images in the bottom left corner are
the enlarged version of the details in red boxes, respectively. The region covered by blue highlights the

region without a match.
7. Conclusions

We propose an end-to-end foreground segmentation neural network HTFnetSeg for PTZ cameras,
where the homography estimation network is combined with the deep feature fusion network to extend
the application of the DFFnetSeg to a wider camera motion situation by conquering its weakness
on the continuous moving camera situation. The semantic attention based homography estimator is
proposed to reduce the influence of the foreground motion and provide the more stable homography
matrices for reference frames alignment. The spatial transformed deep feature fusion network acts as
the extended version of DFFnetSeg to align the reference features and produce the foreground mask
universally based on the comparison. The usage of the deep features from the pre-trained semantic
segmentation model maintains the generality of our network and the feature reusing strategy also
reduces the computational load. Finally, as the post-processing part the conservative strategy for
region-based motion map further reduces the false positives that are caused by the semantic noise.

In order to make an accurate evaluation, the proposed method is compared with the
state-of-the-art approaches on multiple challenging videos provided by two public datasets CDnet2014
and LASIESTA. Quantitative and qualitative experiments illustrate that the proposed method achieves
promising performances in term of these two aspects, respectively. Besides, ablation studies are also
conducted to evaluate the effect of the components designed for the proposed method. The results
demonstrate that all of these components promote our method from different aspects to work robustly
and universally to the unseen videos with PTZ cameras.

The homography matrix estimated in HTFnetSeg is designed for the planar spatial transformation,
which seems to be enough for common PTZ surveillance videos whose camera motion could be
modelled by a planar transformation. In future, our homography estimator has the potential to be
extended to a multi-layer homography model to adapt to other moving camera situation where the
camera may be displaced. Subsequently, the foreground segmentation framework of our HTFnetSeg
could be further extended to the free-moving camera situation.
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