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Abstract: In this paper, a modified encoder-decoder structured fully convolutional network
(ED-FCN) is proposed to generate the camera-like color image from the light detection and ranging
(LiDAR) reflection image. Previously, we showed the possibility to generate a color image from a
heterogeneous source using the asymmetric ED-FCN. In addition, modified ED-FCNs, i.e., UNET and
selected connection UNET (SC-UNET), have been successfully applied to the biomedical image
segmentation and concealed-object detection for military purposes, respectively. In this paper,
we apply the SC-UNET to generate a color image from a heterogeneous image. Various connections
between encoder and decoder are analyzed. The LiDAR reflection image has only 5.28% valid values,
i.e., its data are extremely sparse. The severe sparseness of the reflection image limits the generation
performance when the UNET is applied directly to this heterogeneous image generation. In this
paper, we present a methodology of network connection in SC-UNET that considers the sparseness
of each level in the encoder network and the similarity between the same levels of encoder and
decoder networks. The simulation results show that the proposed SC-UNET with the connection
between encoder and decoder at two lowest levels yields improvements of 3.87 dB and 0.17 in
peak signal-to-noise ratio and structural similarity, respectively, over the conventional asymmetric
ED-FCN. The methodology presented in this paper would be a powerful tool for generating data
from heterogeneous sources.

Keywords: artificial intelligence; heterogeneous transfer method; image generation; LiDAR sensor;
LiDAR imaging; learning systems; selected-connection network; sparse input data

1. Introduction

In general, the light detection and ranging (LiDAR) sensor emits laser light and receives reflected
light [1–12]. The reflected light conveys the distance to the target objects and the reflectivity of their
surfaces. This intrinsic operational principle makes the LiDAR data independent of changes in the
ambient illumination, unlike camera images. Because it provides consistent data regardless of time
of day, the sensor has been used for various applications, such as object recognition [1–3] in driving
environments, 3D roadmap construction [4,5], and semantic segmentation [6–9,13,14], etc.

There have been recent studies on generating camera-like images from LiDAR data [10,12].
The LiDAR to color image generation is useful in various applications such as vehicle’s night vision
system, night surveillance sensor, and military night vision device, etc. An encoder–decoder structured
fully convolutional network [15] (ED-FCN) is used for image generation from the heterogeneous data
in [10,12], as shown in Figure 1a. One interesting result discussed in [10,12] is that the shadow-free
images are generated since the LiDAR reflection data are produced irrespective to the illumination
change. This would be very useful property for visual assistance in night driving. The monochrome
images can be generated from the LiDAR reflection data by using the ED-FCN [10]. An asymmetric
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ED-FCN architecture is proposed to generate color images from the LiDAR reflection data [12] in
which the deeper decoder network than encoder is used. The asymmetric ED-FCN outperforms two
conventional interpolation methods, such as nearest neighbor [16] and inverse distance weighted [17],
and generative adversarial networks (GANs) based colorization method [18]. The GAN-based
generation has peculiar phenomenons that the existing and non-existing objects are intermittently
disappeared and appeared, respectively, and that the object locations are changed in the generated
image [18].

Originally, the ED-FCN has been developed for semantic segmentation [6–8,15,19–21] and
classification [3]. In the case of the modified ED-FCN, called UNET as shown in Figure 1b, the feature
maps of the encoder network are combined into the maps of the decoder network via concatenation
for bio-medical image segmentation [22]. The UNET is also used for the semantic segmentation for
the LiDAR reflection data [9]. Recently selected connection UNET (SC-UNET), shown in Figure 1c,
is proposed to detect the concealed object in the THz image for military purposes [23], resulting in
additional improvement over UNET. Modified UNET and ED-FCN, i.e., UNET++ and RTFNet,
are proposed for medical and urban scene semantic segmentation, respectively [13,14]. To the best of
our knowledge, the UNET and SC-UNET have not been used for color image generation from LiDAR
reflection data in the literature.

(a) ED-FCN
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Figure 1. Various network architectures for semantic segmentation.

In this paper, we propose to use the SC-UNET structures for the camera-like color image
generation from LiDAR reflection data. It should be noted that the input refection data are extremely
sparse while the output image is dense. This difference in the sparseness yields that feature maps in the
encoder and decoder have different characteristics in terms of sparseness and similarity. The differences
in feature map characteristics are also varied with respect to the levels due to the network structure.
In this paper, the sparseness of feature maps is analyzed based on receptive fields for each level
in the ED-FCN network. In addition, the similarities between feature maps of the encoder and
decoder are empirically analyzed by using the dataset recorded under various driving environments.
Based on these analyses, we propose a methodology in selecting connections in the SC-UNET-based
image-generation network. The connections between feature maps of the encoder and decoder parts
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in the proposed network are determined by considering the sparseness of each level in the encoder
network and the similarity between the same levels of encoder and decoder parts.

The rest of this paper is organized as follows. In Section 2, we propose a network structure to
generate a camera-like 2D color image from the 3D LiDAR data. The training and inference processes
are also described. In Section 3, the performance of the proposed network is compared with the
conventional ED-FCN and UNET networks. Section 4 draws the conclusions.

2. Proposed Method

In this section, we propose an image-generation network that generates a color image from the
heterogeneous LiDAR reflection intensity. First, ED-FCN-based image-generation system [10,12] is
analyzed with respect to sparseness and similarity. Then, the conventional SC-UNET architectures used
for terahertz image segmentation [23] is re-purposed and adapted to heterogenous image generation
based on the analyses.

2.1. Sparseness and Similarity of ED-FCN

Figure 2 shows the ED-FCN-based image-generation system proposed in our previous
works [10,12] and its feature maps at each level. In the pre-processing stage, 3D LiDAR point clouds are
converted into a 2D LiDAR reflection-intensity image using a 3D-to-2D projection matrix. The reflection
image has the same spatial resolution as the RGB color image to be generated. The color image is
finally generated from the reflection image using the ED-FCN that consists of five levels with two
convolution blocks. At each level of both the encoder and decoder blocks, CL(= 2(4−L)N) feature
maps, denoted as Fe

L and Fd
L , are obtained, where L and N indicate level number and filter number

of the convolutional block at level 4, respectively. The dimension of the feature maps and the kernel
size of the convolution filter are WL × HL × CL and 3 × 3 ×CL, respectively. Two feature maps from
encoder and decoder parts are visualized with representative feature maps, Re

L and Rd
L, respectively,

in which each pixel is represented by the maximum value of the feature maps as follows:

Re
L(w, h) = max

c∈CL
{Fe

L(w, h, c)} (1)

Rd
L(w, h) = max

c∈CL
{Fd

L(w, h, c)} (2)

The input reflection image is extremely sparse, i.e., the sparseness is 94.72%. This means that
only 5.28% of the pixels in the reflection image have non-zero valid values and are irregularly
distributed. In the encoder, the sparseness of the feature map is decreased as the level approaches the
transition between the encoder and decoder parts, i.e., level 0. The feature map at the transition is
completely dense (sparseness 0%). This is caused by enlarging the receptive field through a series of
convolution and pooling processes. On the other hand, all the feature maps of the decoder part are
dense. Detailed analysis of the relationship between the receptive field and sparseness is presented in
Appendix A. If the UNET structure is directly applied to image-generation network, the sparse feature
map in the encoder is combined with the dense one in the decoder at a higher level. For example,
given that the encoder feature map has n% non-zero values, 100−n

200 % of a concatenated feature map is
invalid and has an undesirable effect on generating the next feature map in the decoder. If the influence
of the activation function is neglected, the percentage of non-zero values (n%) at each encoder level
can be estimated by calculating the size of the receptive field. Accordingly, it is reasonable to apply the
SC-UNET architecture, which concatenates feature maps at the levels at which the sparseness is lower
than a certain value.

As shown in Figure 2, the input reflection intensity and output color images have completely
different visual characteristics. The encoder and decoder feature maps at higher levels have
characteristics similar to those of the reflection intensity and camera image, respectively. On the
contrary, the feature maps of the encoder and the decoder have more common characteristics for a
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lower level. To verify the properties, the similarity SL [24,25] between representative feature maps at
the level L is measured as follows:

SL =
< Re

L, Rd
L >

‖Re
L‖2‖Rd

L‖2
(3)

where <,> and ‖·‖2 denote inner product and L2 norm, respectively.
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Figure 2. Encoder-decoder structured fully convolutional network (ED-FCN)-based color
image-generation network from light detection and ranging (LiDAR) reflection data; the network
has five levels including transition level (level 0); for each level, the similarities between representative
feature maps of encoder and decoder parts are provided; the kernel size of the convolution filter is
3× 3× CL, where CL = 2(4−L) × N represents the number of channels at the level L.

As shown in Figure 2, the similarity increases as the spatial resolution of the feature map decreases.
For example, the similarity between input reflection and output color images is very low, i.e., 0.192.
However, the similarity at level 1 is quite high, i.e., 0.821. Clearly, it is reasonable to concatenate feature
maps with high similarity.

From the above analysis, the sparseness of the encoder feature map and the similarity between the
encoder and decoder feature maps should be considered when designing the concatenation structure
in an image-generation network.

2.2. Proposed Network Architectures

In this section, we present the five types of network architecture for color image generation,
as shown in Figure 3. ED-FCN represents the conventional architecture without any connection.
UNET is also a conventional architecture that has feature map connections between the encoder and
decoder parts at every level. The proposed architectures are the image-generation networks based
on SC-UNET structures and are denoted as SC-UNET w/Lv(a,b,c), which indicates the SC-UNET
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architecture with the connection between encoder and decoder at levels a, b and c. Note that UNET is
SC-UNET w/Lv(1,2,3,4).

Conv 3x3 Block: 3x3 Conv layer with Stride 1, Zero-padding, ELU → Batch-Normalization

1x1 Conv Layer with Stride 1, Zero-padding, Sigmoid

2x2 Max pooling

2x2 Deconvolution Layer with Stride 2 , Zero padding

Connection Layer: Copy and Concatenation

(W
×

H)
K

Feature-map with (W×H×K) size
in the encoder network (W

×
H)

K

Feature-map with (W×H×K) size
in the decoder network

(a) ED-FCN

(c) SC-UNET w/Lv(1,2,3)

(b) UNET

(d) SC-UNET w/Lv(1,2)

(e) SC-UNET w/Lv(1)

Figure 3. Conventional and proposed selected connection UNET (SC-UNET) network architectures
for color image generation from LiDAR reflection intensity. (a,b) Conventional network architectures;
(c–e) proposed SC-UNET network architectures; the feature maps of the encoder part are combined in
the form of concatenation into the feature maps of the decoder part in the networks shown in (b–e).

All architectures consist of fully convolutional networks and have the following common structure.
A single-channel sparse 2D reflection-intensity image (592 × 112 × 1) is obtained from the 3D LiDAR
point and is used as input data to the image-generation network. The output of the generation
network is a three-channel color image (592 × 112 × 3). The encoder and decoder parts of the network
are constructed with five levels considering the size of the input image. Each level consists of two
convolution blocks and one sampling layer. Each convolution block is composed of a convolution
layer, exponential linear unit (ELU) activation function [26], and batch-normalization layer [27],
in consecutive order. Each convolution layer consists of 2(4−L)N filters of size 3 × 3, as shown Figure 3.
In each convolution layer, stride 1 and zero-padding are applied. In the encoder, max pooling with
factor 2 is applied for downsampling. In the decoder part, deconvolution [28] with stride 2 and
zero-padding is applied for upsampling. As the level number of the encoder is decreased by one,
the number of feature map channels is doubled. When the level number of the decoder is increased
by one, the number of feature map channels is halved. At the end of the decoder part, the N-channel
feature map is transformed into three color channels (R, G, B) by applying three 1 × 1 ×N-sized
convolution layers with sigmoid activation, s(x) = 1/(1 + e−x). Notably, batch normalization is not
applied for the 1 × 1 ×N convolution layers.

Conventional UNET and three proposed architectures have connections between the encoder and
the decoder parts, unlike the ED-FCN. The encoder feature map at a certain level are connected to the
decoder feature map at the same level in the form of concatenation. The concatenated feature map is
fed to the convolution block of the decoder part.

The results of the analysis in Section 2.1 and the number of weights in the encoder feature map at
each level are summarized in Table 1. The following observations are derived:

Observation 1. At a low level, the small amount of valid information can be transferred to the decoder side
via concatenation. For example, the amount of feature map data to be transferred is very limited if only level 1
is concatenated.
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Observation 2. At a high level, the encoder feature map has high sparseness. For example, the structure having
a single connection at level 4 is expected to have limited performance due to the small number of valid pixels.

Observation 3. At a low level, the similarity between feature maps of the encoder and decoder parts increases.
For example, the structure with a single connection at level 4 is expected to have limited performance due to the
very different characteristics between the encoder and decoder feature maps.

Table 1. Summary of Information at Each Level of Encoder of the Conventional ED-FCN.

Level
The Number of Size of

Sparseness (%) SimilarityWeights in the Receptive
Encoder Feature Map Field

Level 4 66,304N 5 × 5 42.63 0.355(592 × 112 ×N)

Level 3 33,152N 18 × 18 8.72 0.567(296 × 56 × 2N)

Level 2 16,576N 52 × 52 0.92 0.573(148 × 28 × 4N)

Level 1 8288N 136 × 136 0.00 0.821(74 × 14 × 8 N)

In summary, it is necessary to concatenate multiple levels in the sense of the amount of transferred
information and it is desirable to concatenate feature maps at the low levels. Accordingly, we propose
architectures, called SC-UNETs with w/Lv(1), w/Lv(1,2) and w/Lv(1,2,3).

2.3. Training and Inference Processes

In the training process, the 2D LiDAR reflection intensity images and the corresponding RGB color
images are used as input data and target data of image generation network, respectively. Because the
sigmoid function [29] is used as the activation function of the last convolution layer, the dynamic range
of generated output data is (0, 1). Thus, the target color images are converted to the same dynamic
range for the training. Like as in [10,12], mean square error (MSE) is used as a loss function.

For hyper-parameters of training, the proposed network architectures are trained until a maximum
of 2000 epochs. The adaptive moment estimation solver [30], with batch size 4, learning rate
lr = 5× 10−4, and momentum parameters β1 = 0.9, β2 = 0.999 and ε = 10−8 is applied. The early
stopping technique with patience parameter of 25 is applied for validation loss [31].

In the inference process, three-channel images with the dynamic range (0, 1) are generated
through the proposed color image-generation network. Finally, RGB color images are obtained by
converting each channel to the dynamic range of (0, 255).

3. Simulation Environment and Results

This section describes the simulation environments and evaluation metrics. The performance of
the proposed architectures is evaluated and compared with the conventional architectures.

3.1. Simulation Environment

The evaluation dataset was reconstituted from the raw KITTI dataset [32], as in [10,12]. The dataset
consisted of pairs of projected LiDAR reflection images and color images that were recorded
simultaneously. Pairs recorded under heavy shadows were not included to enable shadow-free color
image generation. For more details on the dataset, refer to [10,12]. The evaluation dataset consisted
of a total of 4300 pairs. The pairs were randomly selected and divided into five folds for k-fold cross
validation (k = 5) [33,34]. Both LiDAR reflection and color images had the same resolution of 592 × 112
(66,304 pixels). The reflection image had an average of 3502 valid values.
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The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were used to evaluate the
image quality between the generated and target color images [35]. PSNRs were separately calculated
for each R, G, and B channel and the average PSNR was used for evaluation. In contrast, only the
gray-scale image was used for the measurement of SSIM.

The hardware used in the simulation was a workstation with Intel Core i7-6850 CPU 3.60GHz and
Nvidia Titan X Pascal GPU. The software environments were Ubuntu 16.04, Python 3.5.6, Tensorflow
1.13.1 [36], and Keras 2.3.1 [37].

3.2. Performance of the Proposed SC-UNET-Based Architectures

The validity of the selected connections in the UNET structure was investigated for camera-like
RGB color image generation from the sparse 2D LiDAR reflection image. The three proposed
architectures, such as SC-UNET w/Lv(1,2,3), w/Lv(1,2) and w/Lv(1), as shown in Figure 3c–e,
were evaluated in this simulation. Two conventional networks, ED-FCN and UNET, were used for the
performance comparison. To determine the performance variations with respect to the number of filters
N in convolution layer, we conducted experiments for N = 16, 32, 48, and 64. As previously mentioned
in Section 3.1, five-fold cross validation was applied in all the experiments. The PSNR, SSIM, and their
corresponding standard deviations are summarized in Table 2. For the evaluation of computational
complexity, the number of weights in the network and the processing time measured in millisecond
per frame were analyzed. To analyze the effect of single layer connection in the proposed architecture,
the simulation results for connections of SC-UNET w/Lv(1), w/Lv(2), w/Lv(3), and w/Lv(4) were
also summarized. For comparison with our previous work [12], all methods were also tested on the
same dataset used in [12] and the performance of asymmetric ED-FCN [12] is listed in Table 2.

As N increased, the PSNR and SSIM of all the architectures improved. Notably, the numbers
of weights increased with respect to N; in other words, the computational complexity and memory
requirements increased. Therefore, it was necessary to select an appropriate value of N according to
the applications and available resources.

UNET provided better image quality performance than ED-FCN. This demonstrated that the
connection between the encoder and decoder was useful, even in heterogeneous image generation.
In cases of single layer connection of SC-UNET, SC-UNET w/Lv(1) showed the best performance.
SC-UNET w/Lv(1) and SC-UNET w/Lv(2) outperformed UNET. This meant that connection at higher
level was not appropriate. SC-UNET w/Lv(1,2,3) showed better performance than UNET. On the
contrary, the proposed architectures with connections at higher level, i.e., SC-UNET w/Lv(3), w/Lv(4),
and w/Lv(3,4), yielded better image quality than ED-FCN, but worse quality than UNET. SC-UNET
w/Lv(1,2) outperforms all the architectures, including SC-UNET w/Lv(1,2,3). SC-UNET w/Lv(1,2)
with N = 48 and 64 had better image quality performance than asymmetric ED-FCN. In particular,
SC-UNET w/Lv(1,2) with N = 64 produced improvements of ‘3.87 dB in PSNR and 0.17 in SSIM’
over the asymmetric ED-FCN, respectively. These results confirmed the validity of the observations
presented in Section 2.2.

As shown in Table 1, the feature map at level 1 was fully dense and the similarity between encoder
and decoder feature maps was 0.821. Similarly, the sparseness and similarity at level 2 were ‘0.92% and
0.573’, respectively. Therefore, encoder feature maps at levels 1 and 2 could provide useful information
for the image generation at the decoder part. In contrast, the sparseness and similarity at levels 3
and 4 were ‘8.72% and 0.567’, and ‘42.63% and 0.355’, respectively. Considering both sparseness
and similarity, the encoder feature maps at levels 3 and 4 had less relevance to the decoder feature
maps. This implies that the connections at levels 3 and 4 could produce undesirable influence on the
image-generation performance. This explains why SC-UNET w/Lv(1,2) yielded the best performance
and SC-UNET w/Lv(3,4) yielded the worst performance among other networks with connections,
including UNET.
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Table 2. Performance results of the proposed SC-UNET-based architectures.

The Number of Filters
Network Architecture

The Number of Average Dataset in [12] The 5-Fold Cross Validation

in the First Weights Processing PSNR SSIM PSNR SSIM
Convolution Layer [ea.] Time [ms] [AVR. (STD.)] [AVR. (STD.)]

N = 16

ED-FCN 1,747,955 4.47 17.98 0.43 17.90 (2.12) 0.43 (0.14)
UNET 1,943,795 4.88 18.01 0.43 17.92 (2.88) 0.43 (0.19)

SC-UNET w/Lv(1,2,3) 1,941,491 4.53 18.04 0.44 18.01 (2.11) 0.44 (0.17)
SC-UNET w/Lv(1,2) 1,932,275 4.50 18.17 0.45 18.10 (2.91) 0.44 (0.15)
SC-UNET w/Lv(3,4) 1,759,475 4.48 17.99 0.42 17.82 (2.15) 0.41 (0.17)

SC-UNET w/Lv(4) 1,750,259 4.48 17.99 0.43 17.90 (2.11) 0.43 (0.18)
SC-UNET w/Lv(3) 1,757,171 4.48 18.01 0.43 17.94 (2.19) 0.43 (0.17)
SC-UNET w/Lv(2) 1,784,819 4.48 18.08 0.44 17.99 (2.18) 0.44 (0.18)
SC-UNET w/Lv(1) 1,895,411 4.49 18.09 0.44 18.08 (2.82) 0.44 (0.17)

N = 32

ED-FCN 6,991,331 8.97 18.65 0.47 18.55 (2.28) 0.44 (0.11)
UNET 7,765,475 9.49 18.88 0.49 18.81 (2.27) 0.49 (0.11)

SC-UNET w/Lv(1,2,3) 7,018,979 9.28 18.90 0.48 18.76 (2.28) 0.46 (0.11)
SC-UNET w/Lv(1,2) 7,719,395 9.34 18.93 0.49 18.87 (2.41) 0.48 (0.11)
SC-UNET w/Lv(3,4) 6,982,115 8.87 18.69 0.48 18.56 (2.23) 0.47 (0.11)

SC-UNET w/Lv(4) 7,028,195 9.19 18.71 0.48 18.62 (2.28) 0.47 (0.11)
SC-UNET w/Lv(3) 7,571,939 9.31 18.88 0.49 18.76 (2.28) 0.48 (0.11)
SC-UNET w/Lv(2) 7,129,571 9.31 18.91 0.49 18.79 (2.31) 0.48 (0.11)
SC-UNET w/Lv(1) 7,756,259 9.40 18.91 0.49 18.83 (2.39) 0.49 (0.11)

N = 48

ED-FCN 15,702,483 14.16 18.91 0.49 18.73 (2.20) 0.47 (0.12)
UNET 17,465,043 15.29 19.14 0.50 19.06 (2.29) 0.50 (0.11)

SC-UNET w/Lv(1,2,3) 17,444,307 15.12 19.98 0.55 19.88 (2.29) 0.55 (0.11)
SC-UNET w/Lv(1,2) 17,361,363 15.01 21.78 0.58 21.76 (2.49) 0.58 (0.11)
SC-UNET w/Lv(3,4) 15,806,163 14.74 19.07 0.50 18.94 (2.31) 0.49 (0.11)

SC-UNET w/Lv(4) 15,723,219 14.34 18.99 0.49 18.86 (2.29) 0.48 (0.12)
SC-UNET w/Lv(3) 15,785,427 14.91 19.08 0.50 18.98 (2.28) 0.49 (0.11)
SC-UNET w/Lv(2) 16,034,259 14.95 20.12 0.55 19.96 (2.52) 0.55 (0.12)
SC-UNET w/Lv(1) 17,029,587 14.96 20.16 0.55 20.02 (2.68) 0.55 (0.11)
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Table 2. Cont.

The Number of Filters
Network Architecture

The Number of Average Dataset in [12] The 5-Fold Cross Validation

in the First Weights Processing PSNR SSIM PSNR SSIM
Convolution Layer [ea.] Time [ms] [AVR. (STD.)] [AVR. (STD.)]

N = 64

ED-FCN 27,909,059 21.43 19.01 0.48 18.98 (2.21) 0.47 (0.11)
UNET 31,042,499 23.13 19.37 0.52 19.27 (2.22) 0.51 (0.12)

SC-UNET w/Lv(1,2,3) 31,005,635 22.87 20.29 0.56 19.89 (2.21) 0.56 (0.11)
SC-UNET w/Lv(1,2) 30,858,179 22.71 23.42 0.68 23.15 (2.61) 0.67 (0.12)
SC-UNET w/Lv(3,4) 28,093,379 22.30 19.16 0.51 19.08 (2.32) 0.50 (0.13)

SC-UNET w/Lv(4) 27,945,923 21.69 19.08 0.48 18.92 (2.21) 0.48 (0.12)
SC-UNET w/Lv(3) 28,056,515 22.56 19.31 0.51 19.16 (2.28) 0.50 (0.12)
SC-UNET w/Lv(2) 28,498,883 22.62 21.83 0.58 21.60 (2.52) 0.58 (0.12)
SC-UNET w/Lv(1) 30,268,355 22.63 22.29 0.62 22.01 (2.65) 0.61 (0.12)

- Asymmetric ED-FCN [12] 3,350,243 7.74 19.38 0.50 19.28 (2.18) 0.50 (0.11)
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These simulation results provide the insight that the connections in SC-UNET should be selected
by considering the sparseness of each level in the encoder network and the similarity between the
same levels of the encoder and decoder networks.

3.3. Inference Examples

For subjective quality comparison, three inference examples for ED-FCN, UNET, asymmetric
ED-FCN, and SC-UNET w/Lv(1,2) are shown in Figure 4. All three methods are tested with N = 64
except symmetric ED-FCN. The examples are selected based on PSNR. The 2D LiDAR reflection and
corresponding ground truth (GT) color images are also shown in the first row.

Ground Truth Image: Colored Target Image

ED-FCN: PSNR 18.58 dB / SSIM 0.40

UNET: PSNR 19.88 dB / SSIM 0.44

Asymmetric ED-FCN: PSNR 19.25 dB / SSIM 0.42

Proposed SC-UNET w/Lv(1,2): PSNR 23.88 dB / SSIM 0.66

Input Image: 2D Projected Reflection Intensity Image

(a) Medium peak signal-to-noise ratio (PSNR)

Input Image: 2D Projected Reflection Intensity Image Ground Truth Image: Colored Target Image

ED-FCN: PSNR 16.87 dB / SSIM 0.36 Asymmetric ED-FCN: PSNR 18.18 dB / SSIM 0.48

UNET: PSNR 18.29 dB / SSIM 0.48 Proposed SC-UNET w/Lv(1,2): PSNR 21.85 dB / SSIM 0.61

(b) Low PSNR

Input Image: 2D Projected Reflection Intensity Image Ground Truth Image: Colored Target Image

ED-FCN: PSNR 20.81 dB / SSIM 0.70 Asymmetric ED-FCN: PSNR 21.69 dB / SSIM 0.73

UNET: PSNR 21.11 dB / SSIM 0.71 Proposed SC-UNET w/Lv(1,2): PSNR 25.52 dB / SSIM 0.76

(c) High PSNR

Figure 4. Sample inference results.
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In Figure 4a, two networks without connection between encoder and decoder feature maps,
such as the ED-FCN and asymmetric ED-FCN, generate very blurry objects such as white vehicle and
white road-pole with red stripes. Contrarily, the UNET and SC-UNET w/Lv(1,2) produce those objects
in detail. The UNET distorts short-distance black vehicle on the left side, but the proposed method
faithfully generates it. Figure 4b shows that the ED-FCN does not generate tire-wheel and small wall
on the right side and the proposed SC-UNET w/Lv(1,2) generates them more clearly than all others.
In Figure 4c, all networks generate images with high visual quality. Similar trends mentioned above are
observed. In summary, the ED-FCN and asymmetric ED-FCN generate blurry images. The proposed
method faithfully generates images while the UNET produces occasionally serious distortion.

4. Conclusions

In this paper, we propose a SC-UNET architecture that effectively generates a camera-like RGB
color image from a heterogenous sparse LiDAR reflection-intensity image. The sparseness of the
encoder feature map and the similarity between the encoder and decoder feature maps are analyzed
at each level of the conventional ED-FCN. At high levels, the sparseness increases and the similarity
decreases. It is not reasonable to concatenate feature maps at high levels when designing a SC-UNET
architecture for image generation. SC-UNET architectures with concatenation at low levels are
proposed. Through simulations, we show that the proposed SC-UNET w/Lv(1,2), i.e., SC-UNET with
concatenations at levels 1 and 2, outperforms the other architectures including asymmetric ED-FCN,
in terms of both the objective and subjective qualities of the generated image. In particular, SC-UNET
w/Lv(1,2) with N = 64 produces improvements of ‘3.87 dB in PSNR and 0.17 in SSIM’ over the
asymmetric ED-FCN, respectively.

It is very important to consider the sparseness and similarity in determining the levels to be
concatenated between feature maps of the encoder and decoder. The methodology is very useful
in various applications where the input and output have different sparseness and heterogeneous
characteristics.
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Appendix A. Analysis of Sparseness Using Receptive Field

In this appendix, we provide the analysis of the relationship between sparseness and the receptive
field in the ED-FCN network, as shown in Figure 2.

In general, neglecting the effect of bias in the convolution layer and the effect of the activation
layer, the size of the effective receptive field is [2P(2B + 1)]× [2P(2B + 1)], where B and P represent the
cumulative number of convolution blocks with a (3×3) filter and the cumulative number of pooling
operations, respectively, as shown in Table A1 [38,39].

In the case of Figure 2, the size of the receptive field, RFL at encoder level L is as follows:

RFL = [2(4−L)(2(10− 2L) + 1)]× [2(4−L)(2(10− 2L) + 1)]. (A1)
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Table A1. Numbers of pooling and convolution operations; PL and BL denote numbers of pooling and
convolution operations at level L, respectively; P and B denote cumulative numbers of pooling and
convolution operations, respectively.

Level (L) PL BL P B

4 0 2 0 2
3 1 2 1 4
2 1 2 2 6
1 1 2 3 8
0 1 2 4 10

For example, the size of receptive field is (52× 52) at encoder level 2. It means that if there is at least
one non-zero value within a 52 × 52 square kernel centered at a certain pixel in the reflection-intensity
image, the corresponding pixel in the feature map has a non-zero value by the series of convolution
and pooling operations. This pixel will be called a “valid pixel” in this Appendix. For evaluation,
4300 projected reflection-intensity images are used. The percentage of valid pixels for all the pixels in
evaluation images are calculated with respect to the receptive field, as shown in Figure A1. For all the
pixels in the feature map to be valid, the size of the receptive field should be larger than 101 × 101.30405060708090100 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 103(29×29): 95.53% (71×71): 99.70% (101×101): 100%(7×7): 72.52%Percentage of valid pixels (%) Size of recep�ve field(101×101) size of receptive field: 100%

Figure A1. Percentage of valid pixels according to the size of the receptive field.

The receptive field size and sparseness at each level, according to these results, are summarized
in Table A2. In the case of encoder level 2, the feature map has 99.08% valid pixels; in other words,
the sparseness is 0.92%. Notably, the sparseness for the receptive field with a size of 52 × 52 is the
average sparseness for 51 × 51 and 53 × 53, as size of the receptive field should be odd owing to the
characteristics of the convolution operation.

Table A2. Size of Receptive Field and Sparseness at Each Level of Encoder.

Level (L) Size of Receptive Field Sparseness (%)

4 5 × 5 42.63
3 18 × 18 8.72
2 52 × 52 0.92
1 136 × 136 0.00
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