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Abstract: Mostly, precision agriculture applications include the acquisition and elaboration of 
images, and it is fundamental to understand how farmers’ practices, such as soil management, affect 
those images and relate to the vegetation index. We investigated how long-term conservation 
agriculture practices, in comparison with conventional practices, can affect the yield components 
and the accuracy of five vegetation indexes. The experimental site is a part of a long-term experiment 
established in 1994 and is still ongoing that consists of a rainfed 2-year rotation with durum wheat 
and maize, where two unfertilized soil managements were repeated in the same plots every year. 
This study shows the superiority of no tillage over conventional tillage for both nutritional and 
productive aspects on durum wheat. The soil management affects the vegetation indexes’ accuracy, 
which is related to the nitrogen nutrition status. No-tillage management, which is characterized by a 
higher content of soil organic matter and nitrogen availability into the soil, allows obtaining a higher 
accuracy than the conventional tillage. So, the users of multispectral cameras for precision agriculture 
applications must take into account the soil management, organic matter, and nitrogen content. 

Keywords: durum wheat; nutritional status; soil organic matter; no tillage; conventional tillage; 
remote sensing; multispectral imagery 

 

1. Introduction 

Providing a sufficient amount of food to satisfy the nutritional demand of the current population 
is the essential goal of global agriculture. By 2050, the global population is estimated to reach 2.6 
billion people [1], so food production must increase by at least 70% before 2050 to support continued 
population growth [2]. In modern agriculture, conventional tillage (CT) techniques have allowed the 
adoption of crops, especially on large surfaces ensuring high yields: the mixing of surface horizons 
in preparing the seedbed allows the stabilization of the main crop to the detriment of the weed 
competitors. However, this intensification of the crops, although necessary for responding to the food 
needs of the growing demographic pressure, is proving unsustainable: in fact, the increment of soil 
erosion [3,4], the use of water, energy, and fertilizers, the disruption of soil structure, and the 
reduction of water use efficiency [5] will probably increase the environmental and economic 
pressures posed by intensified agricultural activities [6]; therefore, the negative consequences for the 
environment are evident [7–9]. 
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To lower the pressure of pollution and costs, agricultural conservation practices are gaining 
worldwide popularity for their ability to optimize productivity and reduce the impact on the land’s 
natural resources [10]. 

In fact, reduced tillage and even no tillage (NT) bring benefits to the environment in terms of 
reduction of soil erosion, leaching of nitrates, reduction in the use of agricultural machinery, as well 
as a lower emission of greenhouse gases and fuel costs [11]. 

Furthermore, the low soil disturbance, with the addition of crop residues, increases the levels of 
humidity [12] and nutrients in the horizons of soil explored from the roots and the soil organic carbon 
[13,14], and it reduces the mineralization rate of the organic matter, nitrogen losses, and the soil 
erosion [15], so it’s possible sustain long-term crop production [16–18]. 

These economic and environmental benefits underpin the three pillars of conservation 
agriculture (CA) such as NT, the adoption of crop rotations, and in-situ residue conservation and 
permanent soil cover [19]. 

Conservation practices are being studied on winter cereals, which are dominant crops in the 
Mediterranean semi-arid climate regions [20] where climate change is putting cereal yields at risk 
[21–23], and they are often penalized by extreme events such as long periods of extreme dryness 
alternated with a short heavy rainfall time. In the Mediterranean area, crop production can be 
improved with the adoption of CA techniques [10] and with the application of the right dose of 
nitrogen through the site-specific application of fertilizers [24]. 

To understand the phenological status and the soil during crop cycles, manual measurements of 
agronomic characteristics are necessary, but they are so labor intensive and time consuming [10]. As 
a solution, a modern farming management concept that responds to such challenge is Precision 
Agriculture (PA) [25,26], providing spatial and temporal data on the agricultural fields in a fast and 
economic way [27]. 

In fact, its remote sensing technology offers a more efficient way to obtain the large-scale 
mapping of plant parameters: the development of this technology is expected to increase the 
effectiveness of PA [28]. In particular, studies indicated that space-borne sensors can be used to obtain 
spatially extensive information from landscape at the global scale [29–33]. 

Using multispectral images collected by satellite, traditional aircraft, and unmanned aerial 
vehicles (UAVs), several studies [34–37] have examined vegetative conditions in agriculture. 

In precision farming, UAVs are very widespread and are provided with multispectral cameras 
that measure different wavelength bands within visible and near infrared regions of the spectrum, 
which allow the formulation of a wide range of vegetation indices (VIs) informing on biomass [38,39], 
leaf area index [40,41], pigment content [42–44], nitrogen content [45,46], photosynthetic efficiency 
[47], water status [47,48], and cover (ground and residue) [49]. 

The contribution of spatial information technologies [50,51] defines site-specific management 
units (SSMU) that are useful for understanding the spatial variations of the crop, especially in terms 
of yield [52]. These variations are influenced by a multitude of factors including topographic, 
edaphic, biological, meteorological, and anthropogenic factors [53]. 

Climate change, as already mentioned, contributes to influencing this variability: in fact, in the 
Mediterranean area, there is a decrease in rainfall which, for example, influences the food activity of 
the microbial component of the soil [54,55], so it will be necessary to understand through the 
technology offered by PA the changes that take place in crop systems. 

However, several studies show that this variability makes it complicated to use precision 
farming tools in and so often it is rather difficult to adapt them in farms that have to make lesser 
decisions [56–58]. As a consequence, precision farming technologies require support structures to 
facilitate learning and the reduction of uncertainty in the implementation and adaptation process 
[59,60]. 

The uncertainties detected with the instrumentation and the climate variability [54,61,62] join 
the information lack related to the evaluation of the soil management (SM) effect on the crop 
nutritional status and productivity through multispectral imagery. 
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Only recently [10] was it reported that the canopy height, cover, volume, and the Normalized 
Difference Vegetation Index (NDVI) calculated on cotton growth under NT was statistically higher 
than the cotton grown under CT. This suggests that soil management can influence not only the crop 
growth development, but also the NDVI values. The aim of this study is to describe the effect of 
different SM (NT versus CT) on the unfertilized durum wheat crop parameters, nutritional status, 
and VIs accuracy in order to draw up vegetation maps that are useful for the correct management of 
soil fertility and cropping systems productivity. 

2. Materials and Methods 

2.1. Experimental Site 

The experimental site is located at the “Pasquale Rosati” experimental farm of the Polytechnic 
University of Marche in Agugliano, Italy (43°32′ N,13°22′ E, at an altitude of 100 m above sea level and 
a slope gradient of 10%), on a silty-clay soil classified as Calcaric Gleyic Cambisols [63] (Figure 1). 

 
Figure 1. Experimental location (on the left), planimetry, and relative georeferenced positions of 
sampling biomass points during the two years experimental survey. 

The climate of the site is Mediterranean, on which was recorded a total rainfall of 801 mm 
between October 2017 and July 2018, while a contraction of 30% of rainfall was recorded during 
October 2018–July 2019 with a 560.8 mm of rainfall (Table 1). 

In order to better represent the water dynamics into the soil–crop system, we estimated the 
monthly soil water balance (SWB) by using the following formulas (Equations (1) and (2)): 𝑆𝑊𝐵 ൌ 𝑃 − 𝐸𝑇𝑐 (1) 𝐸𝑇𝑐 ൌ 𝐸𝑇𝑜 ሺ𝐻𝑎𝑟𝑔𝑟𝑎𝑣𝑒𝑠ሻ ∗ 𝐾𝑐 ሺ𝐹AO) (2) 
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where 
P: monthly precipitation (mm); 
ETc: monthly crop evapotranspiration (mm); 
ETo: reference evapotranspiration calculated with the Hargraves formula (mm) [64]; 
Kc: crop coefficient [65] 
The soil water balance calculated during the 2017–2018 growing season was 230 mm higher than 

the 2018–2019 growing season (Table 1) with a marked difference in the February–March period. The 
average minimum air temperature was higher on October 2017–July 2018 than October 2018–July 
2019 with values respectively of 10 °C and 9.7 °C. Otherwise, the average maximum air temperature 
was higher on October 2018–July 2019 than October 2017–July 2018 with values respectively of 18.2 
°C and 17.9 °C. 

Table 1. Thermo-pluviometric trend related to the durum wheat biological cycle during the 
experimental period. 

Months November December January February March April May June July 2017–2018 
Rainfall (mm)                 Total 

2017–2018 124 96 29 173 143 37 95 48 57 802 
2018–2019 42 61 70 22 36 59 165 1 105 561 
Δ Rain  82 35 −41 151 107 −22 −70 47 −48 241 

Soil Water Balance (mm)          Total 
2017–2018 20 88 20 163 119 −44 −42 −8 −4 312 
2018–2019 0 53 62 9 −4 −27 49 −51 −8 82 

Δ Soil Water Balance 21 35 −42 154 123 −17 −91 43 4 229 
Min air T (°C)          Average 

2017–2018 7.9 4.1 5.2 2 5.7 11.8 14.9 17.7 20.5 10 
2018–2019 9.3 3.7 2.4 4.5 7.4 9.1 11.7 19.1 20.3 9.7 
Δ Min air T −1.4 0.4 2.8 −2.5 −1.7 2.7 3.2 −1.4 0.2 0.3 

Max air T (°C)          Average 
2017–2018 11.1 11.9 12.8 8.3 13.3 21.5 23.7 27.8 30.8 17.9 
2018–2019 11.9 11.1 9 13.2 17.7 18.6 20.3 30.5 31.5 18.2 
Δ Max air T −0.8 0.8 3.8 −4.9 −4.4 2.9 3.4 −2.7 −0.7 −0.3 

Soil properties in compared experimental plots are indicated in Table 2. Soil sampling was made 
with a Hand Huger (mod. Suelo HA-3) immediately before sowing. From each subplot, 3 samples 
were taken for a total of 12 soil samples analyzed for each year. 

Table 2. Soil properties of the 0–20 cm layer in the conventional tillage (CT) and no tillage (NT) 
unfertilized plots in 2019. 

Soil proprieties 
SM1 

NT2 CT3 
Sand (g kg−1) 127 (±21) a 120 (±19) a 
Silt (g kg−1) 410 (±30) a 397 (±19) a 

Clay (g kg−1) 463 (±36) a 483 (±22) a 
SOM4 (g kg−1) 18.0 (±2.8) a 13.2 (±2.1) b 

Total nitrogen (g kg−1) 1.30 (±0.11) a 0.98 (±0.03) b 
1 SM: soil management; 2 NT: no-tillage; 3 CT: conventional tillage; 4 SOM: soil organic matter. Within the same 
factor of variation, means that are followed by the same letter (a,b) are not significantly different at P < 0.05%. 

2.2. Experimental Design and Crop Management 

The experimental site is a part of a long-term experiment established in 1994 and is still ongoing 
[66] consisting of a rainfed 2 years rotation with durum wheat (Triticum turgidum L. var. durum cv. 
Grazia, ISEA) in rotation with maize (Zea Mays L., DK440 hybrid Dekalb Monsanto, FAO Class 300) 
[67]. 

Within each field, two soil management techniques (main plot, 1500 m2) were repeated in the 
same plots every year and arranged according to a split plot experimental design with two 
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replications. The conventional tillage (CT), which is representative of the business as usual tillage 
practice in the study area, was ploughed along the maximum slope every year by a moldboard (with 
2 plows) at a depth of 40 cm in autumn. The seedbed was prepared with harrowing before the sowing 
date. The no-tillage (NT) soil was left undisturbed and was sprayed with herbicides before sowing 
prior to direct seed drilling. In this study, we will examine the unfertilized plots in order to describe 
the effect of different soil management techniques on the durum wheat crop parameters and on the 
crop nutritional status through the vegetation indices (VIs) computation. The dates (dd/mm/yy) of 
all the agronomic practices are reported in Table 3. 

Table 3. Agronomic management practices adopted during the two-year experimental period. 

Agro-technique SM1 2017–2018 2018–2019 
Ploughing (40 cm) CT2 02/10/2017 26/09/2018 

Weed control: Glyphosate3 NT4 30/10/2017 28/09/2018  
Harrowing and seed bed preparation CT 20/11/2017 01/10/2018 

Sowing5 All 21/11/2017 30/11/2018 
Weed control: Pinoxaden6 CT 28/03/2018 08/03/2019  

Pest control: Azoxystrobin, Cyproconazole7 All 24/04/2018 22/04/2019 
Harvest All 06/07/2018 07/07/2019 

1 SM: soil management; 2 CT: conventional tillage; 3 dose: 2.25 kg ha−1 of active ingredient; 4 NT: no tillage; 5 Seed 
rate: 220 kg ha−1; row spacing: 0.17 m; 6 30 g ha−1 of active ingredient; 7 dose: 0.16 l ha−1 of active ingredient. 

2.3. Measurements 

At stem elongation and anthesis phenological stages (ZS35 and ZS60 respectively were ZS = 
Zadoks Scale [68]), we have measured crop parameters such as dry matter (g) and nitrogen (N) 
content (% and g m−2), and we have acquired multispectral images (MAIA S-2 multispectral camera) 
by using a UAV platform (DJI Matrice 600 pro) in order to compute the VIs algorithm. At crop 
maturity (ZS92), we measured the typical agronomic measurements, number of kernels per spike 
(KS), thousand kernel weight (TKW), and the grain yield (t ha−1) for both years under analysis in 
order to characterize the yield of the different soil management techniques. 

2.3.1. Crop Parameters 

For each plot, we have randomly selected three test areas (Figure 1). At each test area, we have 
manually cut and collected fresh plants biomass in a georeferenced 0.5 m long-row using the GNSS 
HiPer HR receiver (Topcon, Ancona, Italy) for a total of 48 ground control points (GCPs). 

The fresh plant biomass was oven-dried at 80° C for 48 h and then, we weighed the dry biomass 
(g). Before analyzing for total N content, we ground the dry biomass to pass a 0.5 mm. 

The N content (%) was determined by automated combustion analysis Dumas method [69,70] in 
an oxygen-enriched atmosphere at a high temperature (EA 1110 LECO CHNS-0 analyzer, Leco 
Corporation, St. Joseph, MI) in order to ensure complete combustion of the whole sample. 

Starting from the N content (%) results, we calculated the N content (g m−2) by using the 
following formula (Equation (3)): 𝑔𝑁 𝑚ିଶ = ಿ% ∗ ೏ೝ೤ ೘ೌ೟೟೐ೝ (೒)భబబ଴.଴଼ହ ௠మ . (3) 

2.3.2. Yield Components 

In order to characterize the yield obtained by the compared treatments, we measured at crop 
maturity (ZS92) the number of KS, the thousand kernels weight (TKW), and the grain yield (t ha−1). 

The KS and the TKW were estimated on 30 spikes randomly collected per plot. The grain yield 
(t ha−1) expressed in dry matter was measured by using a laboratory thresher for the three test areas 
(1 m long-row) per plot. 
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2.3.3. Image Acquisition Processing 

To generate the orthomosaic reflectance maps, we followed a process consisting of three steps: 
alignment and mosaicking of raw multispectral images, point cloud and mesh generation, and 
orthomosaic map export. For the first and third steps, we used the Pix4Dmapper (Pix4D, Lausanne, 
Switzerland), which is based on the structure from motion (SfM) algorithm [71]. This allows us to 
generate the orthomosaic reflectance map from the raw multispectral images acquired by each flight. 
For the second step, we used the geographical reference recorded by the D-RTK GNSS module 
equipped on the UAV platform. The newly generated orthomosaic reflectance map has been 
imported in QGis 3.4.8, an open source Geographic Information System, which was the software we 
used to complete the remaining two main steps of the image processing. 

To complete the second main step, we inserted on QGis the GCPs by using a csv file format with 
the data source manager tool, and then we created for each GCP a polygon shape file of 0.085 m2, 
which corresponded to the sampling surface. 

While in order to select the most relevant vegetation index (VI) calculated starting from 
multispectral imagery for precision agriculture application in a conservation agriculture context, we 
compered five vegetation index categories according with Xue and Su [72]. The VIs analyzed in this 
study are reported in the following Table 4. 

Table 4. Agronomic management practices adopted during the two-year experimental period. 

Vegetation Indices Formula References 

ARVI1  ARVI = NIR −  RBNIR + RB  

Where: RB =  Red − y(Blu − Red) 
Korhonen et al. (2015) [73] 

MSAVI22 MSAVI2 = 2 × NIR + 1 −ඥ(2 × NIR + 1)ଶ − 8(NIR − Red)2  Leprieur et al. (2000) [74] 

NDRE3 𝑁𝐷𝑅𝐸 =  𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 Barnes et al. (2000) [75] 

VDVI4  VDVI = 2 × Green − Red − Blue2 × Green + Red + Blue Wang et al. (2015) [76] 

WDRVI5 WDRVI = a × NIR − Reda × NIR + Red 

Where: a = 0.2 
Gitelson (2004) [77] 

1 ARVI: Atmospherically Resistant Vegetation Index; 2 MSAVI2: Modified Soil-adjusted Vegetation Index; 3 NDRE: 
Normalized Difference Red Edge Index; 4 VDVI: Visible-Band Difference Vegetation Index; 5 WDRVI: Wide Dynamic Range 
Vegetation Index. 

The VIs calculation was carried out by a “Raster calculator” of QGis 3.4.8, which allows 
performing calculations on the basis of existing raster pixel values, and the results are written to a 
new raster layer with a GDAL supported format. The extraction of the VIs values was performed by 
using the “zonal statistics plugin” of QGis 3.4.8 by using the polygon shape file created for each GCP. 

2.4. Statistical Analysis 

All statistical analysis was performed with R. To highlight the significant effect of soil 
management (SM), year (Y), and the SMxY factorial combination to all the crop parameters analyzed, 
we performed an analysis of variance (ANOVA) to a linear model generated by using the generalized 
least squares approach. 

Before performing any statistical analysis to identify a significant difference between the two 
soil managements in analysis, we performed a Shapiro–Wilk W test to evaluate the normality of 
distribution. When the P-value of the Shapiro–Wilk W test was below 0.05, we assumed that the data 
are not normally distributed; otherwise, the data are considered normally distributed. 

When data were normally distributed, we performed the Bartlett test, which is used to test if k 
samples are from populations with equal variances or not. If the P value of the Bartlett output test 
was below 0.05, we assumed that the k samples are not from populations with equal variances, and 
so we performed the Welch One-Way ANOVA to identify a significant difference between the 
treatments under study. When the P value of the Bartlett output test was greater than 0.05, we 
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assumed that the k samples are from populations with equal variances, and so we performed the t-
test independent samples (P value = 0.05) to identify significant differences between soil 
managements. 

When data were not normally distributed, we performed the Levene test, which is used to check 
that variances are equal for all samples when your data come from a non-normal distribution. If the 
P value of the Levene test was below 0.05, we performed the Friedman Test to highlight the significant 
difference between the treatments under study. When the P value of the Levene test was higher than 
0.05, we performed the Kruskal–Wallis test to identify a significant difference between the soil 
management techniques. 

To evaluate if the soil management can affect the relationships between VIs and N content (g 
m−2), we performed a linear regression analysis that is used to identify the existence of significant 
relationships (*: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001). In addition, we reported the coefficient of 
determination (R2) and relative root mean square error (RMSE) for each relationship. 

3. Results 

3.1. Crop Parameters 

The ANOVA shows that the year (Y) factor has significantly affected all the crop parameters 
analyzed, while the soil management (SM) factor has significantly affected the nitrogen (N) content 
variables (% and g m−2). 

For the N content (%), the ANOVA shows a significant effect of the interaction of year per soil 
management (Y x SM) (Table 5). 

Table 5. Results of the ANOVA applied to a linear model using generalized least squares for durum 
wheat. 

Factor of variation df1 DM2 N content 
    g % g m−2 

Y3 20 ** *** *** 
SM4 20 n.s.e *** * 

Y x SM 20 n.s. * n.s. 
1 df: degree of freedom; 2 DM: Dry Matter; 3 Y: Year; 4 SM: Soil management; *: Significant at P < 0.05%; **: Significant at P < 
0.01%; ***: Significant at P < 0.001%; n.s: not significant. 

The 2019 year showed a significantly higher mean value of dry matter (DM) (g) and both N 
content variables (% and g m−2) than 2018 (Table 6), with a difference of 9.60 g, 0.74 and 2.70 for DM 
and N content (% and g m−2) respectively. 

The no tillage (NT) showed a significantly higher N content (% and g m−2) than conventional 
tillage (CT) for both years (Table 6), which was equal to +0.63 for N content (%) and +0.76 for N 
content (g m−2) in 2018, and equal to +0.17 for N content (%) and +1.34 for N content (g m−2) in 2019. 

Table 6. Durum wheat crop parameters analyzed during the growing seasons 2018 and 2019. 

Year SM1 
DM2 N content 

g % g m-2 

 NT3 13.71 (±9.47) a 1.43 (±0.28) a 2.10 (±1.29) a 
CT4 14.34 (±7.18) a 0.80 (±0.12) b 1.34 (±0.67) b 

2018  14.02 (±8.23) B 1.11 (±0.38) B 1.72 (±1.08) B 

 NT 26.92 (±18.95) a 1.93 (±0.51) a 5.09 (±2.71) a 
CT 20.32 (±13.53) a 1.76 (±0.35) b 3.75 (±2.02) b 

2019  23.62 (±16.45) A 1.85 (±0.44) A 4.42 (±2.44) A 
1 SM: soil management; 2 DM: dry matter; 3 NT: no-tillage; 4 CT: conventional tillage; means within columns that are followed 
by the same letter (lowercase letters for SM (a,b); uppercase letters for year (A,B)) are not significantly different at P < 0.05. 
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3.2. Yield Components 

The ANOVA shows for both year (Y) and soil management (SM) factors a significant effect on 
the yield components. In detail, the Y factor significantly affects the number of kernels per spike (KS) 
and the thousand kernel weight (TKW); the SM factor significantly affects the KS and grain yield (t 
ha−1) (Table 7). No significant effect of Y x SM interaction was observed. 

Table 7. Results of the ANOVA applied to a linear model using generalized least squares for durum 
wheat. 

Factor of variation df1 KS2 TKW3 Grain yield 
   n. g t ha−1 

Y4 20 *** *** n.s. 
SM5 20 *** n.s. *** 

Y × SM 20 n.s. n.s. n.s. 
1 df: degree of freedom; 2 KS: number of kernels per spike; 3 TKW: Thousand kernel weight; 4 Y: Year; 5 SM: Soil management; 
***: Significant at P < 0.001%; n.s: not significant. 

The 2019 year showed a significantly higher value on the KS (+7) and a significantly lower value 
on the TKW (−7.7 g) than 2018, while no significant difference was observed for the grain yield (t ha−1) 
in the two-year comparison (Table 8). 

The NT leads to a significantly higher value of the KS and grain yield (t ha-1) than CT in both the 
years under study (Table 8). In 2018, the NT obtained higher values of approximately 46% and 48% 
respectively for KS and grain yield than CT. While in 2019, the NT obtained higher values of 
approximately 35% and 35% respectively for KS and grain yield than CT. 

Table 8. Crop yield parameter measured at crop maturity on the 2018 and 2019 years. 

Year SM1 KS2 
TKW3 Grain yield 

g t ha−1 

 NT4 13 (±2) a 52.2 (±0.9) a 2.5 (±0.2) a 
CT5 7 (±1) b 52.8 (±1.1) a 1.3 (±0.2) b 

2018  10 (±3) B 52.5 (±1.0) A 1.9 (±0.7) A 

 NT 20 (±2) a 44.9 (±1.1) a 2.3 (±0.4) a 
CT 13 (±1) b 44.7 (±1.5) a 1.5 (±0.6) b 

2019  17 (±4) A 44.8 (±1.3) B 1.9 (±0.7) A 
1 SM: soil management; 2 KS: number of kernels per spike; 3 TKW: thousand kernel weight; 4 NT: no-tillage; 5 CT: conventional 
tillage; means within columns that are followed by the same letter (lowercase letters for SM (a,b); uppercase letters for year 
(A,B)) are not significantly different at P < 0.05. 

3.3. Relationship between Vis and N Content (g m−2) 

In the growing season of 2018, the NT system showed an R2 value of 0.81 on average and root 
mean square error (RMSE) of 0.57 on average, while the CT system showed an R2 value of 0.31 on 
average and an RMSE of 0.58 on average. During the growing season of 2019, the NT system showed 
an R2 value of 0.69 on average and RMSE of 1.44 on average; the CT system showed an R2 value of 
0.45 on average and an RMSE of 1.35 (Table 9). 

The previous discussion can also be extended to each individual VI analyzed; in fact, the values 
of R2 are always higher in NT than in CT in both growing seasons (Table 9). 

Considering the 2018 year, we observed that Modified Soil-adjusted Vegetation Index (MSAVI2) 
is the most accurate VI, which reported a R2 on the NT of 0.96 while for CT, the R2 was 0.70. For 2019, 
we observed that the Normalized Difference Red Edge Index (NDRE) was the most accurate VI, 
which reported an R2 on the NT system of 0.95 and an R2 of 0.76 on the CT. 

The NDRE and MSAVI2 are the only VIs that show a significant relationship with N content (g 
m−2) for both soil managements in each year. 
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By evaluating the average R2 obtained for all the VIs analyzed for each year and soil 
managements, we reported that NDRE is the most accurate VI to be related with the N content (g 
m−2) with a mean R2 value of 0.80 (Table 9). 

Table 9. Coefficient of determination (R2) and root mean square error (RMSE) between the calculated 
vegetation indices and the nitrogen content (g m-2) within variation. 

Vegetation index Year Soil management 
N content 

g m−2 
R2 RMSE1 

ARVI 
2018 

NT2 0.80*** 0.61 
CT3 0.08 0.68 

2019 
NT 0.73** 1.48 
CT 0.48* 1.53 

MSAVI2 
2018 

NT 0.96*** 0.28 
CT 0.70** 0.39 

2019 
NT 0.84*** 1.15 
CT 0.42* 1.61 

NDRE 
2018 

NT 0.88*** 0.47 
CT 0.59** 0.45 

2019 
NT 0.95*** 0.62 
CT 0.76** 0.04 

VDVI 
2018 

NT 0.61** 0.84 
CT 0.15 0.65 

2019 
NT 0.13 1.98 
CT 0.11 2.67 

WDRVI 
2018 

NT 0.78** 0.64 
CT 0.01 0.71 

2019 
NT 0.80*** 1.28 
CT 0.44* 1.59 

Mean 
2018 

NT 0.81 0.57 
CT 0.31 0.58 

2019 
NT 0.69 1.44 
CT 0.45 1.35 

1 RMSE: root mean square error; 2 NT: no tillage; 3 CT: conventional tillage; *: significant at P<0.05%; **: significant at P<0.01%; 
***: Significant at P < 0.001%. 

3.4. Vegetation Index Maps 

Figures 2 and 3 show the NDRE vegetation maps corresponding to stem elongation (ZS 35 
phenological stage) and anthesis (ZS 60 phenological stage) for both growing seasons (2018–2019) 
when the durum wheat reaches the maximum vegetative development. 
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Figure 2. NDRE vegetation maps calculated at the stem elongation phenological stage (on the left) 
and at the anthesis phenological stage in the year 2018. 
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Figure 3. NDRE vegetation maps calculated at the stem elongation phenological stage (on the left) 
and at the anthesis phenological stage in the year 2019. 

The year 2019 showed a higher greenness than 2018 in each phenological stage; this is due to a 
significantly higher value of the DM (g) and N (% and g m−2) content (Table 6). 

Within the same phenological stage, in the comparison between different years, NT showed 
significantly greater levels of greenness attributable, as previously mentioned, to the greater content 
of N (% and g m−2), KS, and grain yield (t ha−1) in both years under study (Figures 2 and 3). 

4. Discussion 

The year (Y) factor showed a significant impact on DM (g), KS (n) and TKW (g) as reported on 
the same experimental site by Seddaiu et al., 2016 [67] and on both N content variables (%N and g 
m−2). These results show, as described from several authors [78,79], that the development of durum 
wheat during the season is strongly influenced by the climatic trend; in fact, the rainfall recorded in 
2017–2018 growing season was 30% higher than the rainfall observed during the 2018–2019 (Table 1) 
season, and this probably led to a higher N leaching, which implies a reduction in the availability of 
N for the crop [80]. 

The probable N leaching occurring during the 2017–2018 growing season is confirmed by the 
monthly-estimated soil water balance (Table 1), which showed a difference of 230 mm with respect 
to the 2018–2019 growing season. 

The annual difference is especially concentrated in the February–March period (154 mm and 111 
mm respectively), so this indicates that during this period, some of the nitrogen that was made 
available for soil organic matter mineralization may have been leached. All these consequences are 
much more accentuated in the CT because it has a greater porosity of the soil than NT where there is 
an increased number of soil micropores that facilitate the storage of soil moisture [81–83], a lower soil 
organic matter than NT (Table 2) that plays a key role in water [84–86] and nutrient [87–89] retention 
also thanks to the mulching effect of the straw [88], as well as having no crop residues on the topsoil 
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during the season due to the soil tillage, which involves a re-mixing of the horizons and consequently 
a dilution of the crop residues [90–92]. 

The year (Y) factor didn’t have a significant impact on the grain yield (t ha−1), this result could 
be induced by its two intrinsic variables such as KS and TKW (g), where we observed a dynamic 
balance. 

In the 2018 growing season, the KS showed a lower value than the 2019 growing season, which 
implies a lower nutritional availability, due to the higher rainfall recorded, and therefore less fertility 
of the spike. 

For TKW, we observed an inverse behavior; in fact, lower KS values correspond to higher TKW 
values as described also by Mohammadi et al., 2013 [93], who reported a significant Pearson 
correlation value of −0.52 between KS and TKW. 

During June 2019, the period in which the milk and dough kernel development is occurring, the 
maximum and minimum air temperature were higher than June 2018 (2.4 °C and 1.7 °C respectively) 
(Table 1), this may have contributed to a greater loss of water from the caryopses with a consequent 
effect on the TKW reduction [94]. 

The soil management (SM) factor affected both N content variables (% and g m−2), KS, and grain 
yield (t ha−1) as reported also by Orsini et al., 2019b [95] and Fiorentini et al., 2019 [96]. 

The NT involve a number of other advantages with respect to CT, such as reduction of the 
management costs of the company [97–99], increased fertility of the soil, and positive effects on soil 
biochemical properties and biomass microbial [92,100–102], and this implies a stabilization of 
production in the medium to long term [103]. 

In contrast, the SM factor did not significantly affect the DM (g) and the TKW (g), confirming 
reports by De Vita et al., 2007 [104], according to which durum wheat grown at Vasto (Italy) did not 
show any significant difference in DM (g) and TKW for the years 2000 and 2001 for the Ct versus NT 
soil management analyzed. 

The factorial combination of year and soil management (Y × SM) showed a significant effect (P 
≤ 0.05%) on N content (%) as reported also by López-Bellido et al., 2013 [104]. 

Regarding the relationships between VIs and N content (g m-2), soil management shows a 
significant effect, as reported by Orsini et al. 2019a [66]. 

This may probably due to the greater amount of crop residues present on the NT system, which 
covers the soil surface, reducing soil disturbance [78] in the calculation of VIs starting from 
multispectral images. 

Moreover, since the NT system is not disturbed by plowing, the residues of previous crops 
substantially increase water retention and consequently there is a greater availability of this element, 
thus determining greater crop development [5]. 

This dynamic is also confirmed by Ashapure et al. (2019) [10], who in cotton observed that the 
NT system, compared to the CT system, allows a significant increase on the NDVI (basic vegetation 
index category) in comparison with the CT system. 

By evaluating the performance of the VIs to be related with the crop N content (g m-2), we suggest 
the use of NDRE and MSAVI2 to provide to farmers the vegetation index maps and the prescriptions 
maps for precision agriculture application. 

5. Conclusions 

The thermo-pluviometry trend strongly influences the development of durum wheat, both in 
yield and chemical composition. 

This study shows the superiority of conservative agriculture over conventional agriculture for 
both nutritional and productive aspects on durum wheat. 

We reported a dynamic balance on the yield components, in which KS and TKW are inversely 
proportional. 

In addition, we confirmed again that the accuracy of VIs are related with the nitrogen nutrition 
status of durum wheat, and they also depend on the soil management. All the VIs analyzed obtained 
a higher accuracy in the NT system than in the CT system in both the years analyzed, which is due 
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to the soil is not being disturbed by plowing and cultivation, previous crop residue substantially 
increasing water retention, and soil organic matter content contributing to higher plant growth and 
performance. 

So, we advise to the potential users of multispectral images for precision agriculture application 
to take into account the soil management and related organic matter and nitrogen content into the 
soil. 

In addition, we suggest the use of NDRE and MSAVI2 indices for durum wheat grown under a 
conservative agriculture context to provide vegetation maps and related prescription maps for the 
optimal monitoring of the nutritional status of durum wheat in Mediterranean agricultural contexts. 
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