Supplementary Materials

Development of Neutral pH-Responsive Microgels by Tuning Cross-Linking Conditions

Satoshi Okada*, Satoko Takayasu, Shunsuke Tomita, Yoshio Suzuki and Shinya Yamamoto

*e-mail: sokada@res.titech.ac.jp

Contents:

Supplementary Text: Longitudinal relaxation time (T_1) and transverse relaxation time (T_2) . **Supplementary Table S1:** Mean diameters of the microgels calculated from TEM images.

Longitudinal relaxation time (T_1) and transverse relaxation time (T_2) .

¹H-MRI signal intensity depends on two relaxation processes of the net magnetization (M_0) of water proton spins. M_0 is initially parallel with static magnetic field (Z-direction) but there is no net magnetization on XY plane. By applying radio frequency (RF) pulse, proton spins are excited to a higher energy state involved with phase coherence and M_0 is tilted out from the Z-direction. At the end of RF pulse, the excited proton spins gradually return to thermal equilibrium state and the net magnetization is also relaxed to the initial state M_0 . This relaxation process is separated into two components, Z-direction and XY-direction. The net magnetization recovery of the Z-direction is termed longitudinal relaxation defined as $M_z = M_0[1-\exp(-t/T_1)]$; T_1 is the time required for M_z to approach 63% of M_0 . Longitudinal relaxation is a loss of phase coherence and defined as $M_{xy} = M_0\exp(-t/T_2)$; T_2 is the time required for M_{xy} to approach 37% of M_0 . General MRI contrast agents significantly reduce T_1 and T_2 due to a dipole-dipole interaction between their electron spins and proton nuclear spins and/or distortion of local magnetic field.

Group	Microgels cross-linked by	Mean diameter ± SEM
1	40mol% EGDMA	$120 \pm 4 \text{ nm} (n = 69)$
1, 2	20mol% DEGDMA	$161 \pm 2 \text{ nm} (n = 76)$
1	20mol% TEGDMA	$293 \pm 4 \text{ nm} (n = 31)$
1	20mol% TETEGDMA	$326 \pm 13 \text{ nm} (n = 54)$
2	30mol% DEGDMA	$227 \pm 5 \text{ nm} (n = 44)$
2	40mol% DEGDMA	$564 \pm 16 \text{ nm} (n = 35)$
2	45mol% DEGDMA	$579 \pm 15 \text{ nm} (n = 14)$

Table S1. Mean diameters of the microgels calculated from TEM images.