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Abstract: L-Lysine is produced by a complex non-linear fermentation process. A non-linear model
predictive control (NMPC) scheme is proposed to control product concentration in real time for
enhancing production. However, product concentration cannot be directly measured in real time.
Least-square support vector machine (LSSVM) is used to predict product concentration in real
time. Grey-Wolf Optimization (GWO) algorithm is used to optimize the key model parameters
(penalty factor and kernel width) of LSSVM for increasing its prediction accuracy (GWO-LSSVM).
The proposed optimal prediction model is used as a process model in the non-linear model predictive
control to predict product concentration. GWO is also used to solve the non-convex optimization
problem in non-linear model predictive control (GWO-NMPC) for calculating optimal future inputs.
The proposed GWO-based prediction model (GWO-LSSVM) and non-linear model predictive control
(GWO-NMPC) are compared with the Particle Swarm Optimization (PSO)-based prediction model
(PSO-LSSVM) and non-linear model predictive control (PSO-NMPC) to validate their effectiveness.
The comparative results show that the prediction accuracy, adaptability, real-time tracking ability,
overall error and control precision of GWO-based predictive control is better compared to PSO-based
predictive control.

Keywords: model predictive control; machine learning; grey-wolf optimization;least-square support
vector machine; L-Lysine fermentation

1. Introduction

The invention and advancement of modern computationally fast microprocessors have paved the
path for Model Predictive Control (MPC). Recently, MPC has become one of the efficient predictive
control algorithms in large scale applications such as aerospace systems [1], plastic industry [2],
wastewater treatment plant [3], power electronics industry [4] and many others. It can handle
multi-process variables and incorporate practical constraints on these variables. The basic elements
of MPC are: process model, cost function and optimization algorithm. The process model plays
a key role in the performance of MPC. It should encompass the precise dynamics of the process.
In most applications, linearized models are used in MPC. However, practical processes exhibit severe
non-linearity that cannot be captured by linear models. In addition, these linear models cannot
cover a wide range of operating conditions. Artificial intelligence-based models are famous for their
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self-learning and non-linear modeling ability, and have attracted many researchers to model these
non-linear behaviors such as artificial neural network (ANN) and support vector machine (SVM) [5,6].

L-Lysine is the second most produced amino acid in the world. An estimated global market of
L-Lysine is 2.2 million tons per year, which is growing at the rate of 10% per year [7]. It is mainly used
in food, animal feed, pharmaceuticals and cosmetics industries. This increasing demand in global
market compels industries to look for alternatives to enhance the productivity instead of expanding
the physical capacity of plants, which is expensive and time consuming. One of the best ways to
boost the productivity is to monitor and control product concentration. An excessive increase of
product in reactor causes osmotic stress or catabolic repression for bacteria during cultivation [8].
Temperature, pH, initial substrate concentration, air flow rate and agitation rate are five paramount
factors to enhance and control product concentration [9]. However, L-Lysine fermentation is a highly
non-linear process and product concentration cannot be directly measured in real time using physical
sensors in the fermentation process. Some costly off-line analysis methods such as dry weight method,
ninhydrin colorimetric method and optical density method are used to measure product concentration,
but these methods have limitations, such as large time delay and high infection rate. Therefore, off-line
lab analyzers cannot meet the requirements of real-time control of the fermentation process with these
limitations. To solve the above mentioned problems, machine-learning-based prediction models [10]
have been effectively used by the researchers [11].

Machine-learning-based prediction models construct inferential mathematical models by making
use of easily measurable variables (for example, pH, temperature and dissolved oxygen) obtained
from physical sensors and predict the unmeasurable key variables (product concentration) [12].
The successful implementation of these prediction models has revolutionized the fermentation industry.
Researchers have introduced many data-driven prediction models to model fermentation process
for different objectives. ANN is exploited to design a prediction model for bioethanol production by
defining optimal number of hidden layers and hidden units [13]. However, if the specific structure of
network is not known, ANN loses its generalization ability to model non-linear regression problems
and suffers from overfitting problem [14]. SVM, which is based on structural risk minimization
problem, has successfully resolved the aforementioned problem using simple statistical learning theory.
It is used to solve many industrial applications, such as a modelling method based on SVM is proposed
for Glutamic acid fermentation to predict product concentration [15]. Unfortunately, huge time cost for
training and curse of dimensionality limits usefulness of SVM in many applications [16]. Least-square
support vector machine (LSSVM) alleviates this problem by converting convex Quadratic Programming
(QP) problem in SVM to a system of linear equations. In this way, LSSVM provides fast training speed
and efficiently finds global optimum solution if the parameters are selected carefully [17].

In this study, LSSVM is selected as a prediction model to measure product concentration of
L-Lysine fermentation process. To improve the prediction accuracy and robustness of LSSVM,
two model parameters, namely kernel width ‘σ’ and regularization factor ‘g’ must be optimized.
A very large value of penalty parameter ‘g’ would lead to remarkably high accuracy on training
data but less accuracy on test data, while less value makes the model less functional resulting in
poor performance. In addition, an excessively large value of kernel width control factor ‘σ’ inflicts
overfitting problem and small value results in under-learning problem [18]. Xinhua and Ming [19]
hybridized Particle Swarm Optimization (PSO) algorithm and LSSVM, and proposed a PSO-LSSVM
model to predict the deformation on surrounding rocks of underground caverns. Zhu [20] used
PSO-LSSVM to measure key variables on-line in fermentation process. The comparative studies
show that Grey-Wolf Optimization (GWO) algorithm has overall best performance in terms of search
efficiency and convergence speed for finding a global optimum solution as compared to PSO, ABC,
FFA, CS, BA, FPA, GSA, DE, EP and ES [21,22]. Hence, in this work, GWO is used to get optimum
parameters of proposed LSSVM prediction model. It is notable to mention “No Free Lunch” (NFL)
theorem here, which proves that an optimization algorithm works well in some specific optimization
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problems, but same algorithm is not successful in other set of optimization problems [23]. In our case,
GWO provides best results that fulfill our requirements.

Many studies proposed different machine-learning-based prediction models for MPC to predict
future outputs. A generalized predictive control (GPC) scheme is proposed to control concentration of
bacteria by using a linearized PSO-LSSVM model [24]. However, linear models show limited control
performance because industrial fermentation processes generally exhibit complex and severe non-linear
behavior. Furthermore, if a non-linear model is used, the optimization problem becomes a non-convex
problem, which is solved by using Non-linear Programming (NP) method. Conventionally, NP is
involved in computationally expensive step of determining the hessian matrix and its inverse [25]. In
addition, these solutions are highly dependent on the selection of initial point value and can easily
fall in local optimal region (solution) [26]. The biggest challenge in designing an NMPC is to find
an algorithm that minimizes a cost function in real time. The cost function is usually non-convex,
high-dimensional with complex and non-linear constraints [27].

This work employs a novel derivative-free approach to solve non-linear and non-convex rolling
optimization problem in NMPC to control product concentration of L-Lysine fermentation process.
To the best of our knowledge, GWO has not been applied to solve rolling optimization problem in
NMPC for control problems in fermentation process. GWO has fast convergence speed, involves
lesser operators in computations and requires a few adjustable parameters [28]. These properties
make GWO an ideal candidate to solve a non-linear, non-convex optimization problem of NMPC
in real time. Furthermore, the performance of NMPC is highly dependent on the accuracy of the
prediction model. Thus, constructing an accurate prediction model is a crucial step. The proposed
non-linear GWO-LSSVM prediction model is employed in NMPC for prediction of future output values.
In addition, GWO is imposed to solve rolling optimization problem in NMPC as Chen [29] designed
a NMPC based on PSO to control greenhouse temperature. In this way, a non-linear MPC is designed
which easily incorporates a non-linear prediction model and solves a non-convex optimization problem
in real time. The final results of GWO-LSSVM prediction model and non-linear GWO-NMPC control
algorithm are compared with PSO-LSSVM and PSO-NMPC, respectively. The results show that
the predicted values by GWO-LSSVM are very close to actual values as compared to PSO-LSSVM,
and product concentration follows an optimal trajectory by employing real-time GWO-NMPC control
strategy. Moreover, the results of GWO-NMPC surpass PSO-NMPC in terms of error tracking and
adaptability.

The rest of the paper is structured as: Section 2 consists of materials and methods, which explains
MPC basics, LSSVM model, GWO algorithm, proposed GWO-LSSVM prediction model, GWO-NMPC
algorithm and experimental setup. Section 3 includes results and discussion. The paper is concluded
in Section 4.

2. Material and Methods

2.1. Model Predictive Control (MPC)

Predictive control does not correspond to a particular control methodology but more precisely
an abundant variety of control schemes, which exploits process model to obtain future control
inputs that will force the system response to follow a desired response [30]. To accomplish the
above mentioned objective, it minimizes a user defined objective function to obtain optimal future
control inputs over a predefined prediction horizon (Npred) and control horizon (Ncon). Several MPC
algorithms are different from each other because of the prediction models used to simulate the actual
process and objective function that is used to solve the optimization problem. The basic structure of
MPC is shown in Figure 1. The future control inputs are calculated by minimizing the error between
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the predicted output and a reference by solving an optimization problem. The general expression for
an objective expression is as follows:

J(Npred, Ncon, u)
∆u

=

Npred

∑
j=1

Qout(j)(ypred(j + t|t)− yre f (j + t)2

+
Ncon

∑
j=1

Rin(j)(∆u(j + t− 1))2

(1)

subjected to constraints:

umin ≤ u ≤ umax

∆umin ≤ ∆u ≤ ∆umax

ymin ≤ y ≤ ymax

(2)

where u, ∆u, ypred, yre f , Rin, Qout represent input, input increment, predicted output, desired
reference, input penalization factor, error coefficient, respectively, and umin, umax, ∆umin, ∆umax,
ymin, ymax denote lower and upper bounds on control input, control increment, and control output,
respectively. The steps included in MPC are:

1. Calculate output at the current time and calculate future outputs up to the prediction horizon
Npred.

2. Construct an objective function using predicted and reference values over a prediction and control
horizon.

3. Minimize objective function to calculate optimal values of future inputs Uop = uop
0 , uop

1 , . . . , uop
Ncon−1

.

4. Apply the first predicted input uop
0 and discard all other future input values. Repeat the whole

process at next sampling time t + 1.

Prediction
Model

Optimization

Past Inputs and Outputs

     +

-

Reference 

Future

 Control
 Inputs

Objective Function
         

          Constraints

Predicted Output

Figure 1. The Basic Structure of MPC.

2.2. Least-Square Support Vector Machine (LSSVM)

To solve the computational complexity problem of SVM [31], Suykens proposed LSSVM [32].
In LSSVM, an equality constraint is introduced instead of inequality in SVM and a complex QP
optimization problem is converted into the equations of linear system. In this way, the model
decomposition and prediction problems can be solved efficiently. The basic principle is as follows:

Given l sample points for training, {(xi, yi)|i = 1, . . . , l}, xi ∈ Rn is an input vector and yi ∈ R
represents corresponding outputs. The approximation function in LSSVM is defined as:

y(xi) = ωT ϕ(xi) + b (3)
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The optimization problem for regression is as follows:

min J(ω, ξ)
ω,ξ,b

=
1
2

ωTω +
g
2

l

∑
i=1

ξ2

s.t. yi(xi) = ωT ϕ(xi) + b + ξ, i = 1, . . . , l

(4)

where ω is a weight vector, g ∈ R+ is penalty parameter, ξi is an error variable, b is the
deviation and ϕ(·) is mapping to a high-dimensional space. Lagrange method is used to optimize
the above problems:

Ł(ω, ξ, b, α) =
1
2

ωTω +
g
2

l

∑
i=1

ξ2 −
l

∑
i=1

αi(ω
T ϕ(xi) + b + ξi − yi) (5)

where αi is a Lagrange multiplier. According to Karush–Kuhn–Tucker (KKT) conditions, the transformation
to the linear equation is as follows [17]:(

0 1T
l

1l K + g−1 Il

)(
b
α

)
=

(
0
y

)
(6)

where y = [y1, y2, . . . , yl ]
T , 1l = [1, . . . , 1]T , Il is lth ordered unit matrix, α = [α1, . . . , αl ]

T and K is the
kernel function matrix that satisfy Mercer’s conditions:

K = ϕ(xi)
T ϕ(xj), (i, j) = 1, . . . , l (7)

In this paper, radial basis function is chosen as the kernel function because of its excellent
performance and generalization ability, which is given as follows [33]:

K = K(x, xi) = exp
−|x−xi |

2

2σ2 (8)

here σ is the kernel function width. Finally, the function of LSSVM is estimated as:

y(x) =
l

∑
i=1

αiK(x, xi) + b (9)

The prediction accuracy and generalization ability of LSSVM regression model strongly depends
upon the penalty parameter ‘g’ and kernel width ‘σ’. So, these two parameters need to be optimized.

2.3. Grey-Wolf Optimization (GWO)

Mirajlili et al. proposed the GWO algorithm which imitates the social behavior of a grey wolf
pack [22]. The grey wolves are divided into four categories namely alpha, beta, delta and omega. Alpha
represents highest category and consists of leaders of the whole pack. Alpha wolves are responsible for
making daily life decisions like hunting a prey, moving forward or stopping, sleep time and place. Beta
group facilitates the alpha group in formulating these strategies and implementing commands on other
lower categories. The third delta class is dedicated for fulfillment of above commands and controls
omega. The lowest rank omega mainly obeys all instructions by superior departments. The hunting
plan comprises of three steps: identifying and chasing the prey; encircling and harassing prey until it
stops resilience; attacking on prey.

During the optimization process, it is assumed that the size of the grey wolf population is
n, in an unknown d-dimensional search space. The position of grey wolves is denoted by Xwi =

[x1
i , x2

i , . . . , xd
i ]. Alpha is considered to be the best fittest solution and its position is denoted by Xα.
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Then, beta and delta are ranked as second, third best solutions and their locations are represented by
Xβ and Xδ, respectively. The remaining solutions represent omega class of pack.

The encircling strategy of the hunting process is mathematically modeled by the following equations:

~D = |~C.~Xp(t)− ~Xw(t)| (10)

~Xw(t + 1) = ~Xp(t)− ~A.~D (11)

where t indicates the current iteration, ~A, ~C are coefficient vectors, ~Xp and ~Xw denote the position of
the prey and wolf, respectively. ~A and ~C vectors are calculated as follows:

~A = 2~a.~r1 −~a (12)

~C = 2.~r2 (13)

where with an increase in number of iterations,~a decreases linearly from 2 to 0.~r1 and~r2 are random
numbers in range [0, 1]. The hunting process is performed under the guidance of alpha. Beta and delta
might also facilitate alpha in trapping a prey. So top three departments (alpha, beta, delta) have the best
information (best solution) about the prey. These best solutions found so far are saved iteratively and
other search agents (omega) are forced to follow and update positions according to these best positions.
The mathematical equations that encapsulate all the above scenario are as follows:

~Dα = |~C1.~Xα − ~X| (14)

~Dβ = |~C2.~Xβ − ~X| (15)

~Dδ = |~C3.~Xδ − ~X| (16)

~X1 = ~Xα − ~A1.~Dα (17)

~X2 = ~Xβ − ~A2.~Dβ (18)

~X3 = ~Xδ − ~A3.~Dδ (19)

~X(t + 1) =
~X1 + ~X2 + ~X3

3
(20)

2.4. GWO-LSSVM Prediction Model

The parameters ‘g’ and ‘σ’ of the LSSVM model play a critical role in the prediction accuracy.
A very large value of penalty parameter ‘g’ would lead to remarkably high accuracy on training data
but less accuracy on test data, while low value of ‘g’ makes the model less functional which results in
poor performance [18]. In addition, an excessively large value of kernel factor ‘σ’ inflicts overfitting
problem and small value results in under-learning problem. The kernel width ‘σ’ defines the effect of
a single training example on other examples. Hence, there is a need to choose the values of LSSVM
model parameters ‘g’ and ‘σ’ carefully. Researchers have used different optimization algorithms to
select the optimum values of critical parameters of regression models, such as the PSO algorithm [24].
In this study, an efficient metaheuristic GWO algorithm is proposed to find best suitable parameters of
LSSVM prediction model as shown in Figure 2. The steps of GWO-LSSVM are as follows:

Step 1: Prepare train, test, cross-validation data and perform pre-processing (normalization). Define
number of search agents, maximum iterations, dimension of parameters to be optimized,
lower and upper bounds.

Step 2: Randomly initialize alpha, beta, delta and omega positions, and~a, ~A, and ~C. Train LSSVM model
on training data using these positions as ‘g’ and ‘σ’ value.
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Step 3: Calculate fitness value of each search agent position. The fitness value corresponds to
prediction accuracy of trained model on cross-validation data, which is calculated using
user defined fitness function. In this study, RMSE is used as a fitness function given in
Equation (22).

Step 4: Update the positions using Equations (14)–(20) and ~A, ~C and~a using Equations (12) and (13).
Step 5: Calculate again the fitness value of all updated positions.
Step 6: Rank and store the best solution obtained so far using fitness value. Repeat from step (4) to

step (6) until maximum cycles are reached.
Step 7: Train again LSSVM model with best solution obtained from above steps and check the

prediction accuracy on new test data to verify again model functionality.

Start

Prepare modelling data and perform 
preprocessing (Normalization)

Initialize population, and other parameters of 
GWO algorithm

Calculate fitness value of each search agent

t < max cycles

Update positions and other parameters.

Calculate fitness values of updated positions

Rank and store the best solution obtained so far.
t = t +1

Collect new test data 
on-line

Pre-processing

LSSVM prediction

Post-processing

Prediction Results

End

Train LSSVM Model

Optimized 
Solution

No

Yes

t = 1

Figure 2. GWO-LSSVM prediction model.

2.5. GWO-NMPC Control Algorithm

The proposed GWO-LSSVM prediction model is employed in NMPC for prediction of future
output values. Furthermore, the optimization problem in NMPC is solved by using GWO algorithm.
Hence, a GWO-based non-linear MPC control strategy is used to achieve the objective of this study.
GWO can incorporate the constraints on input, input increment and output value. The fitness function
in GWO is replaced by the defined objective function. In this case, the position of the pack in GWO
denotes the future control increments (penalty factor and kernel width in case of LSSVM optimization).
GWO algorithm optimizes the objective function and finds optimum values of control increment ∆u.
The steps of GWO-NMPC are as follows:

Step 1: Control input variables, output variable and reference trajectory are defined.
Step 2: The constraints on inputs, input increments and outputs are defined.



Sensors 2020, 20, 3335 8 of 17

Step 3: The control objective is accomplished by using an objective function as in Equation (1).
Step 4: In objective function, the predicted output ‘ypred’ is estimated by using proposed GWO-LSSVM

model.
Step 5: For each sampling interval, GWO optimizes the objective function and calculates the optimum

values of control input increment ∆u.
Step 6: The future control inputs are calculated by using following equation:

u(t + 1) = u(t) + ∆u(t + 1) (21)

where t, u, ∆u represent current sampling time, control input and control increment,
respectively.

Step 7: Finally, calculated input is applied to the process and output feedback strategy is employed.

The final GWO-based non-linear MPC using a GWO-LSSVM prediction model control scheme
for controlling the product concentration in L-Lysine fermentation process is shown in Figure 3.
The prediction error is corrected on-line using output feedback.

Desired Reference 
Output

yref

GWO-NMPC
Fermentation 

process

+

-

GWO-LSSVM 
prediction model

y

+

-

       ypred

Figure 3. GWO-LSSVM-NMPC to control L-Lysine product concentration.

2.6. Experimental Setup

The experiment of L-Lysine fed-batch fermentation was carried out at the control system platform
of Jiangsu University. The RT-100L-Y fermenter model was used to perform this experiment. To make
the experiment close to the actual production process, the experimental process was designed
as follows:

1. In a 30 L mechanical stirring fermenter, fed-batch fermentation was conducted. The environmental
parameters and physical parameters in the fermentation process were collected in real time
by a digital measurement and control system composed of ARM development platform,
and transmitted to the industrial control computer in the control room via a serial communication
line. The time period for every batch was 72-h and the sampling time period was 15 min.
The auxiliary inputs (such as temperature T, pH, agitation speed rate u1, dissolved oxygen Do,
air flow rate u2 and acceleration rate of ammonia flow u3) were collected in real time. The key
variable product concentration ‘P’ was sampled after every 2-h and tested in laboratory off-line.
After this, the key biochemical variable was transformed from 2-h sampled data to 15 min
sampled data (consistent with the number of auxiliary inputs data) in MATLAB using the “spline”
interpolation function interp1 (https://www.mathworks.com/help/matlab/ref/interp1.html).
P was determined by the modified ninhydrin colorimetric method, i.e., 2 ml of the supernatant and
4 ml of the ninhydrin reagent were mixed and heated in boiling water for 20 min. The absorbance
at 475 mm was measured by a spectrophotometer after cooling and obtained by checking the
standard L-Lysine curve. These inputs represent the inputs ‘x’ in Equations (3)–(9). In addition,

https://www.mathworks.com/help/matlab/ref/interp1.html


Sensors 2020, 20, 3335 9 of 17

the product concentration ‘P’ represents the output ‘y’ in Equations (3)–(9). A non-linear mapping
function is estimated using LSSVM between these inputs and output.

2. Ten batches were used for testing the modeling competence of the GWO-LSSVM method.
The initial conditions between batches were set differently and the feeding strategy was also
changed to enhance the differences between batches. The pressure of the fermentation tank was
set to 0 v 0.25 MPa, the temperature of fermentation was adjusted to 0 v 50 ◦C ± 0.5 ◦C and the
dissolved oxygen electrode was calibrated for the reference reading when the stirring motor was
rotating at 400 rpm.

2.7. Performance Evaluation Metrics

To evaluate the accuracy of prediction model, statistical measures such as Root mean square error
(RMSE), Mean absolute error (MAE) and Mean absolute percentage error (MAPE) are used.

RMSE(Vactual , Vpred) =

√√√√ 1
T

T

∑
i=1

(Vactual −Vpred)2 (22)

MAE(Vactual , Vpred) =
1
T

T

∑
i=1
|Vactual −Vpred| (23)

MAPE(Vactual , Vpred) =
1
T

T
∑

i=1
|Vactual −Vpred|

Vactual
(24)

where Vpred, Vactual and T represent predicted, actual and total number of output values, respectively.

3. Results and Discussion

At first, the data are normalized in the range [−1 1]. Six batches are selected randomly to train the
GWO-LSSVM model. Further two batches are selected for cross-validation step (off-line training and
correction of model). After off-line validation of prediction model, the model is tested using optimized
values of LSSVM parameters on two new batches of data to estimate the product concentration on-line.
To find the optimum values of parameters of LSSVM, the parameters of GWO are adjusted as search
agents Nmax = 30, maximum iteration Iter = 100, dimension dim = 2, lower bound lb = [1, 0.001] and
upper bound ub = [10, 000, 0.1].

3.1. GWO-LSSVM Results Analysis

LSSVM parameters are optimized using GWO optimization. The wolf’s position in 2-dimensional
search space (2D = number of LSSVM parameters to be optimized) represents LSSVM parameter
values. The best position of alpha wolf denotes optimal parameters of LSSVM. RMSE is used as
an objective function given in Equation (22). It defines the fitness of the solution (best position).
The parameter values that minimize this objective function are selected as optimal solution which
represent best position of alpha wolf. After selecting the optimal parameters obtained through GWO,
LSSVM prediction model is established using these optimal parameters (GWO-LSSVM).

The proposed GWO-LSSVM is exploited as a prediction model and results are compared with
PSO-LSSVM to show the effectiveness of GWO-LSSVM prediction model. PSO-LSSVM is the widely
used prediction method in biological fermentation processes. For example, PSO-LSSVM is used to
predict inulinase concentration in Pichia pastoris fermentation process [34]. Zhu [20] used PSO-LSSVM
to measure key variables in Penicillin fermentation process. The actual and predicted curves by
proposed GWO-LSSVM and PSO-LSSVM are shown in Figure 4a. The results clearly show that the
GWO-LSSVM prediction model is capturing the future variation trends accurately. Furthermore,
the difference between actual and predicted value is plotted in Figure 4b to visualize error more
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clearly. We can see that the amplitude of error spikes for GWO-LSSVM is much lower than that of
PSO-LSSVM. In addition, three statistical performance evaluation metrics are presented in Table 1.
The RMSE value of GWO-LSSVM is approximately 61 % less than PSO-LSSVM. Similarly, the difference
in the values of MAE and MAPE is approximately 77 % and 43 %, respectively. It is evident from the
results of these statistical measures that GWO-LSSVM perform better than PSO-LSSVM. Although
PSO has been very successful in many applications, it is more vulnerable to getting stuck at local
minimum. According to NFL theorem, there is no single existing optimization algorithm that would
be applicable in all kind of optimization problems. In each optimization problem, the optimization
algorithm encounters a different unknown search space. The success of optimization algorithms
depends upon the basic strategy of mathematical models that tries to avoid the local optimal
solutions. In our case, the GWO-based LSSVM prediction model is more competent as compared
to PSO-LSSVM. The prediction error is negligible and almost all error values lie in range [−0.1 0.1],
which is satisfying the controller requirement employed to control the product concentration. Thus,
the proposed GWO-LSSVM prediction model is the best choice to be used as a process model in current
non-linear MPC.
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Figure 4. Product concentration prediction and error curve.

Table 1. RMSE, MAE and MAPE comparison.

Model RMSE MAE MAPE

GWO-LSSVM 0.136918 0.047230 0.703616
PSO-LSSVM 0.355483 0.212182 1.244831
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3.2. GWO-NMPC Results Analysis

The proposed non-linear MPC uses the search efficiency, local and global search ability of GWO
for manipulating the input variables to optimize the future behavior of product concentration in
L-Lysine’s fermentation process. Dissolved Oxygen ‘Do’ and ‘pH’ have a strong influence on product
concentration. Thus, by monitoring the product concentration and according to its required optimum
growth, Do and pH are manipulated using agitation rate ‘u1’, airflow rate ‘u2’ and ammonia flow rate
‘u3’. Hence, three manipulated input variables are agitation rate ‘u1’, airflow rate ‘u2’, ammonia flow
rate ‘u3’. The controlled output ‘y’ is product concentration. The initial substrate concentration and
temperature values are 150 g L−1 and 32 ◦C, respectively. The objective function in Equation (1) is
used as a fitness function of GWO, such as RMSE is used in the optimization problem of the LSSVM
parameters. The error coefficient and input penalization coefficient are usually selected as a constant
value. In this work, the value of error coefficient is selected as Qout = 1 and input penalization
coefficient is Rin = 0.001. The constraints on inputs, input increments and output are defined as:

316 ≤ u1 ≤ 345

0.1 ≤ u2 ≤ 1.6

51 ≤ u3 ≤ 110

(25)


−15 ≤ ∆u1 ≤ +15

−1 ≤ ∆u2 ≤ +1

−30 ≤ ∆u3 ≤ +30

(26)

0 ≤ y ≤ 45 (27)

The initial inputs are selected as U10 = 326, U20 = 0.1 and U30 = 88. These initial input values are
used to calculate the first future optimal input values according to Equation (21). The prediction and
control horizon are defined as Npred = Ncon = 1. These parameter values are selected after extensive
simulations. The increase in prediction and control horizon values have no significant difference on
performance in our problem. Furthermore, our requirement is satisfied with these minimum horizon
values. The computational cost increases with the increase in value of these horizons. However,
these values can be increased that depends on the objective of controlling process to acquire desired
response. GWO-LSSVM prediction model predicts the future output value ‘ypred’ in defined objective
function as in Equation (1). As GWO-LSSVM prediction model is non-linear, and objective function
consists of non-linear constraints on manipulated inputs (agitation speed rate u1, air flow rate u2 and
acceleration rate of ammonia flow u3), so the optimization problem to solve this objective function
for optimal future inputs (u1, u2 and u3) becomes a non-convex and non-linear optimization problem.
Now, GWO solves this optimization problem to find the future optimal values of these manipulated
inputs at each sampling time. Here, a 3-dimensional search space is defined (3D = number of optimal
future inputs to be determined). The wolves position in 3 dim space represents future optimal increment
in input values (∆u1, ∆u2 and ∆u3). The optimal future input increments that minimize the defined
objective function (best alpha wolf position) are calculated in advance at each sampling instant for
next sampling time. These optimal increments in inputs are used to determine the optimum values
of future input rates using Equation (21). Then, these optimized input rates are applied to acquire
the desired response. At next sampling point, the whole process is repeated for upcoming sampling
instant to achieve the required objective.

3.2.1. Hypothetical Case Study

The proposed GWO-based predictive control scheme is compared with the PSO-based predictive
control method. GWO-LSSVM is used as a prediction model, in proposed NMPC, to predict product
concentration such as PSO-LSSVM is exploited as a prediction model in a predictive control method to
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predict and control bacteria concentration [24]. Similarly, PSO is used in a study to solve the rolling
optimization problem in a predictive control scheme to control substrate concentration and LSSVM is
used as a prediction model [35].

Initially, a hypothetical reference signal with sharp periodic step changes is applied to validate the
robustness and adaptability of GWO-NMPC for the first 44 hours, as shown in Figure 5. The simulation
results are compared with PSO-NMPC. Although this kind of phenomenon is not realistic in
fermentation process because fermentation is a slow time varying process, yet it proves the robustness
and adaptability of the proposed control scheme. The corresponding manipulated input variables are
shown in Figure 6a–c.
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Figure 5. GWO-NMPC controlled product concentration output with hypothetical reference.
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Figure 6. GWO-NMPC controlled inputs with hypothetical reference.
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3.2.2. Real Case Study

An optimal selected trajectory as a reference is applied and the results are shown in Figure 7.
The corresponding manipulated inputs are shown in Figures 8–10. We can see that the proposed
method enforced the desired response and process follows this optimal trajectory accurately. GWO
possesses fast convergence speed, excellent local, and global search ability. GWO is successful in
handling non-linear constraints to solve a non-convex optimization problem for optimal future input
values in real time and provides best global solution as compared to PSO. In addition, GWO-NMPC
outperforms PSO-NMPC in terms of prediction accuracy, control precision and near-to-accurate
tracking ability. The overall error in GWO-NMPC is negligible as compared to PSO-NMPC. The success
of NMPC highly depends upon accuracy of process model used for output prediction. GWO-LSSVM
encompasses precise dynamics and non-linear behavior between inputs and output of the L-Lysine
fermentation process. This results in efficient performance of the proposed GWO-NMPC. Due to such
optimal and controlled conditions, the osmotic stress or catabolic repression of bacteria is avoided
successfully, and the final yield is increased by 25 % approximately. Therefore, it shows that the
machine-learning-based prediction models and predictive control schemes are effective for control and
optimization of complex non-linear industrial processes.
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Figure 7. GWO-NMPC controlled product concentration output with optimal reference.
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Figure 8. GWO-NMPC controlled agitation rate u1 with optimal reference.



Sensors 2020, 20, 3335 14 of 17

 

0 10 20 30 40 50 60 70 80 

Time (h) 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

GWO Air flow rate 

PSO Air flow rate 

C
o

n
tr

o
l i

n
p

u
t 

2
 (

vv
m

)

Figure 9. GWO-NMPC controlled airflow rate u2 with optimal reference.
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Figure 10. GWO-NMPC controlled ammonia flow rate u3 with optimal reference.

4. Conclusions

A non-linear MPC by exploiting a machine learning-based prediction model is proposed to control
product concentration in real time. LSSVM prediction model, which requires very few input and
output samples for training, is deployed in NMPC. The traditional experience and trail-error-based
method to select optimal value of LSSVM parameters is replaced by employing a novel metaheuristic
GWO algorithm. Thus, real-time identification problem is solved by proposed GWO-LSSVM prediction
model and it eliminates the need for an accurate kinetics mathematical model. Furthermore, to cope
with the non-linear, non-convex and complex constraints-based optimization problem in NMPC,
a gradient free approach is proposed. A novel GWO-based algorithm is established to compute
optimum future input values by minimizing a cost function in real time. The proposed GWO-NMPC
control scheme provides an efficient way to deal with complex, non-linear and dynamic systems.
In future, we are interested to extend this work to control and optimize further key variables in
fermentation process by designing multi-input and multi-output models.
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The following abbreviations are used in this manuscript:

NMPC Non-linear Model Predictive Control
SVM Support Vector Machine
LSSVM Least-Square SVM
GWO Grey-Wolf Optimization
PSO Particle Swarm Optimization
ANN Artificial Neural Network
QP Quadratic Programming
ABC Artificial Bee Colony
CS Cuckoo Search
FFA Firefly Algorithm
BA Bat Algorithm
FPA Flower Pollination Algorithm
GSA Gravitational Search Algorithm
DE Differential Evolution
EP Evolutionary Programming
ES Evolution strategy
NFL No Free Lunch
GPC Generalized Predictive Control
NP Non-linear Programming
KKT Karush–Kuhn–Tucker conditions
NP Non-linear Programming
RMSE Root Mean Square Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
ml Milliliter
mm Millimeter
rpm Revolutions per minute
MPa Megapascal
vvm Volume per Unit per Minute
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