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Abstract: Monitoring contemporary water distribution networks (WDN) relies increasingly on smart
metering technologies and wireless sensor network infrastructures. Smart meters and sensor nodes
are deployed to capture and transfer information from the WDN to a control center for further
analysis. Due to difficulties in accessing the water assets, many water utility companies employ
battery-powered nodes, which restricts the use of high sampling rates, thus limiting the knowledge
we can extract from the recorder data. To mitigate this issue, compressive sensing (CS) has been
introduced as a powerful framework for reducing dramatically the required bandwidth and storage
resources, without diminishing the meaningful information content. Despite its well-established
and mathematically rigorous foundations, most of the focus is given on the algorithmic perspective,
while the real benefits of CS in practical scenarios are still underexplored. To address this problem,
this work investigates the advantages of a CS-based implementation on real sensing devices
utilized in smart water networks, in terms of execution speedup and reduced ener experimental
evaluation revealed that a CS-based scheme can reduce compression execution times around 50%,
while achieving significant energy savings compared to lossless compression, by selecting a high
compression ratio, without compromising reconstruction fidelity. Most importantly, the above
significant savings are achieved by simultaneously enabling a weak encryption of the recorded
data without the need for additional encryption hardware or software components.

Keywords: smart water networks; Internet-of-Things platform; compressive sensing; energy
consumption; execution speedup; weak encryption

1. Introduction

Drinking water supplies face pressing issues, particularly in island regions, where climate change,
water scarcity, pollution, and the high cost of desalination are putting pressure on water distribution
organisations. At the same time, 15-25% of the drinking water produced is lost via invisible leakages,
which represent a main contributor to non-revenue water. From an economic perspective, the cost
of lost water worldwide, due to leakages, metering errors and non-billed consumption, is about
US$39 billion annually [1]. In addition, the volume and indicators of non-revenue water vary with
variations in the system input volume, which is even more critical for monitoring non-revenue water
for systems alternating between intermittent and continuous supply [2]. The challenge for water utility
companies is to save resources, thus improving water sustainability. To this end, innovative monitoring
and control technologies to reduce water loss are increasingly gaining the interest of the water
management communities.
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Specifically, water utility companies progressively transform their obsolete water distribution
networks (WDNs) to smart infrastructures by exploiting modern Information Communication
Technologies (ICT) [3]. A smart water network infrastructure aims at reducing telemetry costs,
detecting leakages in a timely fashion, monitoring the non-revenue water, and visualizing the available
data in a user-friendly way. A typical architecture of such an infrastructure consists of two main entities,
depending on the functionalities they offer and their spatial location in the space, namely, at the edges
of the network (i.e., the hydraulic network of pipes, the consumers’ buildings, etc.) and in the control
center [4]. Our subsequent analysis focuses on the edges of the water network, since the need to satisfy
any energy and computational constraints mainly refers to this specific part of the architecture.

In the literature, we often find an additional partition at the edges of the network, namely between
a physical infrastructure and the smart sensors [5-7]. Specifically, the physical infrastructure includes
the tanks where the water is stored, the pipes through which the water is distributed to the network,
joints for pipes connection, and water meters to record consumption. Systematic recording of the
technical characteristics of the physical infrastructure is imperative, since they affect the hydraulic
models and processing of the observed data. Such parameters include, among others, the pipes’
length, diameter and roughness; pump curves and settings; and the number of tanks and their
dimensions [8]. On the other hand, the smart sensors are the part of the architecture associated with
the collection, processing, and transmission of the relevant data. These sensors are utilized to control
water quality, pressure, and flow, while modern smart meters also provide leakage detection and
notification capabilities. In addition, the smart sensing infrastructure also includes all the appropriate
network components, such as transmitters and gateways, to send the observed data to a control center
for further analysis.

Smart sensing technologies are based on the development of smart metering and sensing
devices [9,10], in conjunction with advanced numerical methods for high-level data analysis [11-13].
Compared to traditional metering devices, smart metering deployments are a key component for the
realization of smart environments, since they enable multiple capabilities to water utility companies
and consumers, such as accurate data collection, backflow measurements, which is widely used
problem indicator in water systems, while they are less susceptible to corrosion. The data collected
from a smart infrastructure enables to better comprehend water demands, which further influences
the efficient design of urban water supply networks.

Recording and analyzing data in real time allows water utilities to perform various critical
tasks, such as identifying leakages, fixing system’s malfunctions, timely scheduling infrastructure
maintenance, and essentially enabling them to achieve sustainable water use [14]. To this end, existing
water management systems primarily rely on energy consuming above-ground deployments to
monitor and transmit water network states, such as water flow and pressure, to a server periodically,
typically via the mobile cellular networks, in order to detect abnormal events such as water leakages
and bursts [15-17]. Nevertheless, more than 97% of water network assets are placed at a considerable
distance from power resources and often in geographically remote areas. Such constraints put big
challenges on current approaches making them unsuitable for next generation smart water networks.

To overcome these limitations, traditional water metering devices of mechanical type,
are gradually replaced by sophisticated battery-driven wireless sensor networks, which are emerging
as an effective alternative solution for large-scale smart water management systems [18]. However,
the main challenge of these infrastructures is that sensor nodes typically consume a lot of energy
to record and transmit high-precision data [19]. This constraint limits the amounts of data that can
be sensed and relayed for analysis, which is necessary for timely and reliable anomaly detection
(e.g., leakages and bursts) and alerting. To address this problem, reducing the volume of data that are
transmitted to a control center for further processing is a critical task. To this end, data compression
mechanisms are integrated on the sensor network’s side. The role of data compression in WDN
management is twofold: (i) increase the system’s autonomy by reducing the energy consumption;
and (ii) reduce telemetry costs for the water utility companies. To this end, reduction of data volumes
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is achieved by algorithms roughly classified into: (a) lossless compression methods, when perfect data
reproduction is required; and (b) lossy compression methods, when perfect reproduction is either
impossible or requires too many bits [20].

Each compression method has its own advantages and limitations. Specifically, in lossless
compression [21,22], the recorded data stream can be reconstructed completely without losing
information, while lossy compression [23-25] introduces a reconstruction error. Nevertheless,
in contrast to lossless compression, which places an upper bound on the compression performance,
lossy compression can significantly reduce the amount of data, and consequently the communication
cost without sacrificing the meaningful information content.

Focusing on time series data, existing lossless and lossy compression methods are applied
primarily on temporal samples, with the sampling process being largely dominated by the traditional
Nyquist-Shannon theory. According to this theory, the exact recovery of a discrete signal requires
a sampling rate twice the signal’s bandwidth. Moreover, the sampling scheme characteristics can have
dramatic consequences on the quality of the recorded signals, the hardware necessary to achieve the
required quality and therefore the cost, time, and effort that accompany the process. Nevertheless,
several studies have shown that many natural signals are amenable to highly sparse representations in
appropriate transform domains (e.g., wavelets and sinusoids) [26,27]. This means that the resulting
vector of transform coefficients has a small number of significant (i.e., large-amplitude) elements,
while the great majority of them have an amplitude equal to or near zero.

Compressive sensing (CS) provides a powerful framework for simultaneous sensing and
compression [28,29], enabling a significant reduction in the sampling, computation, and transmission
costs on a sensor node with limited memory and power resources. According to the theory of CS,
a signal having a sparse representation in a suitable transform basis can be reconstructed from a small
set of projections onto a second, measurement basis that is incoherent with the first one. Intuitively,
this means that the vectors of the measurement basis are not statistically correlated with the vectors of
the sparsity basis. In the framework of smart water networks, the advantages of CS have recently been
exploited for reducing the amount of transmitted pressure data, thus extending the battery life of
sensor nodes deployed in a WDN demonstrator [30], while still maximizing the received information
to data centers. Nevertheless, this study was performed in a rather ex post fashion, in the sense that
the principles of CS were applied on the recorded full-resolution time series under simulated sensing
and water network conditions. Despite the well-established and mathematically rigorous foundations
of CS, most of the focus is given on the algorithmic perspective, while the real benefits of CS in practical
scenarios are still underexplored.

To address this problem, this work investigates the advantages of implementing a CS mechanism
for lossy data compression on real sensing devices utilized in a real urban WDN, in terms of
execution speedup and reduced energy consumption, when compared against a lossless compression
alternative that is widely used in commercial hardware solutions. It is also important to emphasize that
a water management system is required to manage confidential data, such as household consumption.
Traditional systems employ a separate software- or hardware-based component to encrypt sensitive
data, which increases the deployment cost of the overall infrastructure. In this work, we also
demonstrate the efficiency of CS as an effective mechanism for simultaneous data compression
and weak encryption, ensuring data confidentiality with high probability, in real smart water
network scenarios.

The rest of the paper is organized as follows. Section 2 overviews the basic concepts of CS for
data compression, and describes our CS-based system architecture enabling weak data encryption.
Section 3 analyzes the complete hardware and software platform, which is utilized to quantify the
efficiency of CS in a real setting. In Section 4, the performance of CS is evaluated and compared against
lossless compression on real pressure data. Section 5 summarizes the main results and proposes
directions for further research.
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2. Data Acquisition System Overview and Preliminaries

Municipalities and water utility companies cannot easily afford the reduced efficiency of obsolete
water distribution networks, the increased cost of maintenance and energy consumption, and the
lower revenues that it generates. To overcome these limitations, water utilities show an ever increasing
interest in deploying innovative sensor nodes and smart meters to bring outdated water networks
to the smart water networks’ era. All these smart devices transmit consumption, flow, and pressure
data periodically in predetermined time intervals, through mobile cellular networks or the Internet to
a central server for further data analysis and decision making. This is also the case in our parent project,
SmartWater2020 (https:/ /www.smartwater2020.eu), which focuses on developing smart technologies
to support water utilities in the islands of Crete (Greece) and Cyprus. Specifically, this study employed
pressure data from a real operational network in the region of Malevizi in Crete, to evaluate and
assess the operational benefits of compressive sensing in real-world scenarios. The rest of this section
describes our data acquisition and compression system, and overviews the main principles and
properties of compressive sensing.

2.1. Data Description

The subsequent performance evaluation utilized real pressure data recorded by the smart water
management infrastructure (see Figure 1) of the Municipal Enterprise for Water Supply and Sewerage
of Malevizi. Part of the infrastructure, including smart meters and pressure sensors, has been upgraded
within the framework of the SmartWater2020 project. More specifically, our dataset consists of pressure
data spanning the period between January 2017 and September 2018. Incoming and outgoing flow
pressure measurements are sent to the control center at a frequency of one sample (pressure expressed
in Bars) per 15 min, yielding a total of approximately 9000 observations per sensor. This sampling
frequency suffices in order to enable real-time monitoring of the water distribution network of the
municipality of Malevizi, which is divided into 10 zones, each monitored by a pressure sensor. It is also
important to emphasize that, due to the complex mountainous topography of the monitored area,
the pressure time series are characterized by distinct dynamics. This allows us to demonstrate the
efficiency of our CS-based system under non-uniform conditions of the WDN. We also emphasize
that, although our evaluation was performed on pressure data, the same analysis could be applied
in a straightforward fashion on any other type of sensed parameters, such as flow and water quality
(e.g., pH, conductivity, turbidity, etc.).
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Figure 1. The SmartWater2020 platform.

2.2. Compressive Sensing

A critical issue in smart water networks is the increase of their autonomy by reducing the energy
consumption for sampling, compressing, and transmitting the observed data. For decades, traditional
signal processing methods have been largely dominated by the well-established Nyquist-Shannon
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sampling theorem, which states that the exact recovery of a discrete signal requires a sampling rate at
least twice the highest frequency occurring in the signal. Compressive sensing (CS) [28,29] emerged as
a powerful framework for simultaneous sensing and compression, enabling a significant reduction
in sampling and computation costs for sensor nodes with limited memory and power resources.
According to the CS theory, a signal having a sparse representation in a suitable transform basis
can be reconstructed accurately from a small set of random projections, the so-called measurements,
onto a second, measurement basis that is incoherent with the transform one. CS-enabled compression
is achieved by the fact that the number of generated measurements is much smaller than the number
of the recorded signal samples. A key property of CS is the asymmetrical computational complexity
of the compression process, with the low-complexity compression stage consisting of simple linear
projections, while the main computational burden is on the decompression part, taking place at
a control center, where increased computational and power resources are available.

Doing so, a typical CS-based system consists of two distinct modules according to the functionality
they perform. The compression module (or encoder) is responsible for generating the reduced set of
random measurements from the observed data. The reduction in data volume to be transmitted yields
an increased autonomy of the remote monitoring infrastructure, while reducing telemetry costs for
the water utility. On the other hand, the decompression module (or decoder) reconstructs the original
signal from the received set of random measurements. These two modules are further analyzed in the
following sections.

2.2.1. CS-Based Compression

More specifically, let ¥ € RN*P be a matrix whose columns correspond to a possibly overcomplete
(ie, N < P) transform basis. Overcompleteness ensures a more stable, robust, or compact
decomposition than using a conventional basis [31]. Let x € RN be an observed discrete-time signal of
N samples, which is associated to a transform coefficients’ vector & € RP over the basis ¥, as follows,

o = ¥x. (€))]

Then, x is said to be S-sparse, with S < N, in basis ¥, if « has only S nonzero elements. In practice,
only a few signals are truly sparse, but instead they are compressible. A signal x is compressible in
basis ¥ if the magnitudes of the sorted transform coefficients decay rapidly following a power law,
that is,

las| < Cs™, s=1,2,...,P, )

where C and g are positive constants. The larger is the g, the faster is the magnitude’s decay,
and the more compressible is the signal. Typical examples of sparsifying transformations that have been
proven efficient for a broad range of natural signals include the short-time Fourier transform (STFT),
the discrete cosine transform (DCT), and the discrete wavelet transform (DWT) with its variants [27].
Without loss of generality, in the subsequent analysis, we employ the STFT, which showed a good
trade-off between the achieved compressibility of our pressure signals and the required reconstruction
time. Figure 2 shows two pressure streams from our dataset under normal (left) and abnormal (right)
network conditions, along with the corresponding sorted absolute values of the STFT coefficients
(i.e., the vector as). Notably, in both cases, a very small percentage of the STFT coefficients, 1.80% and
2.51%, respectively, conveys 98% of the total energy of the transform coefficients «, defined by

P
Ey = Z |0‘i|2 . (3)
i=1

This reveals a high compressibility capability of the STFT for the pressure streams considered, which is
aligned with the requirements of the CS framework. Nevertheless, we emphasize that the selection
of the optimal sparsifying transform is beyond the scope of this study, and is left as a separate
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thorough analysis. Notice also that, since the stream’s reconstruction (to be analyzed in the next
section), and thus the utilization of the sparsifying transform ¥, is performed at the control center,
the reconstruction time is not prohibitive for real-time scenarios given the increased computational
resources therein.
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Figure 2. (a) Original pressure stream and sorted absolute STFT coefficients, under normal network
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conditions; and (b) original pressure stream and sorted absolute STFT coefficients, under abnormal

network conditions.

In terms of signal approximation, it has been demonstrated [28] that, if a signal x is sparse or
compressible in basis ¥, then it can be reconstructed from a highly reduced set of M < N non-adaptive

linear projections, where M = O (S log (%) ) From a practical perspective, instead of transmitting
the originally observed N samples of x, a sensor reduces its consumed energy by only transmitting this
significantly smaller number of M projections (hereafter called measurements) to the control center,
where the original signal can be recovered with high accuracy for further processing.

The random measurements vector y € RM is generated simply as follows,

y = ®x, 4)

where ® € RM*N js a measurement matrix, which must be incoherent with the sparsity basis ¥ [29].
In mathematical terms, let

p(®¥) = max (|¢];]), ®)

i=1,...M

j=1,....P
denote the mutual coherence between ® and ¥, where ¢; and ; are the ith row of ® and jth column
of ¥, respectively. The parameter y serves as a rough characterization of the degree of similarity
between the sparsity and measurement systems. The smaller is the y, the more incoherent are the
two matrices. We emphasize that the data compression, which is performed onboard the sensors,
consists only of a simple matrix-vector multiplication as expressed by Equation (4). The utilization
of the sparsifying basis ¥ is required only during the decompression phase (see the next section),
which is carried out at the control center.

Examples of measurement matrices, which are incoherent with any fixed transform basis with high
probability (universality property [29]), include random matrices with independent and identically
distributed (i.i.d.) Gaussian or Bernoulli entries [28], structurally random matrices [32], Toeplitz block
matrices [33], and scrambled block Hadamard ensembles [34], just to name a few. Without loss
of generality, in the following, we employ scrambled block Hadamard ensembles due to their
computationally tractable implementation via the Fast Walsh-Hadamard Transform (FWHT) [35].
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Notice that, in practice, the system operator is responsible for defining the appropriate number of
measurements by setting the value of the sampling rate (SR), which is simply the ratio of the number
of random measurements over the original signal length, that is, SR = % Given that M < N,
the computational and power savings of each sensor node stem from the fact that they process
and transmit a highly compressed signal y instead of the original x. To be consistent with lossless
compression, hereafter we also use compression rate (CR) instead of sample rate as the input parameter
to the compressive sensing, where CR = 1 — SR.

2.2.2. CS-Based Decompression

By employing the M random measurements and given the S-sparsity property in the transform
basis, the original signal x can be recovered by taking a number of different approaches. The majority
of these approaches solve constrained optimization problems, including, among others, convex
relaxation [28,36] and greedy strategies [37,38]. In our implementation, the NESTA algorithm
(Matlab code available at https://statweb.stanford.edu/candes/software /nesta/) [39] is employed,
which is shown to achieve a good trade-off between reconstruction accuracy and computation time.
We emphasize though that the scope of this paper is to illustrate the efficiency of CS in reducing
compression and transmission costs, when compared against its lossless counterparts, for real sensor
data recorded in water distribution networks. As such, an exhaustive comparison with the various
reconstruction algorithms for finding the optimal solution is out of the scope of this study.

Focusing on the optimization problem to be solved for reconstructing the original data,
NESTA solves the following synthesis-based problem,

min ||«lj; st |ly— ®(¥a)l2 <4, (6)
acRP
where & € R” is a sparse coefficient vector, || - ||; and || - ||» denote the ¢; and ¢, norm, respectively,

and § > 0 is a small threshold (6 = 102 in our implementation). Having estimated the sparse
coefficient vector, &, a reconstruction of the original signal is simply obtained by taking the inverse
transform, that is,

x=Y"'a. 7)

As mentioned in Section 2.2.1, the short-time Fourier transform (STFT) along with scrambled block
Hadamard ensembles are utilized in our CS-based system in place of the sparsifying transformation ¥
and random measurement matrix ®, respectively. In our system, the reconstruction error is measured
in terms of the signal-to-error ratio (SER) (in dB) between the original and reconstructed signals x and X,
respectively, defined by

1113

SER(x, %) = 10log;, =%
2

®)

Figure 3 summarizes the general architecture of our CS-based system. Notice that the explicit
knowledge of ® is required at the decoder side to solve the reconstruction problem. Depending
on the length N of the original signal x and the number of measurements M, the size of ® can be
large enough prohibiting its transmission together with the measurements y. To alleviate this issue,
only the seed (a single integer) used for generating the random measurement matrix ® is sent to
the decoder, where the pseudo-random sequence of its elements is re-generated. We emphasize that,
in our system, the encoder is implemented at the edge of the water distribution network, that is, on the
sensing devices. In the following, the terms compression/encoding and decompression/decoding are
used interchangeably.

As an illustration of the CS reconstruction performance, Figure 4 shows a part of an original
pressure stream of a sensor from our real-world WDN, under normal network conditions. In particular,
Figure 4a shows the original stream together with its compressed versions for three sampling ratios
SR € {25%,50%,75%}. It is important to emphasize that, although the original observations are
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pressure samples (in Bars), the compressed counterparts generated via Equation (4) are not expressed
in a “physical domain”. Figure 4b shows the original along with the three reconstructed streams.
As can be seen, the reconstruction quality improves as the SR increases, as expected. Most importantly,
the reconstruction is already accurate enough even for SR = 25%, except for some sharper details
(see region in the red circles) that cannot be captured accurately when the number of random
measurements M is small. Nevertheless, these details can be recovered very accurately as the SR
increases (see SR = 50%).

Random Matrix
Generator

Random Matrix
Generator

y € RM

Compressive
Sensing Module

Decompression
Module

Figure 3. General architecture of our CS-based system.
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Figure 4. (a) Original stream under normal network conditions and its compressed versions;
and (b) original stream and CS-based reconstructions, for three distinct sampling ratios
SR € {25%,50%,75%}.

As a second illustration, Figure 5 shows a part of an original pressure stream of a sensor from
our real-world WDN, under abnormal network conditions. In particular, Figure 5a shows the original
stream and its compressed versions for three sampling ratios SR € {25%,50%, 75%}. Figure 5b shows
the original along with the three reconstructed streams. As in the normal case, the reconstruction
quality improves as the SR increases. Most importantly, even in this case with the sharp transitions
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of the pressure values, the reconstruction quality is high enough even for a small sampling ratio
(see SR = 25%). As before, the sharp details (red circles) can be recovered very accurately as the SR
increases (see SR = 50%).
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Figure 5. (a) Original stream under abnormal network conditions and its compressed versions;
and (b) original stream and CS-based reconstructions, for three distinct sampling ratios
SR € {25%,50%, 75%}.

Most importantly, the random nature of the generated compressed measurements y, due to the
random matrix ®, results in a weak encryption property of the CS process. The encryption mechanism,
which is overviewed in the next section, is inherent to the compression stage on the sensing devices,
without the need for additional hardware or software components, thus reducing the deployment cost
of the smart water network infrastructure.

2.3. CS Weak Encryption

As mentioned above, CS enables simultaneous compression and weak encryption of the observed
data, without the additional computational cost of a separate cipher layer [40], for secure reception by
a legitimate decoder. This is a key requirement in contemporary smart water network infrastructures,
due to confidentiality and privacy issues of the recorded data. CS-based encryption is weak, in the sense
that it provides computational and not perfect secrecy. In the CS case, secrecy lies in the computational
difficulty in guessing the correct encryption key [41], which generates the random measurement
matrix ®, the only source of randomness in the CS process, at the decoder side.

In our case, the pseudo-random generator’s seed plays the role of the encryption key, which is
sent through a secure key-exchange channel, with which the measurement matrix is recovered at the
legitimate recipient [42]. The highly reduced computational and transmission costs, due to the minimal
number of messages exchanged between the sender and the recipient, of this mechanism come at
the cost of a critical disadvantage. Specifically, by fixing ® between the encoder and decoder sides,
the encryption process becomes deterministic. This makes the system vulnerable to an eavesdropper,
who might degrade the encryption process using the method of chosen-plaintext attacks (CPA).
To overcome this limitation, a compress-then-encrypt scheme was proposed by Fay and Ruland [40],
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where signal normalization to unit energy is performed prior to applying CS, with the signal energy
being encrypted separately and sent with the compressed signal.

In the subsequent analysis, we evaluate the weak encryption capability of a CS-based system
by simulating the following adversarial scenario, as shown in Figure 6. Specifically, we assume that
an adversary does not have access to the true original measurement matrix ® that generated the
compressed stream, but to a permutation of its rows. This scenario is simulated easily as follows,

ya = (PMQ)X, 9)

where y4 are the random measurements generated by the adversary and Py € RM*M js
a permutation matrix which models the imperfect knowledge of the true ® on behalf of the adversary.
In the subsequent evaluation, the percentage of permuted rows of the original measurement matrix
is defined by p € [0.2, 0.4, 0.6, 0.8, 1], where, for each p value, | p - M| randomly selected rows are
permuted while the remaining rows are left in the original position. When a legitimate system operator
receives the compressed measurements, we assume that the permutation matrix is equivalent to the
identity matrix, i.e,, Py = L.
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Figure 6. Adversarial scenario in a CS-based system.
3. Hardware Benchmark

To prolong the network’s lifetime, end devices of smart water networks are typically equipped
with hardware that achieves low-power operation, both by minimizing the on-board components only
to the bare minimum required by the application and by providing features that enable components
to operate in low-power mode (e.g., MCU deep sleep and radio deactivation). It is common practice
for embedded operating systems running on the devices to provide these features as energy-saving
options to upper layers (i.e., applications) as well as inherently make extensive use of them [43].

Among all the operations performed on the devices, which in our case perform monitoring
of a low-frequency phenomenon (water pressure), the communication task is known to be the
most power-hungry, due to the high energy consumption of the radio circuitry. Thus, compression
techniques employed at the application layer can offer substantial energy savings by minimizing data
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transmission, at the cost of additional data processing. Lossy CS-based compression, used in this
work, can be tuned at a high compression rate, without compromising the decompression fidelity.
Most importantly, its processing overhead is significantly smaller than the one imposed by a lossless
compression alternative that is widely used in commercial hardware solutions.

A common strategy for assessing the degree to which low-power operation satisfies
an application’s requirements, is to employ the so-called software-based energy profiling, performed
through enabling appropriate software modules of the embedded operating system. In this section,
we describe the hardware platform, software components (along with implementation details) and
energy profiling tools used for assessing the energy efficiency of the proposed CS-based scheme.

3.1. Hardware Platform

In the following benchmarking, we use the Zolertia RE-Mote platform, an ultra-low
power hardware development platform designed jointly by universities and industrial partners,
in the framework of the European research project RERUM [44]. RE-Mote is a flexible platform that
can support several wireless sensor networks and Internet-of-Things (IoT) applications, such as smart
building automation, environmental monitoring, and Smart Cities applications. It is based on
the Texas Instruments CC2538 ARM Cortex-M3 32MHz System on Chip (SoC) (https://www.ti.
com/product/CC2538), with an on-board 2.4 GHz IEEE 802.15.4 Radio Frequency (RF) interface,
512KB flash memory, and 32KB RAM, as well as an 868 MHz IEEE 802.15.4 compliant RF interface
(CC1200). Dual-radio support makes it suitable both for short-range/indoor and long-range/outdoor
applications. Additionally, RE-Mote platform offers different interfaces (e.g., Inter-integrated Circuit
(I2C), Serial Peripheral Interface (SPI), and Universal Asynchronous Receiver Transmitter (UART)) for
connecting a multitude of analog and digital sensors. The platform can be battery-operated and hosts
a built-in battery charger for LiPo batteries.

3.2. Software Description

3.2.1. Contiki OS

Contiki OS is a popular open source operating system for wireless sensor networks, originally
proposed in [45], which targets resource-constrained embedded devices. Recognizable for its high
portability, it has been ported to several small microcontroller architectures, such as AVR, MSP430,
and TI CC2538. The operating system is implemented in C programming language and uses
a make/build environment for cross-compilation on most platforms. It follows an event-driven
programming model along with a cooperative scheduling approach based on proto-threads [46],
essentially a lightweight mechanism for pseudo-threading that helps minimizing the memory footprint
of the OS. This way, it provides a thread-like programming style, which is attractive from a developer’s
perspective, although different from conventional multi-threading, in the sense that proto-threads do
not have any dedicated memory allocation and all processes share a common stack.

A useful characteristic of Contiki OS, which is of high relevance for evaluating the CS-based
scheme proposed herein, is a software-based mechanism for profiling communication and computation
power consumption of embedded devices. It is further noted that, in this work, we use the latest version
of the OS, namely Contiki-NG. In this major upgrade of the OS, the overall code structure was revised
and optimized with new configurations and a thorough cleanup of the code base, thus minimizing the
final binary size.

3.2.2. Network Stack

The protocol stack architecture used in this work is in accordance with the Internet Engineering
Task Force (IETF) recommended stack, as illustrated in Figure 7. The protocol layers are briefly
described in the next subsections.
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Figure 7. Protocol stack.

IEEE 802.15.4

IEEE 802.15.4 is a standard, which defines both the physical and MAC layer for Low Power
Wide Area Networks (LPWANSs). The standard operates in both 2.4 GHz and sub-GHz frequency
ranges. It was designed by bearing the following requirements in mind: very low complexity,
Carrier Sense Multiple Access-Collision Avoidance (CSMA-CA) support, channel hopping, multi-node
networks, ultra-low power consumption, low cost, and low data rate. It defines a maximum data rate
of 250 kbits /s, depending on the modulation scheme and frequency band selected.

As of Contiki-NG, the implementation offers essentially two different choices for the MAC layer
(plus one experimental for BLE radio), namely CSMA (non-beacon-enabled mode, which uses CSMA
on always-on radios) and TSCH (Time Slotted Channel Hopping).

6LoWPAN

IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) defines the standard for
IPv6 communication over the physical and MAC layers provided by IEEE 802.15.4. 6LoWPAN acts
as an adaptation layer that handles the constraints of the physical layer for providing end-to-end
native IPv6 connectivity between a low-power device and any other IPv6 network, including direct
connectivity to the Internet. The most profound characteristics of 6LoWPAN are: (i) fragmentation and
reassembly of IPv6 packets for supporting the IPv6 minimum Maximum Transmission Unit (MTU)
of 1280 bytes; (ii) header compression; (iii) address auto-configuration; and (iv) multicast support
(not natively supported by IEEE 802.15.4). In addition, mesh routing is optimized through the RPL
(Routing Protocol for Low-power and lossy networks) that provides a mechanism for disseminating
information over the dynamic network topology by forming a Destination Oriented Directed Acyclic
Graph (DODAG) between the nodes, with the border router (sink node) being the graph’s root.

Contiki-NG achieves full IPv6 compliance through ulP6 implementation [47]. The ulP stack
has minimal memory requirements that are satisfied by adopting several strict design choices
(e.g., a single packet buffer).

CoAP

The Constrained Application Protocol (CoAP) [48] is a RESTful transfer protocol tailored to
resource-constrained Internet devices. CoAP follows a request/response interaction model between
application endpoints, supports built-in service and resource discovery and can be easily interfaced
with HTTP, since it includes key concepts of the Web, such as URIs and Internet media types. It meets
specialized requirements, such as multicast support and very low overhead. Since it was originally
designed to run on unreliable UDP transport, it integrates a reliability mechanism for managing lost
packets at the application layer. Apart from the synchronous request/response mechanism, CoAP
supports an asynchronous notifications’ mechanism, named as OBSERVE, that is commonly used for
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sensor data collection. Finally, it integrates a mechanism, enabled by the Block option, that provides
a minimal way to transfer larger representations in a block-wise fashion, for avoiding fragmentation
in lower layers. Contiki-NG natively supports CoAP through a refactored implementation of the
Erbium library.

3.2.3. Energy Profiling

Energy consumption of a hardware platform running Contiki can be estimated by utilizing the
software-based online energy profiling module Energest [49]. Energest employs power state tracking
by recording the amount of time (as provided by the platform’s real-time clock) the device spends
in different states. It is implemented as a collection of macros and functions; the macros inform
the module on component state change and the functions are used for initializing the module and
reporting elapsed time in different states. There are four basic Energest types that track four states,
respectively: (a) CPU active mode (CPU); (b) CPU low-power mode (LPM); (c) radio transmission
(TRANSMIT); and (d) radio listening (LISTEN). Note that there is no separate type for receiving
a packet, thus reception is included in LISTEN type.

The consumed power for each mode is calculated by,

Energest_Value - Current - Voltage
RTIMER_SECOND - Runtime

Consumed Power = (10)

where Energest_Value is the value returned by Energest (provided in CPU ticks), Current denotes
the average current consumption for the mode under consideration (it is hardware-specific and
can be retrieved from each hardware component’s datasheet), Voltage is the operating voltage,
RTIMER_SECOND is the number of CPU ticks per second for the Contiki RTIMER, and Runtime
is the time interval between two Energest tracking points. In Table 1, we report the above values for
TI CC2538 SoC.

Table 1. Energest-related values for TT CC2538 SoC.

Variable Value
RTIMER_SECOND 32,768 ticks
Voltage 3V
CPU 13 mA
LPM 0.6 mA

Current TR ANSMIT (0 dBm) 24 mA
LISTEN (-100dBm) 24 mA

3.3. Implementation Details

To evaluate the energy efficiency of the CS-based system, as well as to provide a comparison
against the LZ77 [21] lossless compression alternative, we utilize a simple experimental setup,
which consists of a RE-Mote that performs data collection, encoding and transmission, and a gateway
that receives and decodes the collected data. The gateway is built by attaching a RE-Mote, which plays
the role of the 6LoWPAN border-router, to a PC, which acts as the host. IPv6 traffic between the host
and the border router is bridged using Serial Line Internet Protocol (SLIP), provided by tunslip6 utility.

Figure 8§ illustrates the software running on the data collection and compression node, which has
been implemented in Contiki-NG and consists of the following three distinct modules:

e The Data Collection Module is responsible for the sensor data collection. It periodically polls the
sensor for value and buffers them, until a pre-defined block of values is collected.

¢ The Compression Module, which applies the selected compression algorithm on the collected
sensor data. It receives as input: (i) the buffered sensor values provided by the Data Collection
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Module; (ii) the compression algorithm (CS or LZ77); and (iii) the compression parameters
(i.e., the measurement matrix and compression ratio for CS, and dictionary hash table size for LZ77)
and outputs a block of compressed data stored in a buffer.

¢ The Communication Module (built on the network stack described in Section 3.2.2) receives the

output of the Compression Module and sends it to the gateway. More specifically, a CoAP server
exposes two CoAP resources for managing the compression and collection of compressed data,
one for each alternative, namely CS and LZ77. CoAP asynchronous notifications mechanism,
OBSERVE, is used for data collection, while appropriate CoAP POST requests permit compression
parameters control, such as dynamic compression ratio for CS.

Pressure Data Collection X Compression Communication
(WTHTITE

Module Module Module

Figure 8. Edge device software layout.

All data are represented as 4-bytes integers. For interfacing the output of the Data Collection
Module with the input of the Compression Module, we adopt a double buffering approach, so that
sensor data collection does not block while a buffered block of sensor values is being processed by the
Compression Module. Additionally, we enable the Energest module for tracking power states during
different phases, namely: (i) compression; and (ii) transmission of compressed data. We stress the fact
that we focus on these phases, instead of performing a full energy profiling of the device, since we aim
at isolating the effect of the CS methodology related to the device consumption.

On the gateway, we run a CoAP client utilizing the Eclipse Californium library (https://www.
eclipse.org/californium/), for controlling the compression ratio and observing the resources exposed
by the CoAP server, running on the RE-Mote. After the per-block compressed data have been collected,
the original sensor values are reconstructed and stored in a local time series database, remaining
available for further processing.

Special consideration is taken for improving the efficiency of both lossy and lossless compression
process. To decrease the CS compression execution time, we avoid performing a direct matrix
multiplication for calculating CS measurements. Instead, considering the fact that a (partial) Hadamard
measurement matrix is used, we first apply the Fast Walsh-Hadamard Transform (FWHT) to the
block of sensor values, followed by the appropriate sub-sampling for attaining the selected CR.
As aresult, the computational complexity of CS compression reduces to O(N log N). Accordingly, since
lossless compression algorithms can be in general extremely resource intensive, thus inappropriate
for devices with low capabilities, we choose FastLZ (https://github.com/ariya/FastLZ), a small,
portable, and efficient byte-aligned LZ77 implementation. After some code modifications, necessary
for eliminating memory allocation and usage problems, we successfully satisfied the constraints
imposed by the RE-Mote platform.

4. Performance Evaluation

In this section, we evaluate the efficiency of the CS-based mechanism for data compression
and transmission in a real smart water network test case and illustrate the execution speedup and
energy consumption reduction it offers when compared against a well-established lossless compression
method that is widely used in commercial solutions, namely, the LZ77 algorithm. We also quantify
the energy savings achieved over the scenario of raw (uncompressed) sensor value transmission.
Our experiments reveal that the CS-based mechanism can be tuned to operate at a high compression
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rate (75%), that offers almost 50% savings in terms of transmission energy compared to LZ77 and almost
75% savings compared to raw sensor value transmission, without compromising the decompression
fidelity. In addition, we show that the CS lightweight compression mechanism imposes a substantially
lower processing overhead compared to that of LZ77, which is almost constant irrespective of the
compression rate selected and translates to reduced computational energy consumption. The statistical
significance of our results is validated by means of the Kruskal-Wallis test. Finally, we demonstrate the
encryption property that is inherent to CS under the assumption that an adversary has full knowledge
of the compressed random measurements, as well as a partial knowledge of the measurement matrix
up to a permutation of its rows.

4.1. Performance Metrics

We define three performance metrics for evaluating our CS-based system: compression execution
time (CET), compression energy consumption (CEC), and transmission energy consumption (TEC).
The CET is defined as the time the Compression Module needs for calculating the buffered compressed
output after receiving a block of sensor values as input and expresses the computational overhead
imposed by the compression algorithm. The CEC is the energy spent for the compression of a block
of sensor values, as reported by the Energest CPU type. Finally, TEC is the energy spent by the
device’s radio for transmitting the block of compressed measurements, as reported by the Energest
TRANSMIT type.

We compared the performance of CS against two well-established alternatives, namely:
(i) Lempel-Ziv (LZ77) lossless compression and transmission of sensor value blocks;
and (ii) transmission of the raw sensor values, without any compression. In our experiments,
each pressure sensor was sampled every 15 min, yielding a total of 9984 pressure values for the
testing period. Three different block sizes, N, were tested with N € {64,128,256}, in conjunction
with three distinct CS compression ratios (CRcs), with CRcs € {25%,50%, 75%}. In terms of LZ77
implementation, we fixed the size of the dictionary hash table to be 1 KB, which we empirically
found to be a good compromise between memory efficiency and the compression ratio (CRpz).
The experimental setup parameters are summarized in Table 2.

Table 2. Experimental setup summary.

Parameter Value
Sensor sampling frequency 1 sample every 15 min
Total number of pressure values in the monitored period 9984
Block size N {64,128,256}
CS compression ratio CRcg {25%, 50%, 75% }
Measurement matrix ® Hadamard
LZ77 dictionary hash table size 1KB
Network stack CoAP + UDP + IPv6 + 6LoWPAN
Non-beacon-enabled CSMA,
Physical and MAC layer IEEE 802.15.4
TX power 0 dBm
RF channel 26 (2480 MHz)

To evaluate the effect of different compression types to the performance metrics defined here,
we followed a statistical-based approach. Due to lack of normality in our dataset (as reported by
Shapiro-Wilk test), we applied the non-parametric Kruskal-Wallis test, followed by Dunn post-hoc
test for pairwise comparisons of compression types, in the case a significant difference in the means
exists. It is noted that compression type takes values in the set {LZ77, CS5-25%, CS-50%, CS-75%},
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when considering CET and CEC. In the case of TEC, the compression type belongs to the set
{Raw, LZ77, CS5-25%, CS-50%, CS-75%}, where the value “"Raw” corresponds to the scenario of raw
sensor value transmission, without applying any compression beforehand. The level of significance
for all tests was set at p < 0.01.

4.2. Results

In this section, we present the results in terms of the performance metrics defined in Section 4.1.
As a first illustration, Figure 9 shows the CET average and standard deviation (displayed as error bars),
over the total number of blocks of pressure values, for the three block sizes N, both for lossless
(CS) and lossy (LZ77) compression. Kruskal-Wallis test revealed a significant effect of compression
type on CET, for all block sizes (x*> = 483.59, p < 0.001 for N = 64, x> = 203.39; p < 0.001 for
N = 128; and x* = 116.72, p < 0.001 for N = 256). The pairwise multiple-comparison between
compression types in Figure 10 shows a significant difference between LZ77 and CS compression for
any rate CRcs. However, CET does not differ significantly among CS with different compression rates.
This is expected, since, irrespective of CRcs, the CS calculations are dominated by the FWHT applied
to the raw sensor values that, as stated before, bears a computational complexity of O(Nlog N).

In Table 3, we report the average compression rate CR{'?, achieved by LZ77, for the three block
sizes. In any case, CS provides a compression speedup of at least 22% over LZ77, even for larger
compression rates (75%) than the ones achieved by the lossless algorithm.

Table 3. Compression rates for LZ77.

N 64 128 256
CR, 44.81% 48.08%  50.04%

Figure 11 illustrates the CEC average and standard deviation, over the total number of blocks
of pressure values, for the three block sizes N. Similar to CET, Kruskal-Wallis analysis (Figure 12)
showed that, in terms of CEC, there is a significant difference between lossy and lossless compression
(x> = 483.59, p < 0.001 for N = 64; x> = 203.39, p < 0.001 for N = 128; and x?> = 116.72, p < 0.001
for N = 256). No significant difference exists in CEC among different compression rates of CS,
for a given block size. The average CEC and the savings of CS compression over LZ77 compression
are summarized in Table 4. Observe that, even for the smallest block size N = 64, we achieve
a compression energy saving at the order of 50%.

3.5 ‘
I N=64
3 I N=128| -
[ N=256

- N
- (3] N (¢}

Compression Execution Time [msec]
o
o

Lz77 CS-25% CS-50% CS-75%

Figure 9. Average and standard deviation of CET, over the total number of pressure blocks, for different
compression types.
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Figure 10. CET Kruskal-Wallis mean ranks and Dunn comparison intervals for different compression
types: (a) N = 64; (b) N = 128; and (c¢) N = 256.
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Figure 11. Average and standard deviation of CEC, over the total number of pressure blocks,
for different compression types.
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Figure 12. CEC Kruskal-Wallis mean ranks and Dunn comparison intervals for different compression
types: (a) N = 64; (b) N = 128; and (c) N = 256.

Table 4. Average CEC and CEC savings of CS compared to LZ77.

N Average CEC [u]] CEC Savings
LZ77 CS (any CR)
64 38 19 50%
128 64 44 31.25%
256 115 89 22.61%

Figure 13 depicts the TEC average and standard deviation, over the total number of blocks
of pressure values, for all three block sizes. Here, the energy consumption for raw sensor value
transmission is labeled as “Raw” and corresponds to the worst case in terms of transmission energy
cost. According to Kruskal-Wallis test, a significant effect of compression type on TEC exists for
all block sizes (x> = 716.45, p < 0.001 for N = 64; x> = 363.95, p < 0.001 for N = 128;
and x> = 178.71, p < 0.001 for N = 256). The multiple-comparison between compression types
(Figure 14), shows a significant difference between any compression type pair, apart from the pair
{LZ77, CS-50%]}, whose elements share an almost equal compression rate (see to Table 3). For all values
of N, TEC decreases as the CR increases, since less packets need to be transmitted. Finally, in Table 5,
we present the total energy consumption savings (by summing CEC and TEC averages) achieved
by different compression types, against the energy spent for the transmission of raw sensor values.
Observe that in all cases, a larger block size translates to better energy efficiency. This is more profound
in the case of LZ77, since the algorithm’s compression efficiency improves as the number of long,



Sensors 2020, 20, 3299 19 of 24

repetitive words in the input data increases. Additionally, the overhead imposed by the compression
algorithm (and consequently the CEC) is substantially small, so the reported total energy savings
primarily result from the gain due to transmitting less data. Thus, CS can achieve significant savings
compared to LZ77, if a high CR is selected. Although someone could argue that this could in general
compromise the fidelity of CS decompression, we showed that the data used in this application can be
accurately reconstructed, even for CRcg as high as 75% (see Figures 4 and 5).

9000 T T
I N=64

8000y EN=128| |

7000 | I N=256 |

6000 - 1

5000 [ 1

4000 - ]

3000 - 1

2000 1

Transmission Energy Consumption [uJ]

1000 ]

0

Raw Lz77 CS-25%  CS-50%  CS-75%

Figure 13. Average and standard deviation of TEC, over the total number of pressure blocks,
for different compression types.
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Figure 14. TEC Kruskal-Wallis mean ranks and Dunn comparison intervals for different compression
types: (a) N = 64; (b) N = 128; and (c¢) N = 256.
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Table 5. Total energy consumption savings compared to raw sensor value transmission.

CScr
N LZ77  CcR=25% CR=50% CR="75%
64 3543%  22.73%  4697%  73.07%
128 43.06%  23.82%  49.04%  73.75%
256 47.80%  24.73%  49.28%  74.07%

As a last experiment, we demonstrated the weak encryption capability of CS. Specifically,
as described in Section 2.3, an adversary has access to the true measurement vector y, whereas
the measurement matrix ® is decrypted up to a permutation of a percentage p of its rows,
with p € [0.2,0.4,0.6,0.8,1]. Figure 15 shows the reconstruction error, in terms of the achieved
SER (in dB) averaged over all the pressure sensors, for sliding windows of length N € {64, 128,256},
as a function of p, for the three sampling ratios SR € {25%,50%,75%} (or, equivalently, compression
ratios CR € {75%,50%,25%}). Clearly, the reconstruction accuracy deteriorates dramatically,
as p increases, for all the window lengths and sampling ratios, which verifies the weak encryption
capability of CS. The difference in performance between the original and permuted @ especially
increases as the sampling ratio and window length increase. Furthermore, the larger is the window
length N and the smaller is the CR (i.e., the higher is the SR), the better is the reconstruction performance
(i.e., higher SER), as expected.
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" cs ion (SR=25%, N=64) " CS Reconstruction (SR=50%, N=64) CS Reconstruction (SR=75%, N=64)
: . ; T . . a4 . ; ; ; -
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Figure 15. Cont.
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Figure 15. CS reconstruction error in terms of SER (dB) averaged over all streams, for the original
and permuted ® and for SR € {25%,50%, 75%}, as a function of p(%): (a—c) N = 64; (d-f) N = 12§;
and (g-i) N = 256.

5. Conclusions and Future Work

This study demonstrated the execution and energy efficiency of a CS-based system for smart water
network infrastructures equipped with sensing devices with possibly limited power and computational
resources. More specifically, our implementation on real hardware revealed a significant reduction
of the average execution time up to approximately 50%, when compared against a well-established
lossless compression method that is also used in commercial solutions, namely the fast Lempel-Ziv
(LZ77) algorithm. Furthermore, our performance evaluation, by varying the sampling ratio and the
sliding window length, showed that a CS-based design enables savings of the data compression
energy consumption as high as 50% compared with LZ77. Regarding the energy consumed for data
transmission, CS can achieve significant savings compared to LZ77 by selecting a high compression
ratio, without compromising reconstruction fidelity.

In addition, we successfully demonstrated the weak encryption property of CS, in the case when
an adversary has full access to the generated random measurements, but the knowledge of the random
measurement matrix is up to a permutation of its rows. Specifically, the experimental results show
that, by permuting even 20% of the rows of the measurement matrix, an adversary is not capable of
recovering accurately the original sensor stream samples. This is especially important for the design
of low-cost smart water monitoring platforms, since no additional software or hardware encryption
modules are required.

In the current work, our study primarily focused on the sensing side of smart water network.
Nevertheless, in real-time applications, we are also interested in achieving accurate and fast decision
making at the side of the control center. For this, we will investigate the effects of the measurement
matrix type, as well as of the CS reconstruction algorithm, in the overall system performance, in terms
of fast reconstruction while aiming at accurately detecting abnormal events. Furthermore, the weak
encryption enabled by CS may not suffice in cases when higher privacy and security standards are
required. To this end, we will investigate the combination of a CS scheme with quantum encryption
mechanisms towards increasing our system’s security while maintaining the computation cost for
edge encryption low enough for smart water networks with limited resources.
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Abbreviations

The following abbreviations are used in this manuscript:

WDN Water Distribution Network

ICT Information Communication Technologies
Cs Compressive Sensing

SR Sampling Rate

CR Compression Rate

STFT Short-Time Fourier Transform

SER Signal-to-Error Ratio

IoT Internet-of-Things

SoC System on Chip

RF Radio Frequency

12C Inter-integrated Circuit

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver Transmitter
IETF Internet Engineering Task Force

LPWAN Low Power Wide Area Network
CSMA-CA  Carrier Sense Multiple Access-Collision Avoidance
TSCH Time Slotted Channel Hopping

MTU

Maximum Transmission Unit

LoWPAN  Low Power Wireless Personal Area Network
DODAG Destination Oriented Directed Acyclic Graph

CoAP Constrained Application Protocol

FWHT Fast Walsh-Hadamard Transform

CET Compression Execution Time

CEC Compression Energy Consumption

TEC Transmission Energy Consumption
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