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Abstract: In this study, the detection of a low radar cross-section (RCS) target moving at a very high
speed using a high-resolution millimeter-wave radar is presented. This real-time detection is based
on the transmission of a continuous wave and heterodyning of the received signal reflected from the
moving target. This type of detection enables one to extract the object’s movement characteristics, such
as velocity and position, while in motion and also to extract its physical characteristics. In this paper,
we describe the detection of a fired bullet using a radar operating at an extremely high-frequency
band. This allowed us to employ a low sampling rate which enabled the use of inexpensive and
straightforward equipment, including the use of small antennas that allow velocity detection at high
resolution and with low atmospheric absorption.
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1. Introduction

The real-time detection of small, high-speed objects, such as fired bullets, is essential for security
and civilian applications [1–4]. This type of detection enables one to track and identify the sources
of gunshots as well to determine the instantaneous velocity of objects, calculate the drag constant of
objects, and analyze the ballistic movement of objects.

The devices currently available for this type of detection operate in the optical field, and thus
require the use of an extensive array of sensors located at various points as well as synchronization
between all these sensors [5–8]. When the detection location is known, it is possible to use high-speed
photography. Using this method limits the number of images that can be taken per second. Therefore,
the maximum speed of the object to be detected and the computational speed resolution of this system
are limited.

Doppler radar-based systems have several advantages over optical systems for real-time detection.
The Doppler frequency, which is directly linked to the relative speed between the moving object and
the radar, can be measured at a relatively low sampling rate, and therefore, no unique or expensive
equipment is required for such measurements. Measuring the instantaneous Doppler frequency
enables one to calculate the instantaneous velocity of an object at a high resolution.

In this article, we propose a real-time detection system based on a millimeter-wave (MMW)
Doppler radar that transmits a continuous wave (CW) waveform. The reflected wave, scattered from a
moving target is shifted in frequency due to the Doppler effect. Millimeter wave (MMW) radars are
becoming more and more commercial and applicable due to recent technological developments [9–11].
They are employed as detection measures in many applications, such as collision avoidance radars in
automobiles [12,13]. Detecting a target with a Doppler MMW radar has several advantages compared
to other remote sensing technologies operating in infrared or optical wavelengths, mainly in foggy
conditions and stationary background clutter scenarios [14–16]. Although millimeter waves are
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attenuated by fog, haze, and rain [17], they still can be used for short-range detection, where optical
sensors completely fail.

This study is aimed at the realization of tracking small moving targets using a high-resolution radar
operating in millimeter wavelengths (W-band). Considerations are presented for an efficient detection
of stealth, small radar cross-section (RCS) targets, demonstrating deviations in their instantaneous
velocities even in super-sonic speeds. The instantaneous velocity of a high-speed moving object and its
drag constant can both be determined using this simple and inexpensive system. An analysis, practical
experiments, and their results are presented.

This paper is organized as follows: Section 2 describes the principles of the micro-Doppler radar
operation. Section 3 describes the challenges in detecting a small, high-speed object. The experimental
setup is presented in Section 4. In Section 5, we present two experiments that differ in terms of radar
location. The time–frequency signal obtained from a fired bullet is shown, analyzed, and its object
coefficient drag is extracted. Section 6 summarizes and concludes the paper.

2. Doppler Radar

The principle scheme of a continuous wave (CW) micro-Doppler radar is shown in Figure 1.
The transmitted waveform is a millimeter wave carrier at a constant frequency f0:

ẼTx(t) = ATxe j2π f0t, (1)

scattered by the target, the reflected signal received by the radar is

ẼRx(t) = ARxe− j[2k·r(t)−θ]
· e j2π f0t, (2)

where ATx and ARx are the amplitudes of the transmitted and received signals, respectively, k = 2π f0/c
is the wavenumber (c is the speed of light), r(t) is the distance to the moving target (here multiplied
by a factor of 2 because it contains the path to and from the radar and the target), and θ is a constant
phase shift. The detection is based on a heterodyne mixing of the reflected signal (2) scattered from the
target, with the transmitted CW carrier (1), resulting in the following product:

ṼIF(t) = ẼTx(t) · ẼRx
∗(t) = ATxARxe j[2k·r(t)−θ]. (3)

Sensors 2020, 20, x FOR PEER REVIEW 3 of 11 

 

 

Figure 1. continuous wave Doppler radar. 

3. Challenges in Detecting Small, High-Speed Objects 

In the followings, a fired bullet is used to demonstrate the detection of super-sonic small RCS 

targets. Detection of such an object, requires special considerations due to the low signal-to-noise 

ratio (SNR) expected in the detector. The SNR in the radar receiver is given by 

where tP  is the transmitter power, and tG  and rG  are the antenna gains of the transmitter and 

receiver, respectively.   is the transmitter wavelength ( 0/c f  ), r  is the range from the 

transmitter to the target, and 0N  is the spectral power density of the noise.   is the radar cross-

section (RCS). The RCS value of an object depends on its physical shape, transmission wavelength, 

and transmission angle relative to the object. A bullet can be approximated as a ball shape. The RCS 

of a ball depends on the ratio between the transmission wavelength   and the radius a of the ball. 

For a  , where the ball’s radius is much higher than the transmission wavelength (termed as the 

‘optical case’), the RCS is defined by 2a   [18,19]. In case of a tiny radius a , the resulted bullet’s 

RCS value is small, leading to a low SNR at the sensor. 

Usually the integration time IT  in Equation (7) is the target illumination time. Due to the high 

speed of the bullet, its time of flight is very short, limiting the signal to noise at the receiver. Moreover, 

in order to track the instantaneous velocity of the bullet along its flight path, it is necessary to divide 

the flying duration into temporal windows, during each of which a short time Fourier transformation 

(STFT) is carried out, as explained in the following. 

Using Equation (5), the object instantaneous velocity resolution rv can be expressed via the 

frequency resolution df  of the STFT: 

The relationship between the frequency resolution and the integration time is 1d If T  . 

Therefore, Equation (8) can now be re-written to express the velocity resolution (8) in terms of the 

STFT integration time IT  

Inspection of Equation (8) reveals that as the carrier frequency 0f  is increased, higher speed 

resolution is obtained for a given integration time IT . This demonstrates the advantage of utilizing 

extremely high frequencies, as millimeter waves for tracking velocities of fast-moving targets. 

Particular attention is required when choosing the appropriate temporal width of the STFT 

window. The integration time IT  should be long enough to allow a sufficient resolution speed, as 

given by (9), but not too long in order to enable following of the temporal changes in the 

instantaneous velocity of the target. It is important to note that transmission at high carrier frequency

0f  compensates for employing a narrower temporal window in the STFT, while maintaining the 

required velocity resolution. Shortening the integration time results in a decreased signal-to-noise 

ratio, as expressed by Equation (7). In order to assure efficient detection and velocity tracking in the 

 

2

3 4
04

I

r t t

T
SNR G G P

Nr

 


 , (7) 

02
r d

c
v f

f
   . (8) 

0

1

2
r

I

c
v

f T
  . (9) 

Figure 1. continuous wave Doppler radar.

An inspection of Equation (3) reveals a time-varying phase,

ϕ(t) = 2k · r(t) − θ, (4)

from which the instantaneous Doppler frequency shift can be derived:

fd(t) =
1

2π
∂ϕ(t)
∂t

=
1

2π
2k ·

.
r(t) =

2 f0
c

vr(t), (5)
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where vr(t) =
.
r(t) is the radial target velocity related to the radar. In a scenario where the sensor

observes the moving target at angle α, the radial velocity with respect to the radar is given by

vr(t) = v(t) · cosα, (6)

where v(t) is the velocity of the target. The resulting Doppler instantaneous frequency shift fd(t) of the
intermediate frequency (IF) signal obtained at the output of the mixer is proportional to the radial
velocity of the target, including the deviations associated with the target velocity. It is important to
note that according to Equation (5), the intermediate frequency is proportional to the carrier frequency
f0. Increasing f0 results in a higher frequency deviation fd(t) at the IF. For example, a target moving at
a super-sonic radial speed of vr = 1200 m/s will be detected by a millimeter wave radar operating
at f0 = 94 GHz producing an IF signal with a frequency of fd = 752 kHz at the mixer output. The IF
signal can then be digitized using an analog-to-digital (A/D) converter with a sampling rate of few
MHz for further processing.

3. Challenges in Detecting Small, High-Speed Objects

In the followings, a fired bullet is used to demonstrate the detection of super-sonic small RCS
targets. Detection of such an object, requires special considerations due to the low signal-to-noise ratio
(SNR) expected in the detector. The SNR in the radar receiver is given by

SNR = Gr
λ2σ

(4π)3r4
GtPt

TI

N0
, (7)

where Pt is the transmitter power, and Gt and Gr are the antenna gains of the transmitter and receiver,
respectively. λ is the transmitter wavelength (λ = c/ f0), r is the range from the transmitter to the
target, and N0 is the spectral power density of the noise. σ is the radar cross-section (RCS). The RCS
value of an object depends on its physical shape, transmission wavelength, and transmission angle
relative to the object. A bullet can be approximated as a ball shape. The RCS of a ball depends on
the ratio between the transmission wavelength λ and the radius a of the ball. For a � λ, where the
ball’s radius is much higher than the transmission wavelength (termed as the ‘optical case’), the RCS is
defined by σ = πa2 [18,19]. In case of a tiny radius a, the resulted bullet’s RCS value is small, leading
to a low SNR at the sensor.

Usually the integration time TI in Equation (7) is the target illumination time. Due to the high
speed of the bullet, its time of flight is very short, limiting the signal to noise at the receiver. Moreover,
in order to track the instantaneous velocity of the bullet along its flight path, it is necessary to divide
the flying duration into temporal windows, during each of which a short time Fourier transformation
(STFT) is carried out, as explained in the following.

Using Equation (5), the object instantaneous velocity resolution ∆vr can be expressed via the
frequency resolution ∆ fd of the STFT:

∆vr =
c

2 f0
∆ fd. (8)

The relationship between the frequency resolution and the integration time is ∆ fd = 1/TI.
Therefore, Equation (8) can now be re-written to express the velocity resolution (8) in terms of the STFT
integration time TI

∆vr =
c

2 f0
1
TI

. (9)

Inspection of Equation (8) reveals that as the carrier frequency f0 is increased, higher speed
resolution is obtained for a given integration time TI. This demonstrates the advantage of utilizing
extremely high frequencies, as millimeter waves for tracking velocities of fast-moving targets.

Particular attention is required when choosing the appropriate temporal width of the STFT
window. The integration time TI should be long enough to allow a sufficient resolution speed, as given
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by (9), but not too long in order to enable following of the temporal changes in the instantaneous
velocity of the target. It is important to note that transmission at high carrier frequency f0 compensates
for employing a narrower temporal window in the STFT, while maintaining the required velocity
resolution. Shortening the integration time results in a decreased signal-to-noise ratio, as expressed by
Equation (7). In order to assure efficient detection and velocity tracking in the experiments, a trade-off

is made between SNR and velocity resolution in the selection of an optimal TI. In the present study, the
STFT integration was set to TI = 0.25 ms, resulting in a velocity resolution of ∆vr = 6.38 m/s, which is
accurate enough, since the bullet speed is at least two orders of magnitude higher.

4. Experimental Setup

Figure 2 presents a scheme for the Doppler radar operating at millimeter wavelengths. The
directivity of the antenna is crucial in many scenarios, especially in this particular application dealing
with a small moving target that has a low RCS. Choosing a radar operating at an extremely high
frequency band, 94 GHz, enables the realization of a directive antenna with a relatively small aperture.
This 94 GHz frequency is within the atmospheric W-band transmission window and has the lowest
atmospheric absorption. This enables us to increase the distance to the target, thereby enabling
detection even in adverse weather conditions.
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Figure 2. A scheme of the continuous wave micro-Doppler radar.

The radar we used in this experiment is composed of an RF generator producing a continuous
sine wave at 15.67 GHz. The wave frequency is multiplied six times to generate a 94 GHz carrier. A
small value for the generated power (10 dB of the transmitted power) is coupled to the mixer in the
receiving chain via a coupling port. Two identical horn lens antennas are employed for transmission
and reception, each with a gain of 30 dBi (corresponding to a beam width of about 6.5◦). The gain of
the low noise amplifier (LNA) of the receiver is 30 dB, and its noise value is 5 dB. The product obtained
at the mixer output lies at intermediate frequencies (IF) determined by the Doppler shifts of the signal
reflected by the target; in our case, in frequencies of fd = 313− 752 kHz. The IF signal is sampled by an
analog-to-digital (A/D) converter at variable rates corresponding to the frequencies expected at the
detector’s output. In our experiment, we used a sampling frequency of 20 MHz, which is well above
the Nyquist limit. A photo of the radar is given in Figure 3.
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5. Experimental Study

In our experiments, we used a radar operating at an extremely high frequency band of 94 GHz. In a
25-m-long room, we placed a gun on one end and an absorption board at the opposite end, as shown in
Figure 4. An optical gate system was placed within the flight path of the bullet. This system measured
the instantaneous velocity of the bullet, which enabled verification of our measurement results.
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Figure 4. Illustration of the radar position; the radar is placed opposite to the gun.

In our first experiment, we placed the radar opposite to the gun and a few cm near the bullet’s
flight trajectory so that the bullet moved towards the radar (see Figure 4). The fired bullet exits the gun
barrel at a speed of about 1200 m/s, so that the flight time was about 20 ms along the shooting gallery.
Figure 5 shows the time domain of the detected IF signal received by the radar.
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Figure 5. Measurement results of the intermediate frequency signal in the time domain.

In order to measure the instantaneous radial velocity of the fired bullet, a STFT was carried out on
the above IF signal results at the Doppler instantaneous frequency. This frequency is connected to the
instantaneous velocity by Equation (5). The STFT was performed for an integration temporal window
of 0.25 ms. According to Equation (5), the speed resolution is 6.38 m/s, which is sufficient for tracking
the bullet velocity along its flight path.

In Figure 6, we present a three-dimensional spectrogram of the instantaneous velocity vs. time.
The color of the graph represents the intensity of the IF signal at a particular frequency and time; blue
corresponds to low levels, while red represents higher intensities. Thus, the red curve presents the
peak of the instantaneous velocity of the bullet as a function of time. Figure 7 illustrates the graph of
the bullet’s instantaneous velocity as a function of time by displaying the peaks of the spectrogram of
Figure 6.

The results of the velocity measurements obtained from the radar and the optical gate are identical.
The distance r between the moving target and the radar is related to its velocity vr by the correlation

r =

t∫
0

vr(t)dt. (10)
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Figure 7. The instantaneous velocity of the fired bullet as a function of time.

By using (10), we can display the velocity vr (from Figure 7) as a function of r; the result is
presented in Figure 8. The point at 0 m on the x-axis represents the location of the radar and the
absorption board. As expected, the velocity of the object fades as it approaches the radar. We note that
the radar field of view along the bullet's flight path is limited because the optical system blocks the
first 8 meters of the bullet trajectory from the gun barrel. In addition, the gun and the absorption board
are located about 2 meters from the edges of the room.
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Figure 8. Instantaneous velocity of a small object as dependent on r.

In this configuration, where the radar is placed opposite to the gun, the angle α is approximately
zero because the bullet’s flight trajectory and the radar are placed on the same axis (see Figure 9).
Therefore, we assume that the velocity of the target and the radial velocity are equal; i.e., v(d) � vr(r).
Furthermore, the results of Figure 8 can be shown as v(d) (as a function of d; see “Experimental results”
in Figure 10).
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When an object moves in the middle, its velocity decreases in accordance with its drag constant.
The relationship between the object speed v and the drag constant γ is given by [20–22]:

v(d) = v0e−γ·d, (11)

where d is the position of the object relative to the initial point, and v0 is the initial speed. The drag
constant is a function of the shape of the bullet and its mass. Therefore, when the speed of the
object is known, depending on its position, the drag constant γ can be extracted from (11), and the
object’s characteristics can be assessed. Using simulation software, we performed a regression of the
“Experimental results” curve (in Figure 10) using Equation (9). This regression result is presented in
Figure 10 as the “Analytic expression” and provides the value γ = 3.021 km−1, with an R-square of
0.9933, which shows how well the terms (data points) fit the curve.

The drag constant γ can be calculated using the following formula [21]:

γ =
ρCdπD2

8m
, (12)

where ρ is the air density (1.225 kg/m3) at sea level, D is the bullet diameter (2 cm), m is the bullet mass
(53 g), and the corresponding coefficient is Cd = 0.85 [21]. Substituting these values in (12) leads to the
theoretical value of γ = 3.086 km−1. The values of the drag constant obtained by the experimental
results and the theoretical results show a high correlation. These results demonstrate that an object’s
drag constant can be estimated for small objects through an analysis of their supersonic velocity.

In our second experiment, we placed the radar behind the gun (see Figure 11) such that the bullet
moved away from the radar. A bullet of a different shape was fired from the gun at a speed of about
500 m/s so that the flight time was about 50 ms. The angle α (see Figure 12) between the direction of
the transmission and the bullet’s flight trajectory changed as a function of the bullet’s position by

cos[α(t)] =
d(t) + d0

r(t) + r0
, (13)

where d0 and d(t) describe the position of the bullet on its trajectory, and r(t) describes the distance
from the radar to the moving bullet. d0 and r0 are the distances to the detection starting point of the
bullet by radar, and h is the distance between the bullet’s initial flight trajectory and the radar.
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Figure 12. Illustration of the different parameters.

Figure 13 shows the detected IF signal received by the radar when measuring the instantaneous
speed of a fired bullet. Figure 14 shows the instantaneous radial velocity calculated by using STFT of
the detected frequency. It can be seen that for a short time at the beginning of its movement, the radial
speed increased steeply and then decreased. At the beginning of the movement, the value of angle α
was large and rapidly reduced to an angle that approaches zero (d0 + d� h); i.e., the initial value of
cosα was low and increased rapidly to 1, resulting in an increase in the radial velocity projection (see
Equation (6)). The fade-in velocity was due to the bullet’s drag constant, as indicated by (11). Only the
bullet’s speed is displayed in Figure 15, and by using (10), we obtained the “Experimental results”
curve in Figure 16.
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Figure 16. Instantaneous velocity of the small object as dependent on r.

The velocity of the bullet measured by the optical gate was identical to the results obtained from
the curve obtained by the radar.

By substituting Equations (11) and (13) into (6) and by using d =

√
(r + r0)

2
− h2 − d0

(the Pythagorean theorem), we can obtain the following equation:

vr(r) = v0e−(
√
(r+r0)

2
−h2)·γ

·

√
(r + r0)

2
− h2

r + r0
. (14)

Equation (14) presents an analytical expression of the relationship between the radial velocity
measured by the radar and the distance r between the radar and the small moving object. This
relationship is presented in Figure 16 by the “Experimental results” curve that was generated from the
radar measurement results in the experiment. By regressing this curve to Equation (12), it is possible to
estimate the distance h between the bullet’s flight trajectory and the radar and find the drag constant γ.
The regression result is presented in Figure 16 as the “Analytic expression”, providing the values of
γ = 8.1 km−1 as well as of h = 0.8052 m (which fits the physical location of the radar in respect to the
barrel). As expected, in this experiment, we observed a different value for the drag constant due to a
differently shaped bullet.

These results show that by analyzing the velocity of a small object, its drag constant and parameter
h can be estimated.

6. Summary and Conclusions

This paper presents a real-time detection technique of low RCS targets flying at supersonic speeds
and identification of their movement and physical characteristics. A directive continuous wave MMW
radar, operating in the W-band, was employed to detect frequency shifts due to the target’s movement.
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This was done by heterodyning the reflected signal with the transmitted one. Short time Fourier
transformation (STFT) of the resulting IF signal generates a spectrogram of the instantaneous Doppler
frequency shifts, corresponding to the temporal target velocity.

It is shown that utilization of millimeter wavelengths enables detection of low RCS targets,
while maintaining a sufficient signal-to-noise ratio and employing short STFT integration windows to
increase the measurement resolution of the target’s instantaneous velocity.

We demonstrate this approach for the detection of various types of fired bullet flying in supersonic
velocities. It was demonstrated that the moving object’s velocity, as well as its drag constant, can
be evaluated by tracking its instantaneous speed during time of flight. Furthermore, a comparison
between the experimental drag constant obtained from the radar and the theoretical drag constant was
made, which showed a high correlation. Estimating the drag constant can contribute to understanding
the geometry and mass of a small supersonic moving target.

This detection technique enables tracking and identifying the sources of gunshots, determining
the instantaneous velocity of fast targets, and analyzing the ballistic movement of an object.

Using a radar operating at an extremely high frequency band has advantages over other sensors
due to its directivity and high-resolution detection features. The short wavelength facilitates using
small aperture antennas and reduces equipment size.
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