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Abstract: Balance impairment is a major mechanism behind falling along with environmental hazards.
Under physiological conditions, ageing leads to a progressive decline in balance control per se.
Moreover, various neurological disorders further increase the risk of falls by deteriorating specific
nervous system functions contributing to balance. Over the last 15 years, significant advancements
in technology have provided wearable solutions for balance evaluation and the management of
postural instability in patients with neurological disorders. This narrative review aims to address
the topic of balance and wireless sensors in several neurological disorders, including Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis, stroke, and other neurodegenerative and acute clinical
syndromes. The review discusses the physiological and pathophysiological bases of balance in
neurological disorders as well as the traditional and innovative instruments currently available for
balance assessment. The technical and clinical perspectives of wearable technologies, as well as
current challenges in the field of teleneurology, are also examined.

Keywords: wireless sensors; wearables; balance; posturography; Alzheimer’s disease; Parkinson’s
disease; multiple sclerosis; cerebellar ataxia; stroke; vestibular syndrome

1. Introduction

Countries are globally experiencing a demographic shift in the distribution of the population
towards older ages [1] and every year up to 35% of people aged 65 and over fall, often requiring
hospital admission after mild to severe injuries [2]. Falls account for 40% of all injury-related deaths [2],
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and even when non-fatal, commonly cause a “post-fall syndrome”, a psychomotor regression condition
responsible for psychological, postural and gait dysfunction in elderly [3]. In terms of the economic
burden of falls, in 2015 the estimated medical costs attributable to fatal and non-fatal falls increased
to 50 billion dollars in the United States [4]. Falls represent a major public health concern and have
an enormous economic impact on society, thus requiring the development of effective strategies to
prevent underlying causes. Among these, balance impairment is one of the leading determinants of
falls along with ecological factors, such as environmental hazards [5]. Ageing significantly impacts on
postural ability due to age-related changes in the sensorimotor and cognitive function [6]. Moreover,
balance impairment frequently affects patients with neurological disorders who are twice as likely to
fall compared to an age-matched healthy population [7].

To date, a history of falls is the strongest predictor of future falls [8,9], thus underscoring the need
for predictive measures to determine early preventive interventions. However, clinical assessment is
subjective and is not sensitive enough to identify early balance control dysfunction [10]. Conversely,
traditional laboratory evaluation, including posturography through force platforms and optoelectronic
systems, is objective and sensitive enough to identify subtle abnormalities but does not always reflect
real-life situations. Over the last 15 years, advancements in healthcare technology have allowed
analysing physiological measures of motor and non-motor behaviour objectively and unobtrusively [11].
Indeed, the availability of wearable devices has opened to the instrumental evaluation of clinical
phenomena in free-living conditions. Accordingly, several authors have made a great effort to use
wireless sensors in the study of balance impairment in patients with neurological disorders, thus
offering new solutions for diagnosis and rehabilitation [12].

Despite several previous reviews discussing specific technical or clinical aspects of balance
assessment through wearables, this narrative review aims to discuss the whole topic of balance
evaluation, through wireless sensors, in patients with neurological disorders. Accordingly, in this
review, we first introduce the physiology and pathophysiology of balance, including the main
mechanisms underlying postural dysfunction in several neurological disorders, and report clinical
tools commonly used for balance assessment. We then summarise the instrumental assessment of
balance, including static and dynamic posturography. Moreover, we analyse wearable technologies
available for balance assessment in neurological disorders. Finally, we speculate about prospects and
challenges of wireless sensors for balance assessment in teleneurology and telerehabilitation.

2. Physiology and Pathophysiology of Balance

Balance is the ability to maintain body orientation in space under static and dynamic conditions [13],
respectively intended as postural stability at rest and in response to active movement or external perturbations.
Over the course of evolution, the complexity of this function greatly increased with the acquisition of
vertical posture and bipedalism in humans, representing the main transformation in primates [14].
A composite sensorimotor-control system based on a closed-loop circuit dynamically coordinates body
segments according to environmental hazards through feedback and feed-forward strategies [15].

The central nervous system oversees balance maintenance by integrating sensory inputs from
the peripheral nervous system (e.g., receptors and nerves) and motor outputs to the musculoskeletal
system [15,16] (Figure 1). Brainstem nuclei, along with basal ganglia, the cerebellum, and other
subcortical structures (e.g., thalamus) play crucial roles in the integration of sensory cues from the
somatosensory, vestibular, and visual systems, which continuously provide an overall representation
of body movement, acceleration, and position in space [15,17] (Figure 1A). By encoding an internal
postural model based on reciprocal connections with the parietal cortex, the cerebellum contributes to
dynamic balance control through postural responses that serve as an error-correction mechanism [16]
(Figure 1B). Finally, the cerebral cortex oversees attentional and visuospatial balance requirements
and manages anticipatory postural adjustments (APAs) before and during voluntary movements [18].
Cognitive-motor processes are responsible for postural optimisation based on prior experience, current
context, and learning through long-latency components of postural responses [19].
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Figure 1. Physiology of balance. (A) The visual system provides information on the surrounding environment; the vestibular system, consisting of the two inner-ear 

balance organs and several nervous structures (nerves and central nuclei), encodes angular and linear accelerations of the head to support the clear vision and balance 
control via rapid eye movements (vestibulo-ocular reflexes) and postural reflexes (vestibulo-spinal reflexes); the somatosensory system senses self-movement and body 
position through specialised sensory receptors located in the muscles (muscle spindles), joints (Ruffini endings, Pacinian corpuscles, and Golgi-like receptors), tendons 
(Golgi tendon organs), and skin (Merkel cells, Ruffini endings, Meissner corpuscles, and Pacinian corpuscles) [20,21]. (B) Multisensory signals from visual, vestibular and 
somatosensory receptors are integrated in the central nervous system to provide an internal postural model and in turn, descending motor commands to muscles.  
(C) Reactive postural strategies and anticipatory postural adjustments allow balance control under environmental circumstances (e.g., external postural perturbations) and 
motor initiative (e.g., voluntary movement), respectively.

Figure 1. Physiology of balance. (A) The visual system provides information on the surrounding environment; the vestibular system, consisting of the two inner-ear
balance organs and several nervous structures (nerves and central nuclei), encodes angular and linear accelerations of the head to support the clear vision and balance
control via rapid eye movements (vestibulo-ocular reflexes) and postural reflexes (vestibulo-spinal reflexes); the somatosensory system senses self-movement and
body position through specialised sensory receptors located in the muscles (muscle spindles), joints (Ruffini endings, Pacinian corpuscles, and Golgi-like receptors),
tendons (Golgi tendon organs), and skin (Merkel cells, Ruffini endings, Meissner corpuscles, and Pacinian corpuscles) [20,21]. (B) Multisensory signals from visual,
vestibular and somatosensory receptors are integrated in the central nervous system to provide an internal postural model and in turn, descending motor commands
to muscles. (C) Reactive postural strategies and anticipatory postural adjustments allow balance control under environmental circumstances (e.g., external postural
perturbations) and motor initiative (e.g., voluntary movement), respectively.
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The main goal of physiological mechanisms underlying balance control is the maintenance of
postural stability by managing the spatio-temporal relationship between the body’s centre of mass
(COM) and base of support (BOS) [22]. While reactive postural responses compensate for unexpected
external perturbations, proactive postural responses allow balance control under expected external
perturbations or self-produced balance disturbances through a motor prediction strategy [22]. When
an external balance perturbation occurs, different postural strategies are adopted to maintain the COM
projection within the BOS. Indeed, minor postural perturbations are usually counteracted by corrective
strategies involving body rotations around the ankle (ankle strategy) or hip (hip strategy) that move
the COM projection. Conversely, major postural disturbances require a broadening or displacement of
the BOS in order to maintain the COM projection within the BOS (protective strategy) [22] (Figure 1C).

Three main pathophysiological mechanisms are responsible for balance dysfunction: (i) abnormal
acquisition, transmission, or perception of sensory signals (Figure 1A); (ii) abnormal sensorimotor
integration and motor planning (Figure 1B); (iii) impaired transmission of motor output or
musculoskeletal system damage [23] (Figure 1B,C). In patients with impaired afferent sensory
information (e.g., somatosensory, vestibular or visual inputs), balance control requires compensatory
strategies including attentional resources [24] and sensory reweighting [25].

Ageing is commonly associated with a progressive loss of sensorimotor function, including
structural and functional changes in the somatosensory, visual, and vestibular systems, along with
a decline in central neural processing and muscle strength [6]. Accordingly, ageing leads to slower
reaction times and reduced limits of stability, thus worsening balance control mainly under cognitive
loads and unexpected postural perturbations [6,26].

Patients with neurological disorders may manifest balance dysfunction as a result of impairment of
at least one physiological component responsible for balance control significantly increasing the risk of
falls compared to age-matched healthy subjects [7]. Pathophysiological mechanisms leading to balance
impairment in various neurological disorders are summarized in Table 1 along with the main nervous
system structures underpinning postural dysfunction. Understanding the physiological mechanisms
underlying balance control in humans is the necessary background to measure balance objectively,
through conventional as well as wearable technologies, in patients with neurological disorders.
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Table 1. Balance impairment in neurological disorders.

Disease Definition Nervous Structures Involved Pathophysiological Mechanisms Main Clinical Consequence

Alzheimer’s
disease

Neurodegenerative dementia
associated with progressive cognitive

and functional dysfunction [27]

Cerebral cortex and subcortical
structures, prominently

involving nucleus accumbens
and putamen [28]

Cognitive impairment, abnormal
sensorimotor function and vision,
peripheral sensory loss, muscle

weakness [29–32]

Hallucinations, inattention,
abnormal sensory reweighting

Parkinson’s
disease

Neurodegenerative movement
disorder associated with progressive
motor and cognitive dysfunction [33]

Basal ganglia, locus coeruleus
and pedunculopontine

nucleus [34]

Impaired scaling of postural
responses [35], abnormal central

proprioceptive-motor integration [36],
reduced kinaesthesia [37], axial

rigidity [38], cognitive
dysfunction [39]

Postural instability, disrupted
trunk-legs coordination,

freezing of gait

Multiple sclerosis Acquired demyelinating disease of
the central nervous system [40]

Cortico-spinal tract, cerebellum,
proprioceptive pathways,

vestibular system, brainstem
structures for eye movement

control [41]

Abnormal sensorimotor, visual,
cerebellar, vestibular and cognitive

functions [41], muscle weakness and
spasticity [42]

Abnormal coordination and
sensory reweighting, reduced
attentional resources, strength

impairment

Huntington’s
disease

Neurodegenerative disease with
autosomal dominant pattern of
inheritance [43], associated with
cognitive and motor impairment,

psychiatric disorders and involuntary
movements (chorea) [44]

Basal ganglia, prominently
interesting caudate and

putamen [45]

Involuntary movements, trunk
muscles weakness, hip flexor

tightness, impairment in visual and
vestibular integration, ocular pursuit
movements and proprioception [46]

Chorea, abnormal sensory
reweighting, increased stride

variability

Cerebellar ataxia

Acquired or hereditary, as well as
acute or progressive, disorder
associated with dysfunction of

cerebellum and/or its connections [47]

Cerebellum (primarily vermis
and anterior lobe) and/or its

connections, including
spinocerebellar tracts [47]

Impaired coordination of movements Axial motor impairment and
asynergic movement
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Table 1. Cont.

Disease Definition Nervous Structures Involved Pathophysiological Mechanisms Main Clinical Consequence

Stroke

Acute neurologic syndrome due to
the interruption of blood supply to a
part of the central nervous system by
an ischemic or haemorrhagic vascular

injury [48]

Cortico-spinal tract, cerebellum,
proprioceptive pathways,

vestibular system and
brainstem structures [49]

Somatosensory and motor
dysfunction [50,51], spasticity [52],

visual and perceptual disorders
[53,54], including impaired

perception of upright body position,
cognitive impairment [55]

Hemispatial neglect, strength
impairment, abnormal
coordination, sensory

reweighting

Traumatic brain
injury

Acute blunt head traumas or
acceleration forces to the head [56]

Vestibular nuclei, cerebellar
peduncles, medial lemniscus,
dentato-rubro-thalamic and

cortico-reticular pathways [57]

Impairment in cognitive and motor
functionality [58]

Dizziness, visual-spatial deficits
and inattention

Neuropathies

Acute or progressive disorders of the
peripheral nervous system, associate
with the disruption of nerve action

potentials transmission [59]

Peripheral nervous system
(nerves)

Sensory and/or motor impairment
[59], retinopathy, vestibular and
muscle impairment [60], sensory

ataxia

Proprioception and strength
impairment

Vestibular
syndromes

Acute or chronic disorders of the
inner-ear balance organs and/or their

nervous structures [61] (e.g.,
Meniere’s disease, benign positional

vertigo, bilateral vestibular loss,
vestibular neuritis, posterior

circulation strokes)

Vestibular system (i.e., inner-ear
balance organs, vestibular nerve

and central nuclei)

Abnormal spatial orientation and
motion perception [62], ataxia, eye

movement abnormalities [61]
Dizziness and vertigo
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3. Clinical Assessment of Balance

The clinical assessment aims at recognizing balance impairment and identifying possible
underlying causes [63]. Neurological examination routinely involves several clinical manoeuvres,
including the Romberg’s test [64], the pull test [65], and the tandem gait test [66], designed to examine
individual balance performance qualitatively (Table 2). In addition to these clinical manoeuvres, several
standardized scales and tests provide a semiquantitative evaluation of balance (Table 2). A secondary
task during motor performance (i.e., dual task) is commonly used to assess the involvement of cognitive
function in balance control.

Table 2. Standardised clinical tests and scales for balance assessment.

Clinical Test or Scale Aim of the
Test/Scale Procedures Outcome Measures

Romberg test [64]
Postural ability and
pathophysiological

mechanisms

The subject stands with feet close together, arms by
the side, and with eyes open, and then closes eyes
while maintaining the same position (removal of

vision possibly compensatory
proprioceptive deficits)

Unbalance and fall

Pull test [65] Postural ability
The subject undergoes a sudden body displacement
by a quick and forceful pull on the shoulders during

upright stance

Number of backward
steps or falling

(qualitative)

Tandem gait test [66] Postural ability
The subject walks a straight line while touching the
heel of one foot to the toe of the other (narrowed base

of support)

Unbalance, falls or need
to enlarge the base of

support

One-leg stance test [67] Postural ability The subject stands unassisted on one leg with
opened eyes and arms on the hips as long as possible

Time of performance in
seconds

Timed up and go test [68] Gait and postural
ability

The subject sits on a chair, stands up, walks 3 m,
turns around, walks back and sits down

Time of performance in
seconds

Tinetti balance and
mobility scale -

Performance-oriented
mobility assessment [69]

Gait and postural
ability

The subject performs postural and walking motor
tasks reflecting common daily activities, such as

rising from a chair, maintaining upright stance after a
nudge, walking and turning (total 24 items

consisting of 14 balance items and 10 gait items)

Total score (sum of gait
and balance scores) by

using a 2/3-point ordinal
scale for each item

Functional reach test [70] Postural ability The subject reaches as far forward as he can with
arms at 90◦ flexion, keeping feet on the floor

Maximum distance (cm)
that the subject can reach

forward beyond arm’s
length

Berg balance scale [71] Postural ability

The subject performs functional activities reflecting
different components of postural control, such as

reaching, bending, transferring and standing (total
14 items)

Total score by using a
5-point ordinal scale for

each item

Activities of balance
confidence scale [72] Postural ability

The subject performs a self-report questionnaire on
subjective impact of balance dysfunction on 16 daily
activities, such as walking in different environmental

and postural conditions (total 16 items)

Average score in
percentage (each item

rated from 0% to 100% of
balance confidence)

Physiological profile
assessment [73]

Pathophysiological
mechanisms

The subject performs different sensorimotor tasks to
assess vision (e.g., dual contrast visual acuity chart),
lower limb sensation (e.g., tests of proprioception),

legs strength, step reaction times, vestibular function
(e.g., visual field dependence) and postural sway

Falls risk assessment
based on the scores of

sensorimotor tasks

Balance evaluation
systems test [74]

Pathophysiological
mechanisms

The subject performs several motor tasks reflecting
different systems underlying balance control (e.g.,

stance on a firm or foam surface, stepping over
obstacles, alternate stair touching); (total 36 items

categorised into 6 underlying systems:
"Biomechanical Constraints," "Stability

Limits/Verticality," "Anticipatory Postural
Adjustments," “Postural Responses,” “Sensory

Orientation” and “Stability in Gait”)

Total score in percentage
referring to the partial
score of systems that

involve a 4-point ordinal
scale for each item

When considering the clinical assessment of balance, several issues should be taken into account.
First, the clinical assessment unlikely detects early postural abnormalities since it identifies balance
impairment when significant pathological changes in the nervous system have already occurred.
Second, the clinical assessment provides qualitative rather than quantitative evaluations of postural
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ability, thus representing a subjective tool. Third, standardised clinical scales or indices, such as the
Berg balance scale [75] or the dynamic gait index [76], are semiquantitative evaluations of balance,
but are time-consuming and suffer from floor and ceiling effects. Lastly, the clinical setting usually
involves rather predictable environments with poor ecological value. As a result, evaluation through
instrumental tools, such as wearable sensors, would contribute to providing more sensitive, objective,
multidimensional, long-term and ecological measures.

4. Static and Dynamic Posturography

Posturography refers to the instrumental assessment of balance [77–79] under static or dynamic
conditions [80,81]. Static posturography examines body postural sway while subjects maintain a static
stance on a non-movable surface [79,81]. During the upright stance, the human body can be considered
an unstable system in which force gravity and body inertia generate torques to be balanced [82]. Indeed,
the vertical projection of the whole body mass constantly varies over time, deviating from the ankle
joint centre of rotation [83]. Human standing balance can be represented by a reduced number of joints
resembling an unstable single-link inverted pendulum [84].

Unlike static evaluation, dynamic posturography includes several postural tests and ad-hoc
instruments designed to assess balance under experimentally-induced external perturbations [85].
External disturbances are often designed to simulate environmental hazards occurring in daily activities
including a set of visual and motor challenges [85,86]. Postural responses to external perturbations
can be assessed by a non-motorised movable platform, such as the Biomechanical Ankle Platform
System [87], or more complex commercial robotic systems, such as the Equitest system (Neurocom
International, Clackmas, OR, USA) [85], the Balance Master (Micromedical Technologies, Chatham, IL,
USA) [88], or Caren (Motek, Amsterdam, the Netherlands) [89].

Several non-commercial robotic platforms have been recently designed to provide various
patterns of mechanical perturbation [90–94]. Common approaches include unidirectional [95]
or multidirectional [85,96,97] disturbances, such as rotational [93,98–101] and translational
perturbations [96,102–104], or forces applied to specific body segments [105,106]. Abrupt perturbations
allow the examination of reactive postural responses, whereas continuous and oscillatory perturbations
are used for the assessment of anticipatory postural strategies [101,102,104,107,108]. Postural
perturbations can be also defined as predictable or unpredictable according to the subject’s awareness.
The predictability/unpredictability of a specific perturbation allows the experimental investigation of
reactive or anticipatory postural strategies [105,106,109]. Mechanical perturbations are often merged
with visual, vestibular, and proprioceptive disturbances such as visual scene movements, imposed
head accelerations, galvanic vestibular stimulation, and tendon vibration [81,85,89,110,111]. The most
common tests used are the Sensory Organization Test (SOT) [112], the Motor Control Test (MCT) [113],
and the Adaptation Test (AT) [81]. In the SOT, subjects are elicited through visual, vestibular, and
proprioceptive modifications of the support surface and visual surroundings to create sensory conflict
conditions. The MCT consists of antero-posterior perturbations at different intensity levels, while in
the AT subjects experience toes-up and toes-down rotations.

Several biomechanical parameters quantify balance dysfunction [114,115] by referring to two
main variables: the centre of pressure (COP) and COM [116]. The COP is the application point of the
total ground reaction force vector, whereas the COM refers to the average position in 3D space of all
body segment positions according to their specific masses [116]. COM can be considered representative
of the movements of the entire human body [116]. Several indices considering acceleration, velocity,
displacement of single or multiple body segments, joint angles, and muscle activity can be measured
using both traditional and wearable instrumentation (Table 3).
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Table 3. Main biomechanical parameters for balance assessment through traditional and wearable instrumentation.

Name Meaning Static Dynamic

RANGE Range of acceleration/displacement in the AP, ML, and V direction. Impaired motor
strategies report high values of Range Index [114,117,118] [111,119]

STD Standard deviation of reference body landmarks. It is an index of average amplitude of
body displacements. [102,104,120,121]

DIST Mean distance from the centre of acceleration/displacement trajectory. It is an index of
desertion. In static evaluation, high values indicate poor motor control. [114,117,122,123]

RMS Root mean square of the acceleration/displacement in AP, ML, and V direction. High
values represent larger dispersion and poor motor control. [114,117,122–127] [128]

MEAN Average acceleration/velocity/displacement in the AP, ML, V direction. High values
represent unstable postural adjustments and poor motor control. [118,122,127]

PATH Total length of the acceleration/displacement in static condition larger values represent
poor motor control. [114,117] [26,102,128]

MV Mean velocity. It is the first derivative of the acceleration signal in the AP, ML and V
direction. Impaired motor strategies report High values of Mean Velocity Index. [114,117]

AREA Total area that encapsulates the total sway path in AP and ML directions. In a static
condition, higher values represent poor motor control. [114,117,118,123,127]

EA95 95% ellipse sway area. It is the ellipse area that encapsulates the 95% of the sway path
in the AP and ML direction. High values represent poor motor control. [114,117,126,127]

JERK
Time derivative of the acceleration signal. It represents the range of changes in the

acceleration signal. High values represent accelerating and decelerating pattern
attesting more unstable condition and poor motor control.

[114,117,118,122,125]

Cross-correlation
Cross-correlation between displacements of two body points. It is an index of coupling
between the motion behaviour of two body segments or between the movable platform

and the human body
[102,104,120,129]

PWR Total power of the power spectrum of the acceleration signal. [114,123] [102]

F95 or F50 Frequency below which is present the 95% or 50% of the total power. High values
indicate a larger amount of postural adjustments and poor motor control. [114,118]
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Table 3. Cont.

Name Meaning Static Dynamic

CF
Centroidal frequency of the signal in the AP, ML and V direction. It is the frequency at
which the power is balanced, i.e., the total power above this frequency is equal to the

one below. Poor motor control is identified by low values of CF.
[114,117,122]

FD
Frequency dispersion. It is a measure of the variability of the frequencies of the power
spectral density. Values close to zero indicate pure sinusoidal patterns of the signal and

a more stable motor control.
[114,117,118,122]

Entropy It is the power spectrum entropy of the signal. It is an index of movement smoothness
and the inability to regulate postural fluctuations. [127,130]

Magnitude

It the area below the EMG curve over a specific range of time, starting from the onset of
the perturbation. Mostly this index of muscular intensity is computed during the early

response (0–200 ms), the intermediate response (201–400 ms) and the late response
(401–600 ms). Impaired postural strategies report lower values of muscle activation.

[111,119]

Onset latency
Time delay between onset of perturbation and muscle activation. It represents how fast
a muscle reacts after a perturbation. Impaired balancing strategies report high values of

onset latency.
[86,90,111,119]

Time to peak

Time between the onset of perturbation and the maximum activation of the muscle or
the maximum peak of joint angle. It indicates how quickly a muscle/joint reaches its

maximal value. In dynamic evaluation, lower values indicate high capability in
counteracting perturbation.

[86,90,111,119,129,
131]

Coactivation
It is the ratio between the magnitude of the agonist and antagonist muscles activity.

Impaired postural strategies present an increased coactivation of
agonist-antagonist muscles.

[86,90]

Peak angle Peak of the angular displacement of two adjacent body segment. [86,129,131]

APAs–CPAs

Anticipatory and compensatory postural adjustments. EMG activity and principal
component analysis are estimated over four-time windows in relation to perturbation
onset, i.e., APA1 (from −250 ms to −100 ms); APA2 (from −100 ms to +50 ms); CPA1
(from +50 ms to +200 ms); CPA2 (from 200 ms to +350 ms). Impaired motor control

reports smaller and delayed APAs during unexpected perturbation.

[95,105,106,109]

AP: antero-posterior; APA: anticipatory postural adjustment; CPA: compensatory postural adjustment; EMG: electromyography; ML: medio-lateral; V: vertical.
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Overall, classical laboratory posturography through force plates and optoelectronic systems
provides reliable, accurate, and comprehensive measurements for balance assessment. However,
these techniques are generally expensive, encumbering, and also require supervised settings as
well as technical expertise, thus precluding their use for long-term monitoring in daily life situations.
Accordingly, current research on posturography has recently moved on wearable technologies [132–137]
possibly providing objective, long-term and free-living monitoring of postural ability at a negligible cost.

5. Wearable Technologies

Recent advances in microelectronics have led to the production of small flexible sensors, even
integrated into clothing (“e-textile”) [138], thus making wearable devices suitable for free-living
applications [139]. To date, the main wearable technologies available for balance assessment include
mechanical devices, such as inertial and pressure sensors, and physiological devices, such as surface
electromyography sensors (sEMG) (Figure 2). Wireless inertial sensors are the most used solution in
wearable systems and have been widely adopted for balance and gait assessment [115,140–142]. Half
of the previous studies used commercial inertial measurement unit (IMU) sensors including triaxial
accelerometers and gyroscopes, and half adopted stand-alone accelerometers [143] or gyroscopes [144].
The combination of triaxial accelerometers, triaxial gyroscopes and magnetometers compose magnetic
and inertial measurement units. Sensor placement depends on the specific postural task under
investigation [115]. For instance, wearable sensors can be placed over the waist or trunk in order to
measure postural sway and trunk acceleration. Other possible body locations include the lower limbs,
sternum, upper limbs and forehead. Triaxial sensors can capture spatio-temporal and 3D kinematic data
including joint and segment angles [145–147]. Overall, the combination of accelerometers, gyroscopes,
and magnetometers provides accurate information on body spatial orientation and motion (Figure 2A).
Besides inertial devices, wearable sEMG sensors evaluate specific patterns of muscle activation
during static and dynamic postural perturbations. sEMG, therefore, allows a better understanding
of physiological mechanisms responsible for balance control [148,149] (Figure 2B). Lastly, wearable
pressure sensors are instrumented insoles placed or integrated into the shoe to measure pressure
changes between the foot and ground [150]. The accuracy of this discrete sensor system is comparable to
non-wearable technologies such as the laboratory force platform (Figure 2C). In addition to mechanical
and physiological devices, there are wearable sensors able to continuously monitor the concentration
of specific biochemical markers in biofluids, through miniaturized and flexible devices [151]. These
innovative sensors would open to interesting prospects also referring to the assessment of balance.
For instance, monitoring L-Dopa or dopamine concentration by microneedle patches would be a
helpful tool to correlate postural ability with dopaminergic treatments in patients with Parkinson’s
disease [152,153]. Currently, several wearable sensors, mostly including inertial devices, are available
on the market for approved clinical use in balance assessment [154], also including self-adhesive
biosensors (for further details see www.clinicaltrials.gov).

www.clinicaltrials.gov
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Sensors 2020, 20, 3247 13 of 32

The large volume of data produced by wearable sensors requires the development of specialised
algorithms and machine learning algorithms to select clinically-valuable measures [138]. Owing to
the considerable processing capacity of wearable devices, embedded algorithmic sets can be used for
the online and remote execution, but at the expense of the battery charge duration. To optimise the
performance of these algorithms in recognising clinical phenomena, a common approach leverages
the so-called “sensor fusion”, which consists of the combination of sensory data and signals derived
from distinct sources so that the resulting information is more accurate (e.g., integration of inertial
and electromyography signals) [155]. Accordingly, the emerging trends in wearables are moving
towards the design of integrated sensors, including devices composed of IMUs and sEMG [148],
to be user-friendly, waterproof and unobtrusive. Table 4 summarises the strengths, limitations and
challenges of each type of wireless sensors currently used for balance assessment. Moreover, Table S1
reports all the previously published reviews on balance assessment through wearable devices in
healthy subjects and patients affected by various medical conditions.

Table 4. Strengths, limitations and challenges of wireless sensors currently available for balance
assessment.

Wireless Sensor Strengths Limitations Challenges

IMU Low cost and high
accuracy

Possible magnetic interferences,
errors of misalignment,

orthogonality and offset and energy
consumption

New algorithms for
position and orientation

correction

sEMG Noninvasive analysis
and unobtrusiveness

Crosstalk due to adjacent muscles,
skin-electrode interface noise and

electrode positioning

New implantable EMG
sensors and dry

electrodes composed of
conductive fabric

Pressure Outdoor measurements
and easy integrability

Low comfortability during gait,
limited sensitive area and high cost

New capacitive sensors
composed of fabric

IMU: Inertial Measurement Unit; sEMG: surface electromyography

6. Literature Research Strategy and Criteria

Literature research of studies investigating balance impairment through the use of wireless sensors
in neurological disorders was performed using the following databases: MEDLINE, Scopus, PubMed,
Web of Science, EMBASE and the Cochrane Library. Literature criteria included the following terms:
“wireless sensors” OR “wearables” OR “inertial measurement unit” OR “surface electromyography”
OR “pressure sensors” AND “neurological disorders” OR “Alzheimer’s disease” OR “stroke” OR
“Parkinson’s disease” OR “multiple sclerosis” OR “vestibular disorders” OR “cerebellar ataxia”
OR “traumatic brain injury” OR “Huntington’s disease” OR “neuropathy” AND “balance” OR
“posturography” OR “postural control.” Eligible studies were experimental studies published from
January 2005 to March 2020, examining balance through wireless sensors in patients suffering from
the above reported neurological disorders. The reference lists of retrieved articles were also manually
searched for additional studies. Reviews, reports, conference proceedings, and articles in languages
other than English were not considered in the evaluation of eligible studies.

7. Wearable Technologies in Neurological Disorders

Previous studies using wearable sensors have investigated balance impairment in Parkinson’s
disease [114,122,124,125,156–168], multiple sclerosis [118,146,169–177], stroke [52,178–184], traumatic
brain injuries [123,126,185–189], cerebellar ataxia [130,190–195], vestibular syndromes [196–199],
neuropathies [199–201], Alzheimer’s disease [32,202,203], and Huntington’s disease [46,204]. Most of
these studies have compared patients affected by neurological disorders with healthy subjects. However,
a minority of authors [52,167,176,178,180,187] have analysed postural ability only in a group of patients
with neurological disorders without including a control group.
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Concerning the type of sensors used for balance assessment, most of the existing studies have
applied inertial devices, primarily accelerometers and gyroscopes. Several authors [46,162,163,183,184]
have even used inertial sensors installed in common tablet computers and smartphones. Conversely, no
authors have used pressure sensors, while only a few have adopted wireless sEMG sensors [166–168] to
analyse balance impairment in patients with Parkinson’s disease. Strengths and limitations of each type
of sensor are shown in Table 4. Each type of sensor technology would be implemented by addressing
some challenges, including the elaboration of new algorithms, the development of implantable EMG
tools and, finally, the use of unobtrusive “e-textile” devices (see Table 4). Also, future studies would
benefit from the integration of various sensor technologies (i.e., sensor fusion) to optimize the measure
of balance dysfunction in patients with neurological disorders.

Regarding the number and body location of sensors, authors have used 1 to 8 inertial devices
and multiple body segments, including the upper (10 studies) and lower limbs (21 studies), head
(1 study), trunk (18 studies), and waist (48 studies), depending on the static or dynamic postural task
chosen for balance assessment. Indeed, some authors who investigated postural evaluation during gait
(e.g., [122,146,161,169,172,175]) and instrumented versions of clinical tests, such as the push and release
test [171] and the Fukuda Stepping Test [182], have usually applied more sensors than those evaluating
static balance during upright stance (e.g., [52,114,125,157,158,163,177,183–185,188,191–194,199,203,204].
However, despite one study [204], all authors have included the lumbo-sacral region as the main
location of inertial sensors for the analysis of postural sway, according to the COM position. Conversely,
multiple sEMG sensors have been placed mainly on lower limbs to monitor muscle activity during
postural perturbations [166–168]. The number of sensors and their placement on the body is a relevant
issue for balance assessment, also requiring to consider a proper cost and energy-benefit analysis,
as well as the efforts for patients and caregivers. The number of sensors to be used depends on the
specific clinical phenomenon under investigation (e.g., postural sway for balance control) and the need
for maintaining high-quality measurements, through appropriate sampling rate and estimated energy
consumption. Indeed, though more informative, a high number of devices would be computationally
demanding and expensive, as well as uncomfortable to be applied in a domestic environment.

Considering the accuracy of sensors in balance assessment, some authors [52,114,156,157,159,
162,164,171,173,174,186,191,193,194,200] have compared wearable device measurements with those of
standardised laboratory measurement systems, such as force plates and 3D motion-capture systems.
These authors have agreed on the moderate or strong correlation between specific inertial indices
(e.g., root mean square of acceleration time series [114], acceleration peaks of anticipatory postural
adjustments [156,159], time to reach stability [171]) and COP or optical measures, thus suggesting an
accurate performance of inertial wearable devices compared to standardised instrumentations in the
laboratory. However, validation studies in unsupervised settings are warranted to further support the
reliability of wireless sensors for balance assessment in domestic environments.

Most authors [32,52,114,118,123–126,130,146,157,158,163,165,169,170,173,174,176–178,183,185–195,
197–204] have performed a static balance evaluation by analysing maintenance of the upright stance
with different amplitudes of the BOS (e.g., side-by-side, tandem, single-leg stance). These protocols
have also included the assessment of sensory and cognitive contribution to balance control by removing
visual and/or proprioceptive cues (e.g., closed eyes, foam surface) and by increasing cognitive load
(e.g., dual-task). Moreover, a large number of authors [46,118,122,146,156,159–162,164,166–169,171–
173,175,179–182,190,196] have investigated dynamic postural control, mostly through the use of
walking tasks, instrumented versions of clinical tests (e.g., Timed-Up and Go, stand and walk, and
push and release tests), and external or self-triggered postural perturbations. Although several
authors [46,123,125,157,161,166–168,171–173,178–181,190,196,202] have assessed balance during tasks
possibly reflecting daily postural challenges, all research protocols have been conducted in a laboratory
setting. However, since supervised laboratory settings only partially reflect challenging “real-life”
situations, these studies do not provide firm conclusions about the application of wireless sensors in a
domestic environment.
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Concerning biomechanical measures, previous studies have used filtered acceleration signals
by inertial sensors to measure body sway in all the neurological disorders here considered, but have
evaluated APAs during gait initiation only in patients with Parkinson’s disease. Overall, these measures
have shown increased postural sway in patients with neurological disorders and decreased APAs
during gait initiation in patients with Parkinson’s disease, as compared to age-matched healthy subjects.
These parameters have also identified subclinical postural abnormalities (e.g., in vestibular syndromes)
correlating with the amount of clinical disability [114,118,124,146,163,165,170,171,175,176,184,190,195].
A few authors [166–168] have measured muscle postural synergies with sEMG sensors in patients with
Parkinson’s disease. Given that no studies have directly compared biomechanical indices in patients
with different neurological disorders, it is unclear whether any of the measures may discriminate the
various conditions. These findings overall have shown that wireless sensors can accurately quantify
several kinematic measures, including the time and frequency COM dynamics [114,174,200], the 3-D
trajectory of body sway angles [191], the joint range of motion [205], the stepping latency [171],
and the APAs [159]. Conversely, the evaluation of kinetic measures, including the analysis of internal
forces and moments acting on human joints, by wearable systems remains quite challenging [206].
Although the novel approach by wearables would help to partially overcome this issue with inertial and
pressure sensors, inverse dynamics techniques, through motion capture systems and force platforms,
are currently more suitable to achieve these measures. Moreover, to date, other dynamic variables,
including the joint power and the energy cost of a movement, have not yet been evaluated by wearable
sensors. Specifically concerning APAs, in addition to inertial measurements, wearable technologies
would also allow long-term APAs recordings, through wearable sEMG, in more ecological environments.
However, APAs recordings through wearable sEMG would require advanced algorithms for pattern
recognition to achieve consistent observation. A further consideration concerns the generalizability
to more ecological environments of behavioural measures observed in the laboratory setting. Unlike
motor performance under “real-world” postural perturbations, experimental measures under a
supervised laboratory setting would improve per se patients’ motor behaviour owing to unspecific
and disease-unrelated factors, such as attentional and emotional aspects. The appropriate selection of
a standardised measure for balance assessment would promote more consistent evaluation among the
various neurological disorders. Table 5 provides an overall overview of the methodological approaches
and findings from studies here examined. Also, a more detailed description of these studies is shown
in Table S2. Finally, Figure 3 shows the positive trend of published studies on wireless sensors for
balance assessment in the various neurological disorders.
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Table 5. Sensor-based balance evaluation in neurological disorders.

Disease and
Number of

Studies

Studies with a
Control Group

Type and Main
Locations of Sensors

Other
Measurements

Main Experimental
Setups

Main Postural
Measures Main Findings Clinical-Behavioural

Correlations

Alzheimer’s
disease
N = 3

[32,202,203]

N = 3
[32,202,203]

1 to 5 IMUs on trunk,
waist, legs and thighs Not performed

Upright stance with
open or closed eyes,

different BOS
amplitudes and

surfaces (e.g., firm and
foam), as well as

during virtual
perturbations

Pitch and roll angles;
COM displacement;
sway velocity, area

and path; RMS
acceleration

Lower minimal roll angle,
larger COM displacement,
higher sway area and RMS
acceleration in AD than HS

Not significant or
not performed

Parkinson’s
disease
N = 17

[114,122,124,125,
156–168]

N = 16
[114,122,124,125,

156–166,168]

1 to 8 IMUs on trunk,
waist, wrists, thighs,

shanks and feet; 10 to
22 sEMG on lower

limb muscles, lumbar
erector spinae,

thoracic erector spinae
and rectus abdominis

Force plate (COP
measures) and
infrared optical

system

Gait initiation; upright
stance with open or

closed eyes, different
BOS amplitudes and

surfaces (e.g., firm and
foam), under and not
under cognitive load;

SOT; ISAW;
self-triggered and
external postural

perturbations; OLS

IMUs: APAs; mean
velocity; RMS

acceleration; jerkiness;
peak-to-peak sway;

95% ellipse area;
strategy index.

sEMG: amount of
variance accounted
for; synergy index;
ASAs; modulation

index

Correlation between inertial,
COP and optical measures;
hypometric APAs, higher

mean velocity, acceleration
size and jerkiness, larger

peak-to peak sway and 95%
ellipse area, predominant
ankle strategy; lower VAF

and synergy index, reduced
ASAs and muscle

modulation in PD than HS

Acceleration
changes correlated

with PIGD and
UPDRS-III scores,

strategy index with
ABC scores, muscle

modulation with
postural ability and
disease severity in

PD

Multiple sclerosis
N = 11

[118,146,169–177]

N = 10
[118,146,169–175,

177]

1 to 6 IMUs on trunk,
waist, wrists, thighs,

shanks and feet

Force plate (COP
measures) and
infrared optical

system

Upright stance with
open or closed eyes

and different surfaces
(e.g., firm and foam);
walking tasks (e.g.,
TUG, timed 25-foot

walk, 6-minute walk
test); external

perturbations (e.g.,
push and release test,

backward
perturbation)

RMS acceleration;
mean velocity; sway

jerk, path length, area;
F95%; time to reach

stability; coherence of
acceleration between

trunk and legs

Correlation between inertial
and COP measures; larger

sway acceleration
amplitude, angular trunk

range of motion in roll and
yaw axes, sway path length
and area, reduced ML sway

jerk, higher F95%, longer
time to reach stability and

lower acceleration
coherence between trunk
and legs in MS than HS

Sway acceleration
correlated with ABC
and MSWS12 scores;

RMS acceleration,
displacement, mean
frequency and time

to reach stability
correlated with

EDSS scores
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Table 5. Cont.

Disease and
Number of

Studies

Studies with a
Control Group

Type and Main
Locations of Sensors

Other
Measurements

Main Experimental
Setups

Main Postural
Measures Main Findings Clinical-Behavioural

Correlations

Huntington’s
disease
N = 2

[46,204]

N = 2
[46,204]

1 to 2 IMUs on trunk
and waist Not performed

Upright stance with
open or closed eyes
and different BOS

amplitudes; sitting,
standing and walking

RMS acceleration;
total, peak and mean

angular excursion

Higher RMS acceleration;
larger peak and total

excursions in HD than HS

Not significant or
not performed

Cerebellar ataxia
N = 7

[130,190–195]

N = 7
[130,190–195]

1 to 6 IMUs on trunk,
waist, wrists, ankles

and feet

Force plate (COP
measures)

Upright stance with
open or closed eyes

and different surfaces
(e.g., firm and foam);

walking tasks and
external perturbations
(e.g., retropulsion test)

Trunk angular
displacement and

velocity, sway path
length, area of the

convex hull, convex
polyhedron volume,
entropy, 95% of the
ellipse sway area

Correlation between inertial
and COP measures; larger

trunk angular displacement
and velocity, sway path

length, area of the convex
hull, convex polyhedron

volume, entropy and 95% of
the ellipse sway area in CA

than HS

Inertial measures
(e.g., trunk angular
displacement and

velocity) correlated
with ICARS scores,
Tinetti’s Mobility

Index and
SARA scores

Stroke
N = 8

[52,178–184]

N = 5
[179,181–184]

1 to 5 IMUs on head,
trunk, waist and shins

Force plate (COP
measures)

Upright stance with
open or closed eyes
and different BOS

amplitudes; walking
tasks; functional reach
test; Fukuda stepping

test; OLS

Body displacement
(time, velocity,

acceleration); RMS
acceleration

Higher maximum and
minimum acceleration, LL
trunk acceleration, angular

velocity in ST than HS

Gyroscope data
negatively

correlated with Berg
balance scale scores

Traumatic brain
injury
N = 7

[123,126,185–189]

N = 6
[123,126,185,186,

188,189]
1 IMU on waist Force plate (COP

measures)

Upright stance with
open or closed eyes,

different BOS
amplitudes and

surfaces (e.g., firm and
foam); standard and

modified balance error
scoring system

RMS acceleration;
sway amplitude,

velocity, variability
and frequency; ellipse
and total sway area;
95% ellipsoid sway

volume

Higher RMS, total power,
mean distance, acceleration
range, path length, ellipse
and total sway area, 95%

ellipsoid sway volume and
area in TBI than HS

Self-reported
symptoms (e.g.,

dizziness, headache)
correlated with sway

path length and
postural sway area



Sensors 2020, 20, 3247 18 of 32

Table 5. Cont.

Disease and
Number of

Studies

Studies with a
Control Group

Type and Main
Locations of Sensors

Other
Measurements

Main Experimental
Setups

Main Postural
Measures Main Findings Clinical-Behavioural

Correlations

Neuropathies
N = 3

[199–201]

N = 3
[199–201]

1 to 2 IMUs on waist
and shin

Force plate (COP
measures)

Upright stance with
open or closed eyes,

different BOS
amplitudes and

surfaces (e.g., firm and
foam)

RMS acceleration;
range of acceleration;
peak velocity; body

sway area

Correlation between inertial
and COP measures; higher

RMS acceleration,
acceleration range, and

peak velocity; larger body
sway area in NP than HS

Vibration perception
threshold negatively

correlated with
postural control

Vestibular
syndromes

N = 4
[196–199]

N = 4
[196–199]

1 to 4 IMUs on head,
trunk, waist and legs Not performed

Upright stance with
open or closed eyes,

different BOS
amplitudes and

surfaces (e.g., firm and
foam); walking tasks;
shortened functional

mobility test

Range of acceleration;
peak velocity; RMS
acceleration; mean
power frequency;

quotient of Romberg
for inertial measures

Higher range of
acceleration, peak velocity,

RMS acceleration and
quotient of Romberg for
some inertial measures;

smaller mean power
frequency in VS than HS

Not significant or
not performed

ABC: Activities-Specific Balance Confidence Scale; AD: patients with Alzheimer’s disease; ASA: Anticipatory Synergy Adjustment; APA: anticipatory postural adjustment; BOS: base of
support; CA: patients with cerebellar ataxia; COM: centre of mass; COP: centre of pressure; EDSS: Expanded Disability Status Scale; F95%: frequency comprising 95% of the signal; HD:
patients with Huntington’s disease; HS: healthy subjects; ICARS: International Cooperative Ataxia Rating Scale; IMU: Inertial Measurement Unit; ISAW: Instrumented Stand and Walk Test;
LL: latero-lateral; ML: medio-lateral; MS: patients with multiple sclerosis; MSWS12: 12-Item Multiple Sclerosis Walking Scale; N: number; NP: patients with neuropathies; OLS: one-leg
stance; PIGD: Postural Instability/Gait Difficulty score; PD: patients with Parkinson’s disease; RMS: root mean square; SARA: Scale for the Assessment and Rating of Ataxia; sEMG: surface
electromyographic sensors; SOT: Sensory Organisation Test; ST: patients with previous stroke; TBI: patients with previous traumatic brain injury; TUG: Timed-Up and Go test; UPDRS-III:
Unified Parkinson’s Disease Rating Scale—part III; VAF: variance accounted for; VS: patients with vestibular syndrome.
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8. Teleneurology and Telerehabilitation for Balance: Prospects and Challenges

Along with the ageing of the population, the prevalence of neurological disorders will also
significantly increase in the next decades [207]. Accordingly, public health challenges will burden
society and healthcare systems, which will face a heavy demand for the neurologic care of acute
and chronic conditions. By allowing long-term monitoring for preventive and recovery strategies,
wireless sensors will promote teleneurology and telerehabilitation and take some of the burden off of
healthcare facilities.

Concerning the role of teleneurology for balance assessment through wireless sensors, so far,
a few studies have addressed this topic in patients with neurological disorders. Nevertheless, several
advantageous clinical prospects related to this issue should be considered. First, access to care
for patients with balance impairment is quite challenging due to transportation difficulties and
dependence on caregivers. Wireless sensors would be a sensitive and objective tool for the domestic
measurement of balance control during the performance of validated instrumented tasks, such as
maintenance of an upright stance. Moreover, other symptoms commonly associated with postural
dysfunction, such as gait disorders [208], would also be measured, thus providing more detailed
clinical information. Current evidence suggests that teleneurology promotes a reduction of patient
and caregiver burden [209]. Second, medical visits in a hospital setting do not always reflect real-life
situations, which commonly present insidious postural challenges. Therefore, the long-term monitoring
of postural ability during common daily activities could provide ecological data on patient balance
control in free-living conditions. This approach would help to identify early subclinical changes
of balance, allow the objective assessment of fall risk and design individualised strategies for fall
prevention (e.g., use of mobility aids and changes of environmental hazards). Third, the real-time
identification of situations at high risk of falling would also allow patients to benefit from temporary
preventive or rescue interventions. For instance, the detection of near-falls could be used for the
automatic activation of protective tools, such as inflatable hip pads aimed to prevent fall-related
injuries [210]. A further strategy would include the improvement of balance control by wearable-based
sensory biofeedback, able to enhance patients’ awareness and in turn, prevent falls [211,212].

Along with fall prevention strategies, rehabilitation is the main therapeutic approach for improving
balance in patients with neurological disorders. The main goal of rehabilitation is to enhance individual
postural skills, supporting patient independence in ecological settings. To this aim, by using information
and communication technologies, telerehabilitation would provide rehabilitative services directly at
home [213] with similar effectiveness to conventional therapy [214]. Wireless sensors would allow
monitoring of individual postural ability in a domestic environment, increasing adherence to the
rehabilitative programme, and thus promoting tailored therapeutic approaches [215]. Moreover,
wireless sensors would also support home-based interactive rehabilitation programmes by providing
real-time feedback during unsupervised training. Nowadays, the increasing use of mobile phones
and other technological tools in multiple aspects of daily life is promoting a widespread technological
education in the general population, including the elderly. Accordingly, in the next decades, user-friendly
wearables will be increasingly used to increase adherence to telerehabilitation strategies. Owing to
remote and continuous evaluation by physicians and physical therapists, telerehabilitation would
reduce the number of periodic hospital admissions. However, some initial education to patients and
caregivers concerning wearables applications for therapeutic purposes is likely required. So far, several
clinical trials have already adopted sensor-based measurements to objectively evaluate balance and its
response to pharmacological as well as non-pharmacological interventions [216] (for further details
see www.clinicaltrials.gov). However, only a few authors [216–220] have examined the effectiveness
of sensor-based balance training in patients with neurological disorders. Furthermore, most of these
studies involved a laboratory or clinical setting supervised by experienced staff [216]. Hence, to reach
some firm conclusion, new randomised controlled trials should assess large samples of patients in
ecological settings, including the domestic environment [216].

www.clinicaltrials.gov
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The main current challenge is the technological migration of wireless sensors from the laboratory
setting to a domestic and unsupervised environment. The technological feasibility of sensor systems
primarily depends on the variables to be measured as well as on the computing-capacity integrated
into the wearables. Unlike conventional laboratory systems, the domestic use of wearable sensors
would imply some limitations such as autonomy and interface capabilities (e.g., interaction with
the user, communication with external devices and servers for information sharing). Concerning
IMUs, challenges include the calculation capacity, which mainly depends on the running algorithms
thus influencing the selection of a specific device, processing characteristics, memory capacity and
communication protocol. Overall, the technological migration of wireless sensors from the laboratory
setting to a domestic environment would benefit from the identification of standardized and accurate
measures. To this aim, understanding the physiological and pathophysiological mechanisms underlying
balance is the background for selecting, measuring and interpreting the specific postural variables to
be assessed. Also, the improvement of communication between wearable sensors and external devices,
as well as the implementation of standardized and low energy-consuming algorithms are additional
limitations to overcome. To support this migration process, current commercialization efforts are
reducing sensor dimensions to ensure the unobtrusiveness of the devices, though maintaining safety
and accuracy standards. “Real-world” evidence aimed at monitoring balance disorders through
wireless sensors in ecological settings (e.g., patients’ home or nursing home) will further clarify
strengths and limitations in the telemedicine and telerehabilitation approaches.

Several open questions remain when considering teleneurology and telerehabilitation approaches.
To date, only a few randomised controlled trials have addressed this topic in patients with neurological
disorders, thus pointing to the weak internal validity of the current clinical evidence. Future studies
should propose easier solutions to be applied in unsupervised settings without requiring technical
expertise (e.g., issues related to data storage, access platforms and software/app usage). As a possible
solution, machine-learning algorithms, including those using artificial neural networks (deep learning
algorithms) [221], would be suitable tools for the automatic storage, interpretation and management
of healthcare data [222–224]. Indeed, by learning from massive amounts of longitudinal data,
machine-learning systems could lighten the burden of technical expertise and improve clinical decision
making through a tailored approach. Another relevant point concerns some ethical issues, such as the
security of the overwhelming amount of healthcare sensitive data derived from the use of wireless
sensors, possibly leading to the generation of discriminatory profiles, manipulative marketing or
data breaches [225]. Accordingly, limiting the wireless transmission to a small number of selected
data (e.g., fall episodes) would help to preserve the confidentiality of a large amount of recorded
information in case of privacy violation. Using proper encryption technology and increasing the
users’ awareness of privacy rights would help to address ethical issues. Nonetheless, strict regulations
for data management should also be adopted to guarantee users’ confidentiality and integrity [226].
The use of inertial sensors included in smartphones would address the issue of the cost and availability
of wearable sensors [227].

9. Conclusions

Over the last 15 years, wearable devices have been largely used for the assessment of balance
in patients affected by neurological disorders, providing valuable data compared with standard
laboratory instrumentation. Indeed, a great experience in the use of wireless sensors for balance
evaluation has been achieved in the laboratory setting. Conversely, much still needs to be done for
the technological migration of wearable devices from the laboratory to the domestic unsupervised
environment. This migration would open several valuable prospects, including teleneurology and
telerehabilitation approaches.
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