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Abstract: Amorphous soft magnetic microwires have attracted much attention in the area of sensor
applications due to their excellent properties. In this work, we study the influence of annealing
treatments (stress and conventional) in the giant magnetoimpedance (GMI) response and the field
sensitivity of the soft magnetic Co69.2Fe3.6Ni1B12.5Si11Mo1.5C1.2 glass-coated microwires. Here we
report a remarkable and simultaneous enhancement of GMI effect and field sensitivity. The highest
sensitivity of 104%/Oe and the GMI response of 234% were achieved for 300 ◦C stress-annealed
samples at 472 and 236 MPa, respectively. Additionally, we found that stress-annealed microwires
exhibit a frequency dependence on maximal GMI response and field sensitivity. These findings are
obtained by fine-tuning their magnetoeslastic anisotropies through stress-annealing treatments of
as-prepared microwires at the proper temperature and axial applied stress upon annealing. We hope
that the results presented here widen the scope of investigations for the future design of soft magnetic
materials for sensor purposes.

Keywords: magnetoimpedance effect; skin effect; soft magnetic materials; field sensitivity;
amorphous microwires

1. Introduction

Over the last decades, magnetic sensors have captivated scientific attention for their technological
findings in a broad scope of fields. These applications range from space research, military
applications, security systems, high-density magnetic recording and biomedicine [1–6]. In this line,
the miniaturization of sensors and technological devices opens new routes in the property-to-function
conversion. Metal-based amorphous alloys [7,8] constitute the main family within magnetic sensors.
After Panina et al. [7,8], Co-based rapidly quenched materials have become widely recognized
magnetic materials for sensors due to their high-performance properties [9,10]. It should be highlighted
that their excellent magnetic softness, exhibiting nearly zero magnetostriction constant value and a
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remarkably giant magnetoimpedance (GMI) response along with high field sensitivity, among other
properties [7,11,12].

In this sense, giant magnetoimpedance (GMI) effect results is the most remarkable feature for
sensor applications. This phenomenon consists in a significant change of the AC impedance in
presence of a static dc-field [13]. GMI ratios up to 600%, at frequencies around 10 MHz [14] and
sensitivities up to 10%/Am−1 are the maximum values reported to date for amorphous wires [15].
These properties make Co-based materials quite suitable candidates for GMI technology, such as
magnetic field sensors integrated in complementary metal-oxide-semiconductor (CMOS) circuits [16],
high sensitive magnetometers [17] or biomagnetic field detection [18,19].

Co-based glass-coated microwires are attracting scientific interest for their potential in the
development of small-scale sensors based on their tunable magnetic properties. The Co-based
microwires investigated in this work are fabricated by the Taylor-Ulitovsky technique [20,21].
The Taylor-Ulitovsky technique involving rapid solidification of metallic alloys inside the glass
coating allows the preparation of long (up to 10 km) continuous composite metallic microwires
coated by a flexible and insulating glass cover (typical thickness of 0.5–20 µm). At suitable fabrication
conditions, a completely amorphous structure with no trace of crystalline phases can be obtained [20,21].
Magnetocrystalline anisotropy contribution is consequently negligible, while their magnetic properties
are principally governed by the magnetoelastic interactions. Furthermore, the magnetoelastic
interactions play a key role in the GMI response [15,21,22]. In fact, these interactions are determined by
both the magnetostriction coefficient and internal stresses [23]. Apart from these contributions, classical
electrodynamics gives the fundamental support to explain satisfactorily the GMI effect by considering
the skin effect of a magnetic conductor [24]. Based on this assumption, the most relevant pre-requisite
to achieve a giant MI response is to design amorphous microwires with significant circumferential
magnetic permeability, which can be reached by fine-tuning their magnetic properties [25–27].

With respect to the magnetoelastic anisotropy of glass-coated microwires, the magnetostriction
coefficient, λs, is dictated by the chemical composition (at fixed internal stresses values which in turn
are affected by the fabrication conditions) [28]. Thus, the replacement of Fe by Co atoms permits the
adjustment of λs–values from positive (typically λs ~40 × 10−6 for Fe–based microwires) to negative
(about λs ~ −5 × 10−6 for Co–based microwires) values [28,29]. Accordingly, the vanishing λs–values
can be achieved in Co-Fe or Co-Mn amorphous alloys when the content of Co/Fe or Co/Mn is about
70/5 [28,29]. Moreover, for alloys with vanishing λs–values the stresses influence can be relevant [28].
On the other hand, the internal stresses (value and distribution), which arise from the fabrication
of glass-coated microwires, are the other factor affecting the magnetoelastic anisotropy [15,21,23].
The internal stresses, σi, value can be caused by: i) the thermal expansion coefficient mismatch between
metallic-core and the glass-coating; ii) the quenching stresses originated during the rapid solidification
process; and iii) the drawing stresses [30,31]. According to most theoretical estimations, the internal
stresses arising from the thermal expansion coefficient mismatch are expected to present the largest
contribution [30,31].

In this regard, at a fixed composition and geometry (metallic nucleus diameter and glass-coating
thickness) the magnetic anisotropy can be fine-tuned either by the internal stresses relaxation (usually
by conventional annealing) or by inducing magnetic anisotropy [27,32]. However, it has been
recently noticed that conventional annealing produces a considerable magnetic hardening in different
Co-rich microwires with vanishing λs-values [32,33]. Such magnetic hardening is a detriment to the
GMI performance [27,32,33]. Nevertheless, we have recently observed that stress-annealing can be
successfully employed to induce a transverse anisotropy and hence improve the GMI effect of magnetic
microwires [27,32,33].

For those reasons, our aim is to identify the routes that allow the optimization of GMI performance
at a fixed chemical composition and geometry (i.e., with fixed λs and σi values). We expect that in the
future the observed dependencies can be extended to various Co-rich microwires.
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Accordingly, in this work, we have investigated the magnetic properties of Co-based amorphous
microwires with a well-established chemical composition under stress-annealing conditions aiming
to simultaneously enhance their GMI response and magnetic field sensitivity within the range
10 ≤ f ≤ 1000 MHz of intermediate frequencies.

2. Experimental Methods

The Co69.2Fe3.6Ni1B12.5Si11Mo1.5C1.2 microwire consists in a metallic nucleus of d = 22.8 µm
diameter, surrounded by an outer glass-coating shell that results in D = 23.2 µm total diameter.
The amorphous microwire has been fabricated using the Taylor-Ulitovsky technique, which is described
elsewhere [20,21]. As in similar Co-based microwires [28], the sample presents a slightly negative
magnetostriction coefficient λS ≈ −1 × 10−7 [27]. This allows us to predict the magnetic softness in our
sample and suggests the existence of a circumferential anisotropy along the microwire. This latter
feature is the underlying ingredient to obtain remarkable MI response [24,34].

For proper modification to the magnetic properties of our sample, slices of the as-prepared
microwire were subsequently heat-treated in a standard furnace by two different methods. In one
method the annealing is performed with no applied stress, whereas in the second it is conducted
under axial tensile stress. The tensile stress, σm, was applied through a mechanical load attached to
the end of the microwire and axially placed via the furnace nozzle, allowing stresses up to 472 MPa.
The σm-values are evaluated considering the different Young’s moduli of the metallic nucleus and the
glass coating as recently described [33]. All these treatments were performed at selected temperatures,
Tann, ranged from 200 to 400 ◦C and for 1 h duration, tann. This annealing temperature range has been
selected considering the onset of the crystallization process reported at ca. 490 ◦C for microwires of
the same composition [35]. In fact, it has been described that the rising of the annealing temperature
close to the crystallization point causes a deterioration of both mechanical and magnetic properties
in Co-rich microwires [36,37]. Although two of the advantages of glass-coated microwires are their
flexibility and insulating properties of the glass coating, an excess of temperature can damage the
outer glass-coating.

Magnetic hysteresis loops (HLs) were measured using the fluxmetric method already described [33].
Microwire slices of 5 cm in length were placed inside a single layered pick-up coil, where a magnetic
field was created by a 15 cm long solenoid. For better comparison of the treated microwires, HLs are
represented as the normalized magnetization M/M0, where M is the measured magnetic moment at a
given magnetic field, and M0 is the maximal magnetic moment obtained at the highest magnetic field
amplitude Hmax.

Impedance measurements, Z, were carried out with a vector network analyzer (VNA) N5230A
at room temperature. Microwires of 6 mm length were fixed to a micro-strip sample holder by tin
soldering, and subsequently placed inside a long solenoid that creates a maximum homogeneous
magnetic field, H, of 15 kA/m (ca. 189 Oe). Z-values are indirectly obtained in the intermediate
frequency range 10–1000 MHz through the measurement of the reflection coefficient S11, using the
following expression [34,38]:

Z = Z0
(1 + S 11)

(1− S 11)
(1)

where Z0 = 50 Ohm is the characteristic impedance of the coaxial line.
The MI response or GMI ratio, ∆Z/Z, is determined from Z-values, which are obtained for different

magnetic fields measurements, and it is defined as:

∆Z/Z =
[Z (H)−Z(H max)]

Z(H max)
× 100 (2)

where Hmax is the highest dc-magnetic field applied.
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A distinctive feature of MI response to discriminate among magnetic sensor materials is the field
sensitivity, η, which is calculated through:

η =
∂
(

∆Z
Z

)
∂H

(3)

3. Results and Discussion

The MI response in amorphous ferromagnetic microwires can be enhanced by relaxing their inner
stresses through a diversity of thermal treatments. In view of this, we present here the advantages
of stress-annealing when optimising the magnetic properties of the Co69.2Fe3.6Ni1B12.5Si11Mo1.5C1.2

as-prepared microwire, in contrast to conventional annealing. Figure 1a shows the HLs of the
as-prepared, along with the annealed microwires performed at selected temperatures Tann below its
crystallization point (~550 ◦C, [35]). In the inset of Figure 1a, it is observed a magnetic hardening after
1h annealing. Particularly, in Figure 2a we depict the effect of conventional annealing by increasing the
Hc from ca. 0.06Oe (5 A/m) for the as-prepared sample, up to ca. 1.26 Oe (100 A/m) for the conventional
annealed microwire at the highest Tann of 400 ◦C.
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Figure 1. (a) Hysteresis loops (HLs) of the as-prepared and the annealed microwires performed at
200 ◦C, 300 ◦C, and 400 ◦C. Subfigures (b) and (c) show HLs of as-prepared and stress-annealed
performed at Tann = 300 and 350 ◦C, respectively. The thermal treatments on the parent-microwire
Co69.2Fe3.6Ni1B12.5Si11Mo1.5C1.2 were performed for 1h. In the insets, it is shown a magnification of
the HLs to make clear the linear-to-rectangular evolution of the treated microwires.

The effect of conventional annealing on HLs of Co-rich microwires with low-negative
magnetostriction λs has already been studied [23]. Conventional annealing is expected to produce
magnetic hardening, along with an increment in the magnetization of the metallic nucleus as evinced
in the linear-to-rectangular evolution of the HLs in Figure 1a as Tann rises. The magnetic hardening is
explained through internal stresses relaxation that brings about circumferential domain structure along
the microwire. This hardening could also be the result of either a growth of inner axially magnetized
domains [21,26,38], or a variation in the magnetostriction value [39,40], or even a sign change in the
magnetostriction coefficient [23,40,41].

Hence, conventional annealing cannot be considered the best post-processing treatment to improve
magnetic softness of Co-based microwires. In this regard, stress-annealing counteracts the magnetic
hardening experienced by the microwire on conventional annealing. This effect is plainly visible
in the insets of Figure 1b,c, where two characteristic stress-annealing temperatures are represented,
Tann = 300 and 350 ◦C, respectively. There, the coercive field, Hc, is reduced while achieving a magnetic
softening, which is more clearly shown in Figure 2b. In addition, microwire soft magnetic properties
can be affected by the stress-annealed conditions, i.e., Tann, tann and σm [27,33,40,41]. Figure 1c shows
that the linear HLs typically observed for the as-prepared microwire are recovered at high enough
Tann and σm (in violet), but at the expense of Mr/M0-values (where Mr is the remanent magnetization).
This decrease in the Mr/M0 ratio results in a reduction of the GMI response as is observed below for the
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stress-annealed microwire at Tann = 300 ◦C and σm = 472 MPa. These changes of magnetic properties
result from an increase in circumferential magnetic anisotropy, which is induced by stress-annealing
and becomes more significant when increasing Tann, tann and σm [33,38].Sensors 2020, 20, x FOR PEER REVIEW 5 of 12 
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Figure 2. Temperature-annealing (a) and stress-annealing (b) dependence on the Hc of
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the eyes.

In Figure 3 we confirm the dissimilar effect of conventional annealing on the GMI response
depending on Tann. On the one hand, Figure 3a shows a reduction in the GMI ratio upon annealing
at 200 ◦C, decreasing from 103% (for the as-prepared) down to 62% at 100 MHz. However, a clear
improvement in the GMI effect is achieved when annealing at 300 ◦C, rising from 103% up to 141% at
100 MHz. Furthermore, despite the opposite effect of conventional annealing on the GMI response,
it is noteworthy that in Figure 3c the maximum value of the ∆Z/Zmax ratio is monotonously shifted
to high-frequencies as the Tann rises. This characteristic frequency, hereinafter fchar, is defined as the
frequency at which the ∆Z/Zmax ratio is maximal. In addition, in Figure 3d the field sensitivity displays
minor differences in the frequency dependence between samples. Therefore, conventional annealing is
revealed as an adequate treatment to improve the GMI response only at certain annealing conditions.

With regard to the effect of stress-annealing on the GMI response, in Figure 4 it is clearly appreciated
as a significant GMI improvement as compared to conventional annealing for all stress-annealed
microwires. For example, the measured ∆Z/Z ratio of the as-prepared microwire is equal to 103% at
100 MHz, whereas an increase up to 166% is found in the stress-annealed microwire at 200 ◦C and
118 MPa (see Figure 4a). By contrast, a reduction in the ∆Z/Z ratio down to 62% is observed in Figure 3a
for the conventional annealed microwire at 200 ◦C. The improvement in the GMI response clearly is
stated in Figure 4c for the whole frequency range (up to 1000 MHz). Moreover, Figure 4c shows a slight
increase in fchar up to ca. 150 MHz for the ∆Z/Zmax of the stress-annealed microwires, in comparison
with the as-prepared microwire where the maximum is centred at ca. 80 MHz. Figure 4d draws a
clear improvement in the field sensitivity for the stress-annealed samples, in contrast to conventional
annealing. Particularly, at 100 MHz, the field sensitivity rises from 10%/Oe for the as-prepared, up to
η = 64%/Oe when stress-annealing at 300 ◦C and 118 MPa. However, the field sensitivity obtained for
the three stress-annealed samples is quite similar in the frequency range 500 ≤ f ≤ 1000 MHz. In fact,
they follow the same tendency as those shown in Figure 4c for the frequency dependence of ∆Z/Zmax.
In summary, stress-annealing arises here as the suitable technique to enhance simultaneously the GMI
ratio and field sensitivity.
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In this line, the 118 MPa stress-annealed microwire at 300 ◦C presents the highest GMI response
and field sensitivity, as show in Figure 4c,d, respectively. For this reason, it was resolved to make
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a more detailed investigation of the stress-annealing effect under different applied stresses, but at a
fixed Tann of 300 ◦C (see Figure 5). It is worth noticing the remarkable improvement of both the GMI
effect and field sensitivity, though at different stress-annealing treatments. Figure 5c shows the positive
evolution of ∆Z/Zmax as the applied stress σm rises. In fact, this positive change is even more evident in
the field sensitivity response (see Figure 5d). Specifically, at 100 MHz the GMI ratio improves up to
234% for an applied stress of 236 MPa, in contrast to the 103% for the as-prepared sample. On the
other hand, the field sensitivity is enhanced up to 104%/Oe for the 472 MPa stress-annealed microwire,
while the as-prepared exhibits a poor 10%/Oe. Therefore, the field sensitivity improves as the applied
stress rises (see Figure 5d) within the following range 10 MHz ≤ f ≤ 200 MHz. This frequency range
is the preferred for sensors applications because of better signal to noise features and hence lower
price of electronic circuits, allowing easier processing of the electronic signals [17]. In short, this makes
our stress-annealed sample a suitable material for sensor applications [9]. It is worth noting that for
other families of thicker Co-rich wires (d = 120 µm) prepared by the in-rotating water technique a
fchar < 1 MHz has been reported [42]. 
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Figure 5. Field dependence of the GMI ratio for the as-prepared and stress-annealed
Co69.2Fe3.6Ni1B12.5Si11Mo1.5C1.2 microwires measured at 300 ◦C: (a) 100 MHz and (b) 500 MHz;
(c) frequency dependence of ∆Z/Zmax, and (d) field sensitivity. Dashed-lines in (c,d) are a guide to the
eye, while full-symbols denote experimental data.

All the experimental results reported here could be described considering that the origin of the
GMI effect is directly connected to the skin depth (ac frequency f ) and the circumferential magnetic
permeability (through the external dc magnetic field Hdc, ac current, and induced anisotropies).
Consequently, a good understanding of both features is a requirement for high-performance soft
magnetic materials [13]. In fact, it is well-known that both skin depth and circumferential permeability
are interrelated, and in magnetic microwires of radius a can be given as follows [24,42,43]:

δm =
1√

π σ µφ f
(4)
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where σ and µφ are the electrical conductivity and circumferential magnetic permeability, respectively.
In view of this, we can tackle the GMI response by drawing a general description of skin effect

and magnetic anisotropy. The frequency studied in this paper covers the frequency range from 10 to
1000 MHz, in which the skin depth δm plays an important role. In panels (a) and (b) of Figures 3–5, the
GMI exhibits the expected double-peak behaviour for the as-prepared sample (in the whole frequency
range), which results from the induced magnetoelastic anisotropy during the fabrication. By contrast,
at 100 MHz a single-peak response is achieved by specific conventional annealing (at Tann ≥ 300 ◦C in
Figure 3a) and stress-annealed samples (σm ≤ 236 MPa in Figures 4a and 5a, respectively). This is the
result of vanishing induced magnetoelastic anisotropies during their fabrication. Moreover, in annealed
and stress-annealed samples (at low σm-values) the internal stresses’ relaxation contributes to the axial
anisotropy, and therefore, GMI response tends to be single-peak. However, in stress-annealed samples,
at sufficiently high σm-values, the circumferential anisotropy becomes more relevant and double-peak
behaviour is observed at 100 MHz. In addition, at 500 MHz all the treated samples exhibit double-peak
behaviour. Once more, this is straightforward explained through the frequency dependence of the skin
effect in magnetic microwires (see Equation (4)), while the influence of magnetoelastic anisotropies are
taken into consideration. In this sense, at relatively low frequencies, it is assumed that the current
flows through the whole ferromagnetic nucleus, i.e., the skin depth is comparable to the microwire
radius, i.e., δm ≈ a [33,44]. However, as frequencies increase, the skin depth decreases and hence
the current flows closer to the surface while inducing the circumferential magnetic anisotropy near
the metallic nucleus surface, which in turn becomes more relevant. For that reason, it is expected a
magnetic evolution from single to double-peak behaviour in the GMI response for some of the samples
considered in this study.

Regarding the key role of the skin effect in the GMI response, where Z ~ 1/δm [43,44], in Figure 6
we show the penetration skin depth dependence of (∆Z/Z)max. The skin depth δm has been estimated
through Equation (5) by considering that the real component of the measured impedance stems from
the variations of the effective surface where the ac-current flows as a result of the skin effect [44–46].
This approach connects δm with the ratio RDC/RAC, as follows:

δm = a

1− (
1−

RDC
RAC

)1/2 (5)

where RDC is the dc-resistance of the wire, and RAC is the real component of the measured impedance
at a given frequency as a function of the axially applied dc-field, and a is the wire radius. The minimum
skin depth δmin

m represented in Figure 6 is obtained from Equation (5) for each frequency in all samples.
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Figure 6. Minimum skin depth dependence of (∆Z/Z)max for as-prepared and conventional annealed
(a), as-prepared and stress-annealed at a fixed σm of 118 MPa while varying the Tann (b), and at a fixed
annealing temperature while varying the applied stress (c) for the Co69.2Fe3.6Ni1B12.5Si11Mo1.5C1.2

microwires. Dashed-lines are a guide to the eye, while full-symbols denote experimental data.
The frequency dependence increases from right to left in contrast to panel (c) of Figures 3–5.
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Although, the (∆Z/Z)max represented here redraws the same tendency as in the panel (c) of
Figures 3–5, that is, the increment (or diminishing for the conventional annealed sample at 200 ◦C) in
the GMI effect depending on the treatment. In Figure 6 the treatment effect on the GMI response is
more clearly evident. As a general rule of thumb, the treatment efficiency is directly related to the
reduction of the δmin

m while the GMI effect is improved. Thus, the skin depth not only gives a direct
hint of the (positive/negative) influence of the treatment in the GMI response but also delimits the
range of efficacy.

As mentioned above, the GMI response relies on the skin effect. Moreover, this effect only becomes
relevant when δm . a, that is, in the intermediate frequency range where the maximal (∆Z/Z)max is
expected to occur [13,25]. Bear in mind that fchar is defined as the frequency at which the GMI response
is maximal. Taking this into consideration along with Equation (4), we obtain the following qualitative
expression for the fchar [43,44]:

fchar =
1

π µφ σ a2 (6)

From Equation (6) it is inferred that the higher the circumferential magnetic permeability, the lower
the fchar. This is experimentally evinced in panel (c) of Figures 3–5. Specifically, in Figure 3c the
as-prepared sample exhibits the fchar at 80 MHz, whereas the conventional annealed samples show
the maximal GMI response at a higher fchar, i.e., 100 MHz for the Tann at 200 ◦C and 150 MHz for the
Tann samples at 300 and 400 ◦C. Similarly, Figures 4c and 5c display the same tendency for the fchar.
In this sense, all the treated samples presented in this work show an increase in the fchar as a result of
the gradual internal-stresses relaxation that contributes to the axial anisotropy, but at the expense of
the circumferential anisotropy.

Field sensitivity is represented in panel (d) of Figures 3–5. There it is noticed the positive effect
the stress-annealing on field sensitivity in Figure 5d. This could be derived either from the induced
magnetoelastic anisotropy upon stress-annealing, or even from a change in the magnetostriction
coefficient. Furthermore, Figure 4d shows an improvement in the sensitivity as the Tann rises up
to a critical value of 300 ◦C. Above this temperature, the sensitivity is reduced. We surmise this
counterbalance effect as a consequence of inner stress relaxation, i.e., the annealing above 300 ◦C vanish
the magnetoelastic anisotropy in the microwire, which in turn is negatively reflected in both GMI
response and field sensitivity.

Finally, microwires with different chemical composition and internal stresses (to a great extent
related to the thickness of the glass-coating [30,31]) must present distinct GMI performance. However,
similar effects of conventional annealing on the magnetic properties of Co-rich microwires of different
chemical composition have already been reported, i.e., a significant magnetic hardening in various
Co-based microwires with vanishing λs-values has been noticed upon applying a conventional
annealing [32]. Such magnetic hardening negatively affects the GMI performance [26,27,32]. In the
present case, we have identified the precise route that enhances the GMI response and field sensitivity
in the studied microwire with a well-established chemical composition. We anticipate that experimental
dependencies concerning Co-rich microwires will be disclosed in the near future.

4. Conclusions

In summary, we have performed a comprehensive investigation of the GMI response and the
field sensitivity by modifying the magnetoelastic anisotropies through different thermal treatments
(conventional and stress-annealing) on the ferromagnetic amorphous Co69.2Fe3.6Ni1B12.5Si11Mo1.5C1.2

glass-coated microwire. On the one hand, the findings reported reveal stress-annealing as the suitable
technique to improve simultaneous and remarkably the GMI effect and the field sensitivity. In this
sense, it is observed a maximum GMI response of 234% for the exciting current frequency of 100 MHz
and a maximum field sensitivity of 104%/Oe for the 300 ◦C stress-annealing sample at 236 and 472 MPa,
respectively. Moreover, a significant frequency dependence of field sensitivity is attained in the
stress-annealed samples. These results have been discussed in terms of the frequency dependence of
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skin depth, along with the magnetoelastic anisotropy modification. The presented outcomes can be
used as a guide in further studies while deepening the knowledge to draw future lines in materials
design. Hence, we evinced the stress-annealed Co69.2Fe3.6Ni1B12.5Si11Mo1.5C1.2 glass-coated microwire
as a prospective material for sensor applications.
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