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Abstract: We study wireless indoor positioning systems where multiple synchronized infrastructure
devices simultaneously receive signals from an object of interest whose arrival times are measured.
The positioning performance is degraded by unresolvable channel multipath and non-line-of-sight
(NLOS) reflctions which cause a bias in the time difference of arrival (TDOA) measurements. In order
to reduce the negative effect of multi-path, a Multi-Path Map (MPM) method based on spatial
domain modeling principle in the reverse positioning framework with good robustness is proposed.
Meanwhile, an improved non-linear iterative algorithm with height component constrained which
reduces the complexity is introduced to calculate the coordinates so that the performance of the MPM
can be verified. By using the MPM measurements as pre-calibration information to compensate
the TDOA observed value, the accuracy of the cooperative location based on a UWB device is 6.45 cm,
which achieves 63% improvement than that of none MPM used.

Keywords: multipath; TDOA; reverse positioning; Chan-Taylor

1. Introduction

Time-of-arrival (TOA) and Time Difference of Arrival (TDOA) are two widely used measurements
for outdoor precise positioning, such as the Global navigation satellite systems (GNSS). The receiver
estimates the TOA of satellite signal using a sliding correlator to match the transmitted signal
waveform. Then the epoch of receiver local clock corresponding to the maximum value of the correlator
output is adopted as the TOA. After deducting media delays and clock errors, these TOA estimates
and the knowledge of satellite locations can estimate the receiver position through a multilateration
calculation. When an object has a clear line-of-sight (LOS) channel to GNSS satellites, the signal
time-of-flight can be used as a proxy for the ranging distance, given the speed of light. Under the indoor
environment, however, the objects are usually surrounded by clutter, the LOS channel is sometimes
blocked, and the majority of the signal energy arrives through a non-line-of-sight (NLOS) reflection
that bounces off surrounding obstacles multiple times. As a result, the TOA estimate can reach
a bias of several hundred nanoseconds (recall that the speed of light is about 0.3 m per nasecond)
compared to the LOS path. Thus, research of indoor positioning technology with multipath suppression
becomes crucial. Previous positioning algorithms proposed machine learning [1–4], which used
massive training data to map the relationship between received signals and positioning results. In this
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paper, we still inherit traditional indoor localization algorithms but consider multipath suppression
from spatial domain calibration to pursue good stability and robustness for real time positioning.
Research on traditional indoor positioning is mainly divided into two parts. The first part is how to
obtain accurate observations through the equipment, while the second is how to calculate accurate
location through a positioning algorithm [5]. Up to now, observations on indoor positioning mainly
consist of Receive Signal Strength Indicator (RSSI), TOA, TDOA and angle-of-arrival (AOA) [6–9].
Among them, RSSI approach matches the energy intensity of received signal with the pre-collected
fingerprint database to select the location. Thus, positioning accuracy of RSSI heavily depends on
the richness of the fingerprint database and the stability of the environment. Moreover, the path
loss of signal energy in the indoor environment is relatively serious, which limits the accuracy of
the RSSI-method. AOA uses angle information obtained from the antenna array for positioning.
As the accuracy of angle decreases rapidly (the longer the distance is, the larger the error is when
at same angle), AOA is more suitable in hybrid positioning with TOA or TDOA. TOA and TDOA
use time observations for positioning and the resolution of time accuracy of existing technologies can
reach 10−18 s and 10−12 s for off-the-shelf commercial positioning receiver [10], so that propagation
time based observation has the potential to realize precise indoor positioning. TDOA measures
the TOA differences between base stations and it does not require time stamp of signal source in
general positive positioning, which reduces the communication burden and improve positioning
accuracy compared with TOA [11]. In this study TDOA is selected as the observations for positioning.
Fang, Chan and Taylor are three popular positioning algorithms [12–14]. Among them, the Fang
algorithm has stricter requirements on the layout of the base stations and it can only adopt three base
stations, thus it lacks of redundancy of base stations for optimization in practical application scenario.
Chan algorithm is a non-iterative hyperbolic algorithm through least square estimate twice, and is able
to reach higher accuracy given the error obeying Gaussian distributions. However, the Chan algorithm
appears vulnerable when the indoor environment contains strong multipath and NLOS scenario.
Taylor algorithm is a weighted-least-squares-iteration method based on redundant observations hence
it can maintain high accuracy. However, it requires precise initial value. If the offset between the initial
value and the true value was too large, it may cause non-convergence. The Methods of fusing Chan
and Taylor algorithms were proposed for better positioning results [15]. An improved Chan-Taylor
fusion algorithm is proposed in our paper with the advantages of less computation. The remainder of
this paper is organized as follows. In Section 2, TDOA error function is modeled and Multipath Map
(MPM) is formed as well. Modified Chan-Taylor algorithm is introduced and combined with MPM
to optimize the positioning result in Section 3. As part of experiment, robustness and availability of
MPM are verified and huge amounts of experiments are proceeded with consequences in Section 4.
In Section 5, we bring some instructive discussions about the advantages and the limitations of our
work. In Section 6, we make a final conclusion.

2. System Model of Indoor Reverse Positioning and MPM Method

We discuss two types of TDOA error modeling, that is, clock synchronization error and multipath
error. Because the difference between slave base-station TOA and master base-station TOA
contains error of clock bias, clock synchronization between base stations should be calibrated
strictly. Solutions like synchronous package and response mode in positioning system can deal
with time-sync problem effectively [16,17] suggests a pre-calibration method which can solve such
task. Multipath error is caused by the superposition of direct wave and reflected waves from the wall
and other indoor objects, which causes delay of received TOA. Time domain and spatial domain
are two mainly research directions in terms of multipath suppression research. Research on time
domain usually converts the multipath characteristics into functions independent of time. For instance,
Reference [18] suggest to use Kalman Filter to deal with multipath delay; machine learning models
are proposed to detect and suppress the complex multipath effect in Reference [19]; Reference [1]
proposes to generate a fit distribution of multipath for optimizing TDOA measurements. In the study
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of space domains, the multipath characteristics of the signal transmission between transmitting end
and receiving end at different spatial position are expressed and pre-calibrated in terms of time delay,
and then introduced and optimized by subsequent signal processing. Our research team has proposed
Multipath Hemispherical Map (MHM) as pre-calibration data in outdoor positioning [20,21], which
can compensate for the error of observed quantity caused by multipath effect and achieve good
results. We study space domain multipath suppression method in this paper, and verify stability
and applicability of multipath error in indoor environment. We use the reverse positioning system
model as shown in Figure 1 and describe the method to construct MPM. The reverse positioning
system consists of fixed receiving part, mobile transmitting part and local server, which means the tags
become the transmitters and base stations become the receivers during the one-way signal transmission.
By using both the pre-calibration method to optimize TDOA and the modified Chan-Taylor algorithm,
good experimental results are obtained with Ultra-Wideband (UWB) indoor positioning network.

Figure 1. Ultra-Wideband (UWB) reverse positioning framework which contains three parts: user
equipment (tags), base station (master stations and slave stations with time synchronized) and positioning
management server.

The reasons for using UWB reverse positioning framework in our research are:
(1) The pre-calibrated multipath error values and positioning calculation can be stored and carried
out in local server much efficiently; (2) Under the reverse positioning framework, the base stations
(fixed end) are considered as the receiving part and the tags (mobile end) as the transmitting part.
On the premise of a relatively stable indoor environment, multipath environment of both receiving
part and sending part is only related to relative space position. Because of the fixed end on the ceiling,
change of the multipath only depends on the mobile end on the ground. Therefore, MPM can be
drawn for each base station. Due to varying MPM in physical spaces, a virtual positioning area is
assumed for building MPM.

For TOA value ∆tAi
T between base station Ai and tag T, the observation equation is built as

∆tAi
T =

∥∥~xAi −~xT
∥∥

c
+
(

τAi − τT

)
+ τ

Ai
m + ε, (1)

where ‖~x
Ai−~xT‖

c is the propagation time from the distance between base station Ai and tag T, τAi

and τT are the clock offsets of base station Ai and tag T respectively. τ
Ai
m is multipath error and ε

is random error. In this paper,A1 is assumed to be the master base station, thus TDOA observation
equation between slave base station Ai and master base station A1 is written as

∆tAi−1
T =

(∥∥~xAi −~xT
∥∥

c
−
∥∥~xA1 −~xT

∥∥
c

)
+
(

τAi − τA1
)
+
(

τ
Ai
m − τA1

m

)
+ εi−1, (2)
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where τT is eliminated via TDOA, fixed ending clock errors can be compensated through synchronous
package. We ignore random error sources. Thus, for TDOA observation with known locations of tag
and base station, its multipath error term can be obtained by equation

(
τ

Ai
m − τA1

m

)
= ∆tAi−1

T −
(∥∥~xAi −~xT

∥∥
c

−
∥∥~xA1 −~xT

∥∥
c

)
−
(

τAi − τA1
)
−εi−1. (3)

In this case, terms on the right side of the Equation (3) are all known. Multiply both sides of
Equation (3) by the speed of light c, then TDOA error in form of distance is(

τ
Ai
m − τA1

m

)
· c = ∆ρ

Ai−1
T − dAi−1

T −
(

τAi − τA1
)
· c−εi−1, (4)

where ρ
Ai−1
T is the TDOA difference between base station Ai, A1 and tag T. Multipath error is

expressed as ρ
Ai−1
m =

(
τ

Ai
m − τA1

m

)
· c. When indoor environment remains unchanged, the multipath

characteristics of the corresponding environment are also unchanged in spatial domain. Given that
the locations of the base stations are fixed and known, and the clock offsets of base stations can be
calibrated, the multipath effects can be expressed by a table of corresponding tag locations, which is
an invariant map of multipath for stable environment. The nature of such a multipath map is
the differential multipath effects between master base station and other base stations. We establish such
multipath maps for each base station – master base station pair in form of range errors. These multipath
maps are pre-calibrated and stored in server data base for TDOA observation correction. We divide
the indoor area into rectangular cells, taking each grid point as the pre-calibration point. From each
pre-calibration point, we collect TDOA observations with sufficient redundancy. Using Equation (4),
these ρ

Ai−1
m are calculated and their statistical average is stored in local server to build the pre-calibrated

multipath values at each grid. Notice that MPM sets out from the grid positions at the receiving
end, thus a TDOA MPM can be constructed from the interpolation of the pre-calibrated MPM of
4 surrounding grids as shown in Figure 2.

Figure 2. Rudiment of Multi-Path Map (MPM).
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3. Improved Chan-Taylor Algorithm with MPM

This section is divided into two parts. Firstly, improved Chan-Taylor algorithm for calculating
the initial coordinate will be introduced. Secondly, we expound how to utilize the MPM to calculate
positioning coordinates. In real positioning scenario, the base stations are prone to be arranged
in the corners of the roof, usually such an arrangement makes the heights of base stations almost
the same. Based on the theory of Geometry Dilution Of Precision (GDOP), such a setting will generate
almost zero resolution for height estimate. However, the accuracy of horizontal position is justified
if the horizontal distribution of base stations covers surrounding directions. Thus 2-D positioning
(assign a fixed height value) algorithm are commonly used in many applications. In real positioning,
however, the height of tag is usually not the same as the assigned value, furthermore, the tag’s height
hardly keeps the same, which brings errors to the solutions of 2-D positioning algorithm. In this paper
we propose an improved Chan-Taylor algorithm with height component constrained. The TDOA
observations are assumed to be time-synchronized for the clocks of base stations. Chan algorithm
converts the nonlinear TDOA observation equation into form of linearized matrix, and its solution is
able to provide reasonable initial value for Taylor algorithm. Therefore it prevents the solution of Taylor
algorithm from non-convergence. distance between base station Ai and tag T can be expressed as

ρ
Ai
T =

√
(xAi − xT)

2
+ (yAi − yT)

2
+ (zAi − zT)

2. (5)

Square both sides of (5) and it becomes(
ρ

Ai
T

)2
=
(

xAi
)2

+ (xT)
2 +

(
yAi
)2

+ (yT)
2 +

(
zAi
)2

+ (zT)
2 − 2xAi · xT − 2yAi · yT − 2zAi · zT . (6)

Meanwhile, the difference between master base station Ai and tag T can be expressed as(
ρA1

T

)2
=
(

xA1
)2

+ (xT)
2 +

(
yA1
)2

+ (yT)
2 +

(
zA1
)2

+ (zT)
2− 2xA1 · xT − 2yA1 · yT − 2zA1 · zT . (7)

Minus (7) by (6), we obtain:(
xAi − xA1

)
xT +

(
yAi − yA1

)
yT +

(
zAi − zA1

)
zT =

1
2

[((
ρA1

T

)2
−
(

ρ
Ai
T

)2
)
+

((
xAi
)2
−
(

xA1
)2

+
(

yAi
)2
−
(

yA1
)2

+
(

zAi
)2
−
(

zA1
)2
)]

.
(8)

In Equation (8) when base stations are assumed having the same height, that is, zAi = zA1 ,
the vertical component in ρ

Ai
T and ρA1

T are canceled as below(
xAi − xA1

)
xT +

(
yAi − yA1

)
yT =

1
2

[((
ρA1

T

)2
−
(

ρ
Ai
T

)2
)
+

((
xAi
)2
−
(

xA1
)2

+
(

yAi
)2
−
(

yA1
)2
)]

.
(9)

For multiple Ai (i > 3), Equation (9) leads to least square estimates [13], which are expressed in
matrix form as:

Ẑ =
(

GTQ−1G
)−1

GTQ−1h, (10)

where Ẑ =
[

x̂T , ŷT , ρA1
T

]T
is the estimates of unknown variables; Q is the covariance matrix of

observations; G =


xA2 − xA1 yA2 − yA1 ∆ρ

A2−1
T′

xA3 − xA1 yA3 − yA1 ∆ρ
A3−1
T

...
...

...
xAi − xA1 yAi − yA1 ∆ρ

Ai−1
T

,
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h =



−
(

∆ρ
A2−1
T

)2
+
(
xA2
)2

+
(
yA2
)2 −

(
xA1
)2

+
(
yA1
)2

−
(

∆ρ
A3−1
T

)2
+
(
xA3
)2

+
(
yA3
)2 −

(
xA1
)2

+
(
yA1
)2

...

−
(

∆ρ
Ai−1
T

)2
+
(

xAi
)2

+
(
yAi
)2 −

(
xA1
)2

+
(
yA1
)2


.

In Chan-Taylor algorithm [15], an extra weighted least squares(WLS) opeartion is added for
further decreasing the perturbation errors of x̂T , ŷT and ρA1

T in Ẑ. In our improved Chan-Taylor
algorithm, we directly use (x̂T , ŷT) in Ẑ as the initial value of Taylor algorithm. The reason of such
change is that for Chan-Taylor algorithm, the primary purpose of Chan algorithm is to provide
a better initial value for Taylor algorithm. the improved Chan algorithm also meets this requirement
and the calculation amount is smaller than the previous Chan algorithm because one WLS operation is
removed. In Taylor algorithm, the height of tag zT is constrained as known constraint whose value has
been collected before and the coordinates of the base station are known, only the plane position of tag
is in the iteration. The geometric equation of TDOA can be written as

ρ
Ai
T − ρA1

T =
√
(xAi − xT)

2
+ (yAi − yT)

2
+ (zAi − zT)

2 −
√
(xA1 − xT)

2
+ (yA1 − yT)

2
+ (zA1 − zT)

2. (11)

Implement Taylor series expansion of (11) at point (x̂T , ŷT) and solve the partial LS solution
of equations of TDOA observations, through threshold iteration to optimize the calculation of
positioning coordinate, then the positioning result can be obtained. Such method can both meet
the requirements of actual positioning environment of LBS and avoid the error caused by vertical
precision. Through improved Chan-Taylor algorithm, a calculated coordinate T̂0 (x̂0, ŷ0) can be
obtained. Meanwhile, we should pay attention that multipath error is still contained in the TDOA
observations. Then the MPM stored in local server is introduced for ensuring the grid (namely grid G)
wherein the initial location of T̂0 is. The multipath error of each vertex of G has been stored in
the server, and for more precise multipath error, interpolation can be used to obtain the proximate
multipath error of the initial location of T̂0. For 2-D MPM, bilinear interpolation method is more
suitable. However, it should be noticed that the proximate multipath error is based on the initial
location of tag, whose TDOA observations still contain the multipath error. So, one-time interpolation
is not sufficient for multipath error is contained in the calculation of initial coordinates. Therefore,
we propose an iterated-interpolation-TDOA-optimized algorithm in order to make the TDOA close to
the truth-value, pseudocode of the algorithm is as Algorithm 1: Through such iterative algorithm, most
of the multipath errors can be eliminated, and the position accuracy can be improved, experimental
data will be shown in next section.

Algorithm 1 Optimization of TDOA based on MPM.

Input: MPM, initial coordinate, T0(x0, y0), error threshold, Te;
Output: Final positioning coordinate, T(x, y);

1: n← 0;
2: repeat
3: Get multipath error (ρAi−1

m )n by substituting Tn into MPM;
4: (ρAi−1)n+1 = (ρAi−1)n − (ρAi−1

m )n;
5: Obtain Tn+1(xn+1, yn+1) by substituting (ρAi−1)n into improved Chan-Taylor algorithm;
6: until |Tn+1 − Tn| > Te;
7: T ← Tn+1;
8: return T;
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4. Experiment Results

In this section, the applicability and robustness of MPM in indoor environment are explored.
Next, comparison results in terms of both accuracy and complexity between Improved Chan-Taylor
algorithm and Chan-Taylor algorithm are shown. And then, the improvement of accuracy through
using MPM combined with improved Chan-Taylor algorithm are discussed.

4.1. Introduction to Experimental Environment

The experimental area is a typical meeting-room environment in the fourth floor of a building of
the East China Normal University, as shown in upper half of Figure 3, with corresponding plan shown
in Figure 4. The grid size is set as 0.6 × 0.8 (m2). The UWB system under the reverse-positioning
framework used in the experiment comes from Jiangsu Tangen Technology Co., Ltd. The UWB devices
consists of base stations and tags communicated wirelessly with each other based on DW1000 chips
and a local service which is connected with base stations via cable, from where we get the TDOA data.
An actual figure of UWB base station is shown in half bottom of Figure 3. The number of base station
is four, being arranged at the same height and using structure of one master base station with three
slave base stations. In this experiment, we assumed that the time-sync error has been removed through
the synchronous package in the system.

Figure 3. Picture of the experimental area and UWB base station.
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Figure 4. Plan of experimental area.

4.2. Robustness of MPM in Non-Disturbed Environment

We use 3000 groups of TDOA data of each grid point to build MPM of the experimental area,
and the MPM of each set of master-slave base station can be shown as Figure 5.

Figure 5. MPM Grids.
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In experiment of applicability and robustness of MPM, we select the point in experimental area
with general meaning and set up the following experiments: In condition of essentially unchanged
environment, 30,000 groups of TDOA observations were selected among 24-hour-continue receive
and dispatch of UWB signal and calculate the multipath residuals, then we make statistical analysis
figure as Figure 6 and fluctuation analysis of the average TDOA error group by time sequence as
Figure 7, each group has TDOA samples in same time interval. It can be seen from the figures that
the distribution curve of all the TDOA residuals of each slave base station relative to the main base
station is steady, and the mean of TDOA error remain stable with only centimeter-level fluctuation.
Therefore, the robustness of MPM in static environment is verified effectively.

Figure 6. Distribution of time difference of arrival (TDOA) error in non-disturbed environment (In this
figure, “dm“ means decimeter).

Figure 7. Fluctuation of the average TDOA error in non-disturbed environment.
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4.3. Robustness of MPM in Disturbed Environment

In the next step, the environment of experiment area is set more complicated, we add some
obstacles between the base Station and the tag, and people walking back and forth. A set of master-slave
base stations is chosen and 10,000 groups of TDOA data are collected. Through analysis of the multipath
error, the TDOA error PDF figure is shown as Figure 8 and fluctuation analysis of the average TDOA
error group by time sequence as Figure 9. It can be seen from the figure that the distribution curve is
also steady relatively, although the fluctuation of mean TDOA error becomes about 5 cm, a little larger
then those in non-disturbed environment.

Figure 8. Distribution of TDOA error in disturbed environment (In this figure, “dm“ means decimeter).

Figure 9. Fluctuation of the average TDOA error in disturbed environment.

4.4. Comparison between Improved Chan-Taylor Algorithm and Chan-Taylor Algorithm

In this part, we compare Improved Chan-Taylor algorithm and Chan-Taylor algorithm in terms of
both accuracy and complexity. In the accuracy part, we choose 25 observation points and implement
a total of 7500 sets of TDOA observations in our experiment area. The positioning results of each sets
of TDOA observations are calculated through both Improved Chan-Taylor algorithm and Chan-Taylor
algorithm with vertical component constrained. Then we analyze the difference of positioning
error between Improved Chan-Taylor algorithm and Chan-Taylor algorithm. The positioning error
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means the Euclidean distance between the real coordinate and the calculated coordinate based on
corresponding set of TDOA observations. Positioning error of each group of observations is calculated
and the total positioning error CDF is shown as Figure 10. In Figure 10, we can see that the accuracy
of both algorithm is almost the same, it is because the Taylor algorithm is an iterative algorithm.
Under the condition of convergence, the accuracy of positioning results is irrelevant to the initial
value. In the complexity part, we continue using the observation data above and record the run time
of calculating the position results on our computing platform based on both Improved Chan-Taylor
algorithm and Chan-Taylor algorithm. The processor configuration of our computing platform is
Intel Core i7-9750H @ 2.60 GHz provided by Lenovo Co., Ltd. (Beijing, China), and we use Python
(Version 3.7.3) as the programming language for writing and running the code of both algorithm.
We give the average running time of totally 7500 groups of calculation for both Improved Chan-Taylor
algorithm and Chan-Taylor algorithm in Table 1: From Table 1, it is clearly shown that the execution
speed of Improved Chan-Taylor alogorithm is faster than Chan-Taylor algorithm. To be specific,
the calculate time for each run is decreased by 34 %. From the experiments above, the conclusion
that Improved Chan-Taylor alogorithm has the same accuracy but less complexity than Chan-Taylor
algorithm can be proved.

Figure 10. Accuracy comparison between Improved Chan-Taylor alogorithm and Chan-Taylor algorithm.

Table 1. Running time of algorithm.

Improved Chan-Taylor (ms) Chan-Taylor (ms)

Average time 0.220 0.331

4.5. Application of MPM in Actual Positioning Scene

In the experiments discussed the improvement of accuracy through using MPM, we choose
25 observation points and implement a total of 7500 sets of TDOA observations,which is the same
as the data in Section 4.4. Then we analyze the difference of positioning error between MPM
used and MPM not used based on improved Chan-Taylor algorithm. The positioning error
means the Euclidean distance between the real coordinate and the calculated coordinate based on
corresponding set of TDOA observations. Absolute positioning error of each group of observations is
calculated and the positioning error CDF is shown as Figure 11.
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Figure 11. positioning error CDF in experiment area.

As can be seen from the Figure 11, absolute positioning error used MPM is mainly under 14 cm
while in the case of MPM not used, the error mainly locates in the range of 15–23 cm. By comparing
root-mean-square error (R.M.S.E.), mean absolute error (M.A.E) and standard deviation (S.D.), detailed
error information is contained in Table 2. From Table 2, we can get the information that utilizing MPM
can improve the positioning accuracy by about 63%, it can be seen from the S.D. that the stability
is also improved a little. It can be seen that MPM can effectively improve the positioning accuracy
and thus provide better LBS in actual location scenarios.

Table 2. Positioning error information.

MPM Not Used (cm) MPM Used (cm)

R.M.S.E. 18.42 7.16
M.A.E. 17.81 6.45

S.D. 4.72 3.12

5. Discussion

In this paper, we proposed a TDOA pre-calibration method named MPM based on the traditional
algorithm. In the experiment part, we discussed the stability of MPM in the case of disturbed
and non-disturbed environment respectively, the results showed that the multipath error of TDOA
in each point is relatively stable, thus the idea of MPM is valid. Then we applied the MPM in
actual measurement. Judging from the experimental results, the use of MPM significantly improved
the accuracy of indoor positioning. Then we also proposed the improved Chan-Taylor algorithm based
on the traditional Chan-Taylor algorithm with same accuracy but less computation which was proved
in experiment section. The proposed MPM method enables us to implement indoor positioning with
higher accuracy through certain preparations before actual positioning projects. Therefore, the MPM
method is very suitable for positioning scenarios with high accuracy requirements, such as Wise
Information Technology of 120, tunnel staff positioning system and so on. Meanwhile in the scenario
of positioning projects with general accuracy requirement, the Improved Chan-Taylor alone can
also provide higher execution efficiency of positioning calculation, which is important for real-time
positioning scenarios.
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Although the MPM method has enhanced accuracy in our experiments, some issues worth
discussing should be mentioned. The first problem is the convergence of MPM. We need to find
the compensation values of TDOA observations repeatedly through Improved Chan-Taylor algorithm
thus iteration method is used in our method. However, the convergence of such iteration is hard to
be proved directly. The improved Chan-Taylor algorithm can be considered as the approximation of
the true localization based on the current TDOA observations, then a more precise TDOA corrections
can be calculated through interpolation of the corresponding MPM grids. Through those two
optimization methods, the search area is narrowed and the convergent point can be reached effectively.
In the initial phase, we used a few experiments to verify the idea and found that such method can
provide accelerated convergence results. Therefore, we proceed with a huge amount of observations
and all the results were converged. Thus the convergence problem needs more effective explanation in
the future work. The second problem is how to choose the size of MPM grid, which may cause impact
on positioning accuracy. Actuary, we had made a tentative attempt of data collecting for smaller grids
before. However, it seemed that in our experiment environment, the changes of multipath error among
smaller grids were not obvious. Based on the experiment, we set the size of grid as 0.6 × 0.8 (m2),
which matches our experimental environment. To maintain the accuracy of the correction model
the grid size should be environment-dependent. The complex the environment is, the small size grid
should be chosen.

The theoretical consideration of MPM is that under the reverse positioning system the base
stations are usually mounted on stable environment, such as ceilings, where the near-field multipath
effects remain unchanged, thus the main portion of multipath errors (usually near-field multipath) of
each grid keeps approximately fixed value. However, when the indoor environment changes greatly,
the state of multipath effect may also change. At this time, the MPM should be calibrated again to
maintain the same accuracy as before.

6. Conclusions

The multipath effect is the bottleneck in existing high-accuracy indoor positioning. For this
situation, MPM method for decreasing multipath error is proposed in our paper. As a kind of TDOA
optimization method based on pre-calibration, MPM does not require complex software or hardware.
For different indoor environment and layout of base stations, MPM, which explores the multipath
effect in space domain, can bring more effective and reasonable process on multipath suppression.
And considering the execution efficiency, Improved Chan-Taylor algorithm is proposed in our work
which decreases the calculate time by 34% with almost the same accuracy as the Chan-Taylor algorithm.
Then based on improved Chan-Taylor algorithm, the MPM method is used to optimize the TDOA
observations and the positioning accuracy is improved by 63%. In the future work, we prepare to make
further analysis on the resolution of the MPM grid, searching the balance between the positioning
error and the algorithmic complexity of operation to improve the method in this paper. Interest is also
on the theory proof of the convergence of MPM algorithm and the recalibration of MPM caused by
huge changes of the indoor environment, hoping to give an applicable optimization scheme.
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