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Abstract: The Internet of Things (IoT) is increasingly creating new market possibilities in several
industries’ sectors such as smart homes, smart manufacturing, and smart cities, to link the digital
and physical worlds. A key challenge in an IoT system is to ensure network performance and
cost-efficiency when a plethora of data is generated and proliferated. The adoption of Network
Function Virtualization (NFV) technologies within an IoT environment enables a new approach
of providing services in a more agile and cost-efficient way. We address the problem of traffic
engineering with multiple paths for an NFV enabled IoT system (vIoT), taking into account the
fluctuation of traffic volume in various time periods. We first formulate the problem as a mixed linear
integer programming model for finding the optimal solution of link-weight configuration and traffic
engineering. We then develop heuristic algorithms for a vIoT system with a large number of devices.
Our solution enables a controller to adjust a link weight system and update a flow table at an NFV
switch for directing IoT traffic through a service function chain in a vIoT system. The evaluation
results under both synthetic and real-world datasets of network traffic and topologies show that
our approach to traffic engineering with multiple paths remarkably improves several performance
metrics for a vIoT system.

Keywords: internet of things; vIoT; network functions virtualization; traffic engineering; optimization

1. Introduction

The Internet of Things (IoT) is an enabler of the digital revolution through which a variety of
things (e.g., people, actuators, sensors) integrated over the Internet are able to interact worldwide.
IoT systems have been commonly implemented in diverse fields such as the climate, education and
engineering with many applications. A smart home network, for example, utilizes data gathered
by a collection of home sensors and is exchanged by the cities’ information network to enhance the
quality of living and energy use. As a number of connected IoT devices are growing at a breathtaking
pace, the data produced, processed, or distributed by IoT devices clearly receives undivided attention.
Moreover, with a large number of users in IoT networks, the usage of an independent link with each
user will contribute to an unreasonable demand with Internet connectivity. Therefore, a network
architecture with effective data transfer is highly required for an IoT network.
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The adoption of Network Function Virtualization (NFV) technologies within an IoT environment
enables a new approach of providing services in a more agile and cost-efficient way. Compared to
today’s network infrastructure based on specialized appliances, Network Functions Virtualization
(NFV) based on network softwarization and cloudification has emerged as a promising approach
to building agile networks and reducing capital and operational expenditures. NFV enables service
providers to rapidly launch and release on-demand IoT services in a flexible way. Hence, we believe
that Network Functions Virtualization (NFV) is a promising technology that could help to address these
challenges and leverage the IoT architecture in the Cloud era. In the system under our consideration,
a network function (e.g., deep packet inspection (DPI), firewalls) or an IoT function (e.g., measurement,
home automation) can be installed as software on a standardized server and linked to build an IoT
service. A flow of IoT traffic is driven through a service function chain (SFC) consisting of several
virtual functions (VNF) in an ordered sequence [1]. We refer to such a system as an NFV enabled IoT
system (vIoT).

In this paper, we present an efficient solution to traffic engineering for improving the performance
of a vIoT system. As a VNF instance is dispersed in an infrastructure, directing a flow of IoT
traffic through an SFC and retaining good network performance and cost-efficiency is challenging,
especially in the fluctuation of traffic volume. We aim to find a traffic engineering (TE) solution
with equal-cost multipath (ECMP) for improving the performance of a vIoT system taking into
account the instability of traffic demand in various periods. ECMP is a multipath routing technique
that evenly splits the overall traffic passing through a network node into several minimum-cost
routes. We first maximize the ratio of total satisfied traffic by considering different types of service
demands, named differentiated demands. More specifically, we divide service demands into two types,
where the system fully satisfies demands belonging to the first type and serves those associated with
the second type with its best efforts. We then minimize the total routing cost when taking into account
the dynamics of traffic demands over multiple time periods. Finally, we consider both differentiated
demands and multiple time periods for optimizing multiple objectives in a TE solution.

A detailed discussion of the literature on the use of NFV for IoT has been provided in Section 2.
As discussed in Section 2, much of the existing work on vIoT is concerned with the architecture design
of an NFV enabled IoT system [2–4]. Some works have considered the performance of vIoT [5–8].
However, none of these works have addressed the optimization problem of multipath routing in a
vIoT system taking into account the fluctuation of demand volume and the differentiated demands,
which is important for improving the performance of a vIoT system.

The major contributions of this paper are as follows:

• We introduce the TE problem in a vIoT system and provide a mixed linear integer programming
model (MILP) for finding the optimal solution of the problem. Our solution takes into
consideration the ECMP routing technique, SFC, the different types of requests, and the fluctuation
of traffic volume in various periods.

• In a large scenario, we suggest an effective heuristic algorithm for addressing the TE problem in
a vIoT system with a large number of devices. The algorithm offers a link metric vector and a
traffic splitting solution to optimize the overall traffic served and reduce the total routing cost
concerning the categories of service demands, the dynamics of traffic demands, and the usable
system capacity.

• We use two real network datasets and two synthetic network topologies in evaluation scenarios.
We compare a number of our TE solutions, taking into consideration differentiated demands and
different time periods in three major performance metrics including the routing cost, the total
satisfied traffic, and the number of accepted demands. The evaluation results show that our
proposal for traffic engineering of a vIoT system performs better than a scheme that ignores the
classification and the fluctuation of demand volume.
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The remainder of this paper is organized as follows. Section 2 provides a brief overview of
related works. We describe the system and problem in Section 3. The formulation of the TE problem
is presented in Section 4. We propose a heuristic algorithm for solving the large scale problem in
Section 5. We evaluate our proposed model and algorithm in Section 6. Finally, conclusions are stated
in Section 7.

2. Related Work

NFV is an attractive research area by its flexibility and agility in network designing via
virtualization technology application. In recent years, researchers have studied many issues raised in
NFV, including SFC routing, VNF placement, resource management, and orchestration. For example,
in [9], Medhat et al. address the VNF implementation and migration issue when an instance of service
functions becomes overwhelmed by seeking an appropriate way to redirect traffic flows. In [10],
Eramo et al., present three algorithms that tackle VNF instance and SFC routing in reaction to changes
in the workload. Some other platforms are also developed to enhance packet processing on generic
servers [11,12]. In [13], Kulkarni et al. propose the NFVnice framework to improve NF performance
and schedule resource efficiently, fairly and dynamically. In [14], Sun et al. also investigate to improve
NFV performance by applying network function parallelism. In [15], Cotroneo et al. investigate
overload control and propose a novel framework (named NFV-Throttle) to protect NFV services from
failures due to an excess of traffic in the short term and to preserve the QoS of traffic flows admitted
in the network. The work of [16] presents a deployment algorithm for service chains that optimizes
performance by minimizing the actual cost of virtual switching. More research results about the NFV
performance are presented in [17–21].

The scientific literature has addressed different aspects that highlight how NFV can be an
enabler for future IoT platforms. For example, Ojo et al. propose an SDN-IoT architecture with NFV
implementation where traditional gateways are replaced with SDN-enabled gateways [22]. Wang et al.,
propose the use of NFV for creating a network slice in an IoT environment and implement an IoT
scenario with multiflow transmissions [23]. Mouradian et al. follow a similar objective [3]. However,
they focus on the design of a distributed IoT gateway using NFV and SDN technologies for on-the-fly
service provisioning in disaster management. Differently, Fu et al. design an NFV-enabled IoT
framework where complex VNFs are divided into smaller VNF components, and a deep reinforcement
learning scheme is used for dynamic SFC embedding [24]. In [2], Diaz et al. present some IoT challenges
for the effective implementation of IoT services and highlight the use of network cloudification and
softwarization that is essential to face the IoT revolution. In [25], Verma et al. investigate the resource
utilization problem in a cloud environment for optimizing the allocation of virtual machines (VM) and
the consolidation process. The proposed approaches can reduce remarkably the energy consumption,
total VM migration, and host shutdown while maintaining the system performance. For a survey
paper related to the evolution of IoT and NFV, we refer readers to the work by Farris et al. [4].

The above works focus on the architecture design of vIoT. However, they did not consider efficient
algorithms to properly address, among other potential issues, service placement, scaling, and load
balancing aspects, which are critical aspects affecting the performance of vIoT. In [5], Kaiwartya et al.,
study the optimization problem of fault tolerance for wireless sensor networks in IoT. The authors
propose an adapted nondominated sorting based genetic algorithm for solving the optimization
problem. However, the paper focuses on the access layer with the virtualization of sensors rather than
the incorporation of NFV and IoT. Xu et al. consider the optimization problem of VNF placement for
IoT applications in the mobile edge clouds. They develop both optimization models and algorithms
for a special case of the problem with the bandwidth resource constraint [8]. However, they ignored
the traffic fluctuations, the maximum achievable flow, and SFC constraints, which are essential for
providing the performance and agility of a vIoT system. There are some research works that aim
to obtain the maximum traffic flow in NFV systems. In [6], Jia et al., investigate to minimize the
operational cost and maximize network throughput. Specifically, the authors consider the consumption
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of computing resource for the implementation of a service chain and that of bandwidth resource for
data routing. They address the optimization problem of operational cost and network throughput
for a sequence of requests. In [7], Sallam et al., study the SFC-constrained shortest path problem
in order to find the maximum feasible flow from a source to a destination. Several studies have
considered the dynamics of traffic rate in NFV networks. In [26], Ma et al., aim to minimize the
overall traffic volume for a given flow when considering the variations of traffic volume after being
processed by some network functions. In [27], Fei et al., consider the fluctuations of data traffic in the
proactive VNF provisioning problem for NFV providers in order to minimize the cost incurred by
inaccurate prediction and VNF deployment. However, the optimization model has not been provided,
and multipath routing has not been considered.

To the best of our knowledge, no existing research has focused on traffic steering for improving
the performance of a vIoT system taking into account multipath routing, the fluctuation of demand
volume, and the differentiated demands. This paper is an extended version of our work presented
at the 7th International Conference on Communications and Electronics (ICCE, 2018) [28]. Our work
provides new results of optimization models and algorithms for traffic engineering in a vIoT system
using multipath routing when taking into consideration the difference of service demand types and
the combination of various demand types and time periods for optimizing the total satisfied traffic
and reducing the network routing cost.

3. System Description

We study a vIoT system that provides IoT functions and network functions deployed at the
application layer and the control layer as a service (Figure 1). In vIoT, a VNF is the software
implementation of network functions and IoT functions, managed by NFV Management and
Orchestration (MANO) [29]. In an NFV system, an end-to-end service can be composed of several
virtual functions deployed in a cloud environment (Figure 3 in [29]). As the virtualization layer of NFV
is responsible for enabling the software that implements the VNF (page 18 in [29]), it can be further
classified as the control layer providing network functions and the application layer providing IoT
functions. A flow of IoT traffic generated by sensors at the infrastructure layer can be processed in a
sequence of virtual functions such as deep packet inspection at the control layer and smart metering at
the application layer. We assume that the implementation of virtual functions at NFV nodes incurs
costs, and data transmission at links interconnecting the nodes also incurs communication costs.

Application Layer:

IoT Functions Smart metering

Smart home security

Control Layer:

Network Functions Firewall

Deep packet inspection

Infrastructure layer

IoT gateway

sensors and actuators

Figure 1. An NFV enabled IoT framework (vIoT).
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A service demand in vIoT is a request from customers for a service that may include several VNFs
implementing IoT and network functions. To serve a service demand, NFV MANO finds a solution
of resource allocation for the implementation of a SFC requested by the service demand and routes
data traffic through the SFC, as illustrated in Figure 2. We consider ECMP, a widely multipath routing
strategy, for improving the performance of a vIoT system.
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Figure 2. Service chain provisioning in vIoT

Our first objective is to maximize the satisfied traffic throughput in vIoT. To achieve this purpose,
we consider differentiated demands in the TE problem, called Problem 1—Traffic engineering under
differentiated demands (ED). Specifically, we classify a set of service demands into two types.
The system fully satisfies service demands belonging to the first type and serves those associated with
the second type with its best efforts. Data traffic on a link is adjusted by optimizing the link weight
system of the infrastructure. Our second objective is to minimize the network routing cost in vIoT.
We consider multiple time periods in the TE problem, named Problem 2—Traffic engineering under
multiple time periods (EP). Particularly, we take into account the fluctuation of data traffic demand
in different time periods. Finally, we consider multiple optimization objectives in the TE problem in
which we take into account both differentiated demands and multiple time periods, called Problem
3—Traffic engineering under differentiated demands and multiple time periods (EDP). In the next
section, we state formally the above problems and formulate them as Mixed Integer Linear Program
models for finding the optimal solution.

4. Optimization Models

4.1. System Formulation

We model a vIoT system as a directed graph G = (V, E), where V is a set of n nodes and E is a set
of k directed links. Let F be all VNFs available in the system. Node v ∈ V represents a commodity
hardware device where one or more VNFs can be instantiated flexibly to serve demands. Node v has a
limited capacity for instantiating VNFs and can support some functions in F. We use C2,v to denote
the processing capacity of node v. Link e ∈ E is a connection between the starting node ie and the
terminating node je. Let C1,e denote the bandwidth capacity of link e.

We use D to represent a set of m service demands requested by tenants. Demand d is defined
as a customer request that requires SFC Fd ⊂ F from source sd to destination td with different
bandwidth requirements hd. We assume that link e ∈ E is assigned a weight and we define
w = {we : e ∈ E} to be the link weight system on the vIoT system. We use a traffic splitting vector
x =

{
xepd : e ∈ E, d ∈ D, p ∈ Pd

}
to represent the routing solution where Pd is all available paths on

the vIoT system of demand d and xepd is the amount of data on link e of flow p of demand d according
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to the link metric vector w. Next, we use rv f to present the computing resources required for processing
function f with one unit of traffic rate at node v. Others variables are as follows:

• kvdi
= 1 if node v provides the ith VNF in SFC Fd of demand d; kvdi

= 0 otherwise.
• luv corresponds to the smallest length of all paths from node u to node v.
• uev = 1 if link e is on a minimum-cost path to node v; uev = 0 otherwise. The variable is used for

guaranteeing the ECMP routing strategy.
• ye is the total traffic through link e.

We provide a summary of the mathematical notations representing the vIoT system model, and the
main parameters and variables of our optimal solutions in Table 1.

Table 1. Summary of notations

Sets

D Service demands
D1 Service demands require that the system fully satisfies their traffic volumes
D2 Service demands allow a system to serve with its best efforts
E Links on the vIoT system
V Nodes on the vIoT system
F VNFs available on the vIoT system
P Possible paths on the vIoT system
Pd Possible paths for demand d
T Time periods

Parameters

hdt The traffic volume of d ∈ D at time period t ∈ T
sd The starting node of demand d ∈ D
td The terminating node of demand d ∈ D
Fd The SFC requested by demand d, Fd ⊂ F

kvdi t Node v supports the ith VNF in SFC Fd of demand d at time period t if kvdi t = 1, otherwise kvdi t = 0
C1,e Bandwidth capacity of link e ∈ E
Cet Network routing cost of link e ∈ E at time period t ∈ T
C2,v Computing capacity of node v ∈ V
Mz The largest link capacity of all links
α The weight of accepted demands
β The weight of total satisfied traffic
γ The weight of total network routing cost

Binary variables

bepdt A binary variable represents that link e is on flow p of demand d at time period t if bepdt = 1, otherwise bepdt = 0
uev A binary variable represents that link e is on a minimum-cost path to node v if uev = 1, otherwise uev = 0

Continuous variables

xepdt The traffic rate on link e of data flow p of demand d at time period t ∈ T
luv The smallest length of the paths from node u to node v
yet Total of traffic through link e at time period t ∈ T
guvt Total traffic volume assigned to outgoing links of node v that belongs to the minimum-cost paths from node u to node v at time

period t ∈ T
Ψ1t Percentage of accepted demands at time period t ∈ T
Ψ2t Percentage of total satisfied traffic at time period t ∈ T
Ψ3t Percentage of total network routing cost at time period t ∈ T

Discrete variables

nat Number of accepted demands at time period t ∈ T

Auxiliary variables

Ψ1 The minimum ratio of accepted demands over all time periods
Ψ2 The minimum of total satisfied traffic over all time periods
Ψ3 The maximum of total network routing cost over all time periods

Metric vector variables

w The metric of links on the vIoT system, w = (we : e ∈ E)
x A traffic splitting vector x =

(
xepdt : e ∈ E, p ∈ P, d ∈ D, t ∈ T

)

Now, we formally state three TE problems as follows:

• Problem 1 (Traffic engineering under differentiated demands (ED)): Given a vIoT system G =

(V, E), a set of service demands D is classified to two types D1 and D2 where the system fully
satisfies demands belonging to D1, and serves those associated with D2 with its best efforts, find a
routing solution xepd and a link weight system w = {we : e ∈ E} where e ∈ E, p ∈ P and d ∈ D,
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satisfying all requirements of the bandwidth capacity constraint on vIoT links and the computing
capacity constraint on vIoT nodes in order to maximize the total satisfied traffic.

• Problem 2 (Traffic engineering under multiple time periods (EP)): Given a vIoT system G = (V, E),
a set of service demands D, a set of path P, a set of periods T that presents for the variation in traffic
demand volume and cost structure during multiple time periods, find a routing solution xepdt
and a link weight system w = {we : e ∈ E} where e ∈ E, p ∈ P, d ∈ D and t ∈ T, satisfying all
requirements of the bandwidth capacity constraint on vIoT links and the computing capacity
constraint on vIoT nodes in order to minimize the total network routing cost.

• Problem 3 (Traffic engineering under differentiated demands and multiple time periods (EDP)):
Given a vIoT system G = (V, E), a set of service demands D that is classified to two types D1 and
D2 where the system fully satisfies demands belonging to D1, and serves those associated with
D2 with its best efforts, a set of path P, a set of periods T that presents for the variation in traffic
demand volume and cost structure during multiple time periods, find a routing solution xepdt
and a link weight system w = {we : e ∈ E} where e ∈ E, p ∈ P, d ∈ D and t ∈ T, satisfying all
requirements of the bandwidth capacity constraint on vIoT links and the computing capacity
constraint on vIoT nodes to obtain multiple objectives: (1) to maximize the ratio of accepted
demand, (2) to maximize the ratio of total satisfied traffic to total required traffic and (3) to
minimize the network routing cost.

Based on NFV characteristics, resource constraints on vIoT nodes, and vIoT links, the system
applies the ECMP strategy to determine x(w) for achieving the optimal routing solution with link
metric vector w. In the following sections, we will present specific constraints and objective functions
to obtain the optimal solution including the optimal metric of links and the best routing solution for
the three problems.

4.2. Traffic Engineering under Differentiated Demands

In this section, we formulate the ED problem as a Mixed Integer Linear Programming (MILP)
model, named ED-O, in order to obtain the optimal solution. Our aim is to find the optimal link
weight system w and the best routing solution for obtaining the maximal total satisfied traffic. In this
case, we consider multiple types of service demands by classifying the set of demands to two classes,
D = D1 ∪ D2, where the system fully satisfies demands belonging to D1 and serves those associated
with D2 with its best efforts.

The objective is to find the optimal solution for obtaining the maximal total data traffic that the
network system can support. Hence, the objective function is as follows:

F = ∑
d,p

xepd. (1)

We now describe the constraints of our model. First, for constraint (2), (3) make sure that for
demand d ∈ D1 the total traffic outgoing from the starting node and the total traffic incoming the
terminating node are the same as its traffic volume. In other words, the system supports fully for
demand d belonging to D1. Similarly, for constraint (4), (5) make sure that for demand d ∈ D2 the total
traffic outgoing from the starting node and the total traffic incoming the terminating node are no more
than its traffic volume. This implies that service demand d ∈ D2 allows the system to serve a portion
of its traffic. The equations are as follows:

∑
p,e:ie=sd

xepd = hd, ∀d ∈ D1 (2)

∑
p,e:je=td

xepd = hd, ∀d ∈ D1 (3)
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∑
p,e:ie=sd

xepd ≤ hd, ∀d ∈ D2 (4)

∑
p,e:je=td

xepd ≤ hd, ∀d ∈ D2 (5)

To make sure that total traffic in-flow and out-flow of each link are equal, we use constraint (6):

∑
p,e:ie=v

xepd − ∑
p,e:je=v

xepd = 0, ∀d, ∀v : v 6= sd, v 6= td (6)

Next, we formulate constraint (7) to make sure that total traffic passing through a link is not
greater than the bandwidth capacity of that link. The equation is given by:

∑
d,p

xepd ≤ C1,e, ∀e (7)

In addition, to represent the constraint on the computing capacity of nodes, we use constraint (9).
This constraint makes sure that the VNFs deployment does not violate the computing capacity of
nodes where Equation (8) computes resources required to process function f on node v per one unit of
traffic. The equation is given by:

Rv(x, f ) = x.rv f (8)

∑
d,i

Rv(kvdi. ∑
p,e:je=v

xepd, Fdi) ≤ C2,v (9)

It is necessary to ensure that each VNF of SFC requested by demand d has to be implemented
at one node and any flow of demand d has to go through its VNFs. We formulate this constraint
as follows:

∑
e

xepd.(kiedi
+ k jedi

) > 0, ∀d, i, t, hd (10)

∑
e

xepd > 0, ∀d, p, hd > 0 (11)

0 ≤ xepd ≤ Mz.bepd, ∀d, p, e (12)

Next, to make certain that the in-flow and out-flow of each node are equal, we formulate the flow
constraint by the following conditions where Mz is the largest link capacity of all links:

xepd ≥ ∑
e′ :j

e′
=ie

xe′ pd −Mz(1− bepd), ∀d, e, p (13)

xepd ≤ ∑
e′ :j

e′
=ie

xe′ pd, ∀d, e, p (14)

Finally, to ensure that the ECMP routing strategy is used to split traffic demand, we use
constraint (15)–(17) as follows:

0 ≤ giev − ∑
p,d:td=v

xepd ≤ (1− uev) ∑
d:td=v

hd, ∀v, e (15)

∑
p

xepd ≤ uetd .hd, ∀d, e (16)
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1− uetd ≤ ljetd + we − lietd ≤ (1− uetd).Mz, ∀d, e (17)

4.3. Traffic Engineering under Multiple Time Periods

Because the data traffic of demands may vary during different time periods according to service
requests, we consider the variations in traffic demand volume and cost structure during multiple time
periods in order to achieve the minimal total network routing cost.

We now extend the ED-O formulation to find the optimal solution of the TE problem under
consideration of multiple time periods, named EP-O. For more details, we use a set of T =

{tii = 1, 2, ...r} to present r time periods. Next, we use Cet to denote unit routing cost of link e
for transferring a data traffic unit at time period t. Because of the variation in traffic data during
multiple time periods, we use a traffic volume hdt to present for the required data traffic of demand d
at time period t.

Similarly, we introduce index t to constants and variables related to a time period. Specially,
the flow traffic variable is xepdt. The variables representing VNF placement are bepdt and kvdit.
The variable related to the minimum cost path routing is guvt. Hence, when we use equations and
constants in this formulation, the new variables and parameters with index t will replace the old
variables without index t.

Our objective is to find a solution for obtaining the minimal total routing cost. Hence, we use the
following objective function:

F = max
t∈T

(
∑

e
yet.Cet

)
(18)

where yet = ∑
d,p

xepdt.

Note that in the EP problem we do not consider the different types of service demands. Therefore,
to ensure that for time period t and for demand d the total traffic outgoing from the starting node
equals to the total traffic incoming from the terminating node and both of them equal to traffic volume
of demand d, we use the two following constraints:

∑
p,e:ie=sd

xepdt = hdt, ∀d, t (19)

∑
p,e:je=td

xepdt = hdt, ∀d, t (20)

Other constraints on flow conservation, bandwidth guarantee, and SFC are derived from the ED-O
formulation. The constraints on flow conservation and bandwidth guarantee for demands in EP-O are
given by (6), (7), (13), and (14) where xepdt and bepdt are used instead of xepd and bepd. By replacement
kvdit and xepdt for kvdi

and xepd respectively in constraints (9)–(12) the model ensures that every traffic
flow of demand d is processed by all VNFs required by its SFC, and the VNFs deployment is not over
the computing capacity of nodes. The conditions that guarantee the minimum cost path routing and
traffic splitting are (15)–(17) where xepd, hd, and giev are replaced by xepdt, hdt, and gievt respectively.

4.4. Traffic Engineering under Differentiated Demands and Multiple Time Periods

In this case, we consider both differentiated demands and multiple time periods to obtain a
link weight system and a traffic splitting solution with multiple objectives, which are as follows:
maximizing the ratio of accepted demands, maximizing the total satisfied total traffic throughput,
and minimizing the total network routing cost.

We extend the EP-O formulation for obtaining the optimal solution of the EDP problem,
named EDP-O, by considering differentiated demands as in the ED problem. Therefore, all variables,
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parameters, constants and conditions are described as the EP-O formulation except conditions (19)
and (20) which are replaced by the following constraints:

∑
p,e:ie=sd

xepdt = hdt, ∀d ∈ D1, ∀t (21)

∑
p,e:je=td

xepdt = hdt, ∀d ∈ D1, ∀t (22)

∑
p,e:ie=sd

xepdt ≤ hdt, ∀d ∈ D2, ∀t (23)

∑
p,e:je=td

xepdt ≤ hdt, ∀d ∈ D2, ∀t (24)

In addition, we use Equation (25) to calculate the ratio of accepted demands for time period t where
nat is number of service demands that the system can serve for time period t. Equations (26) and (27)
are used to estimate the ratio of total satisfied traffic and the ratio of total network routing cost for time
period t, respectively. These equations are as follows:

Ψ1t =
nat

D
, (25)

Ψ2t =

∑
e,p,d

xepdt

∑
d

hdt
, (26)

Ψ3t =

∑
e,p,d

Cet.yet

maxt∈T

(
∑
d

hdt

)
.maxt∈T,e∈E (Cet) . (V − 1)

(27)

We use an auxiliary variable Ψ1 that is the minimum ratio of accepted demands over all time
periods. The constraint is given by:

Ψ1 ≤ Ψ1t, ∀t. (28)

Similarly, Ψ2 and Ψ3 are sequentially the minimum of total satisfied traffic and the maximum of
total network routing cost over all time periods. We express this constraints as follows:

Ψ2 ≤ Ψ2t, ∀t, (29)

Ψ3 ≥ Ψ3t, ∀t. (30)

Due to the trade-off between the total traffic throughput and the total network routing cost, we use
the objective function (31) to find the optimal solution where α, β, and γ are the model parameters
representing the weight of the accepted demands, the total satisfied traffic, and the total network
routing cost, respectively. The objective function of the problem is as follows:

F = α.Ψ1 + β.Ψ2 − γ.Ψ3 (31)

Our MILP formulations of three problems allow us to achieve optimal solutions and can
be effectively solved for moderate networks by a MILP solver (e.g., CPLEX). Unfortunately,
finding optimal link weight system of the shortest-path routing problem for an arbitrary network is
NP hard [30]. Hence, we propose a heuristic algorithm to solve the TE problems for a large-scale vIoT
system in the sequel.
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5. Heuristic Algorithm

We propose a heuristic algorithm for finding an approximate solution of the three problems in
a large-scale vIoT system. The objectives are as follows: (1) maximizing the total satisfied traffic,
(2) maximizing the number of accepted service demands, and (3) minimizing the total network routing
cost in the vIoT system. The proposed algorithm contains two primary components: (i) optimizing the
link weight system while considering the differentiated demands, the dynamics of service demands,
and available resources (i.e., Algorithm 1: Optimizing the link weight system); (ii) deciding a routing
solution based on the link weight system vector, service demands, and available system resources by
the ECMP technique (i.e., Algorithm 2: TrafficDecision, Algorithm 3: VNFAllocation). The algorithm is
deployed as a component in the NFV orchestrator block of the NFV reference architecture framework
(Figure 4 in [29]).

The main steps of the proposed algorithm are presented as a flow chart in Figure 3. In the sequel,
we present the details of Algorithms 1–3.

Start

G, D, F, T

Initialize the link
weight system w

Calculate the value of the objective function
Calculate the number of accepted demands

For each  time period t in T

Sort D1, D2 in decreasing order
D = D1 v D2

For each demand d in D

Split the traffic of flows for all shortest paths between the
source and destination nodes of demand d according to the

ECMP strategy

d in D1

Satisfy all constraints

Reject demand d

Update the utilization
of links and nodes

Allocate VNFs for
demand d and
adjust the traffic of
the flow of demand
d to satisfy all links
and nodes
contraintsGenerate a neighbor

vector

Calculate the value of the objective function
Calculate the number of accepted demands

Move to a neighbor vector if it is better or with
a probability to overcome a local optimum 

For each shortest path p of demand d

Map the required network
function chaining of demand
d for the nodes along path p

Q > 1

l = 0

l < L

l = l + 1

Reduce
temperature Q

Alg3

Alg2

Y

N
YEnd

N

Y

N

Y

N

Figure 3. Flowchart of the proposed algorithm.
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Algorithm 1 Optimizing the link weight system
Input: G, D, F, T
Output: Routing solution x, link weight system w

1: Initialize w
2: (Ow, Aw)← TRAFFICDECISION(G, D, F, T,w)
3: wbest ← w, Obest ← Ow, Abest ← Aw

4: Q← Qo

5: while Q > 1 do
6: l ← 0
7: while l < L do
8: z ← generate a neighbor vector
9: (Oz, Az)← TRAFFICDECISION(G, D, F, T,z)

10: ∆O← Oz - Ow, ∆A← Az - Aw

11: if ∆O ≤ 0 and ∆A ≥ 0 then
12: w ← z , Ow ← Oz, Aw ← Az

13: if Oz < Obest then
14: wbest ← z, Obest ← Oz, Abest ← Az

15: end if
16: else
17: if e−∆O/Q > random(0,1) then
18: w ← z , Ow ← Oz, Aw ← Az

19: end if
20: end if
21: l ← l + 1
22: end while
23: reduce temperature Q
24: end while

5.1. Optimizing the Link Weight System

In this component, we propose an approximation algorithm based on Simulated Annealing
heuristic [31] to find the optimal link weight system (Algorithm 1). First, the algorithm generates an
initial link metric vector where all link weights equal to 1. The algorithm then optimizes the metric of
links by two loops underlying the neighborhood selection scheme. Specially, for two loops, we use Q
and L as two parameters to set up the initial temperature and the times of the inner while-end loop,
respectively. For generating a new neighborhood (i.e., line 8), the algorithm increases the weight of
links whose routing cost is highest. Next, based on the new neighborhood vector z, the algorithm uses
the TrafficDecision function to find a routing solution and to estimate the link metric vector z based on
the objective function Oz. The detail of TrafficDecision is presented in Algorithm 2 and is described in
the following section. The new link weight system z is better than the current link weight vector if
and only if the value of the objective function Oz is not worse and the achieved minimum accepted
demands do not decrease. The optimization process updates the current vector in the next loop by the
neighborhood vector z if it is better or with probability e−∆O/Q to overcome a local optimum. Finally,
the algorithm achieves the optimal link weight system to update the vIoT system.
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Algorithm 2 Deciding a traffic splitting vector

1: function TRAFFICDECISION(G, D, F, T,w)
2: for all t ∈ T do
3: sort D1 decreasingly by traffic volumes
4: sort D2 decreasingly by traffic volumes
5: D = D1 ∪ D2

6: for all d ∈ D do
7: Pd ← all shortest paths for demand d
8: x← split flow traffic for Pd with ECMP strategy
9: if d ∈ D1 then

10: VNFALLOCATION(G, x, d, Pd)

11: if satisfy all link and node constraints then
12: update the utilization of links and nodes
13: else
14: reject demand d
15: end if
16: else
17: do
18: VNFALLOCATION(G, x, d, Pd)

19: if do not satisfy all link and node constraints then
20: decrease flow traffic x
21: else
22: increase flow traffic x
23: end if
24: while do not satisfy all constraints
25: update the utilization of links and nodes
26: end if
27: end for
28: At ← compute number of accepted demands at time period t
29: end for
30: Aw ←mint∈T At

31: Ow ← compute value of the objective function

return Ow, Aw

32: end function

5.2. Deciding the Traffic Splitting Vector

With a metric of links on the vIoT system, we propose the TrafficDecision algorithm to determine
the traffic splitting vector based on the ECMP technique, SFC, and resource constraints. The detail of
TrafficDecision is presented in Algorithm 2. Specially, the first step in the algorithm is to find all shortest
paths from the starting node to the terminating node of demands. Next, TrafficDecision applies the
ECMP technique to determine how to split the traffic volumes of demands on these paths. Then,
the algorithm finds an allocating VNFs solution for nodes along these paths using VnfAllocation
function, presented in Algorithm 3. The VnfAllocation function considers mapping the required
network function chaining of each demand for the nodes along each path sequentially. When it cannot
find a possible traffic splitting solution for a demand, this demand is rejected if it belongs to class D1
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or its traffic is adjusted if it belongs to class D2. All of these steps are looped through all demands for
each time period.

As mentioned above, this component is modified when applying to find an approximate solution
for ED, EP, and EDP. Specifically, we use Algorithm 2 to find the traffic splitting vector for the EDP
problem. For the ED problem, we modify Algorithm 2 by removing some lines, including line 2 and
29. Similarly, we apply Algorithm 2 after removing some lines from line 16 to 26 and line 9 for solving
the EP problem.

Algorithm 3 Allocating VNFs of demands

1: function VNFALLOCATION(G, x, d, Pd)
2: for all p ∈ Pd do
3: V ← all nodes belongs to p
4: Fd ← all network functions of Fd

5: while V is not empty and Fd is not empty do
6: v← the first node of V
7: remove the first node from V
8: while available capacity of v > 0 and Fd is not empty do
9: f ← the first function of SFC Fd

10: if available capacity of v ≥ Rv

(
xepd, f

)
then

11: mapping f for v
12: remove the first function from SFC Fd

13: else
14: break
15: end if
16: end while
17: end while
18: end for

return G
19: end function

6. Evaluation

In this section, we present the scenarios and parameters in our experiments using both real-world
datasets and synthetic topologies to evaluate the performance of our solution with multiple objectives.
First, we evaluate the efficiency of our TE solution when considering differentiated demands. Second,
the simulations are focused on comparing the multiple time periods scheme with the nonmultiperiod
scheme. Finally, we evaluate the strategy considering both differentiated demands and multiple
time periods.

6.1. Scenario Setting

To evaluate performance of our solution, we use four scenarios as given in Table 2, where the Internet2
dataset [32] and the GEANT dataset [33] are real-world datasets and the later ones are random generated by
synthetic topologies based on the two-tier model [34] and the Bcube model [35], sequentially.
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Table 2. Scenarios.

Scenarios Number of
Virtual Nodes

Number of
Virtual Links

Number of
VNFs

Number of
Time Periods

Min Number of
Demand

Max Number of
Demand

Internet2 12 30 4 3 20 120

Geant 22 72 4 4 50 200

Two-tier 60 282 4 3 10 40

Bcube 176 1464 4 3 50 200

For more details, the Internet2 dataset includes a topology that consists of 12 nodes, 30 links,
and 120 service demands. In this dataset, we consider three time periods where the traffic volumes of
demands in the first time period are recorded from the real traffic, and the others are generated from
the minimum to the maximum traffic volume of all demands randomly. The Geant dataset contains a
topology that consists of 22 nodes, 72 links, 200 service demands, and four time periods. Similarly,
for the first time period we use the traffic volumes of demands that tracked from the Geant network,
and the traffic demands in other time periods are randomly generated. The third and fourth datasets
are randomly generated by FNSS tool [36] based on the Two-tier and Bcube models, respectively.
The Two-tier dataset contains a topology of 60 nodes and 282 links and traffic matrices with 40 service
demands. The Bcube dataset is a network consisting of 176 nodes and 1464 links with 200 service
demands. In all four experiments, we consider four VNFs available on the vIoT system.

The processing capacity of a node, the resource requirements of a VNF, and the SFC of a demand
are randomly generated with the Uniform distribution. A demand will be classified to D1 and D2

based on the average of its traffic volumes over all time periods. If the average is larger than the
average of all traffic volumes of all demands over all time periods, a demand will belong to D2. We set
α = 3, β =2, γ = 1 since we consider that the number of accepted demand has the highest priority and
the total routing cost has the lowest priority.

In the evaluation, we consider three performance metrics: the ratio of accepted demands, the ratio
of total satisfied traffic, and the total network routing cost. Specifically, the ratio of accepted demands
is the proportion of a number of service demands supported by the system to that requested by
customers. Similarly, the ratio of total satisfied traffic is the proportion of total traffic provided by the
system to that required by customers. The total network routing cost is the sum of routing cost of all
links used in the system where the routing cost of link e is the product of the total traffic through link e
and the unit routing cost of link e.

6.2. Performance Evaluation of the Traffic Engineering Solution Considering Differentiated Demands

We evaluate the efficiency of the proposed algorithms for the ED problem, whose objective is
to maximize the total satisfied traffic that the system supports all service demands. For simplicity,
we refer to this algorithm for schemes considering classified demand types and nonclassified demand
types as multitype and one-type sequentially. We perform our solution in the same set of demands and
network scenarios for two cases. In the multitype case, we use two demand types where the system
fully satisfies demands belonging to the first type, and serves those associated with the second type
with its best efforts.

In four scenarios, the experiment results show that the Multi-type scheme outperforms the
One-type scheme in both the total satisfied traffic objective and the ratio of accepted demands objective.
Particularly, Figure 4 shows that the ratio of satisfied demands achieved by the Multi-type scheme
is higher from 5% to 25% than that of the One-type scheme for the Internet2 dataset. The result of
the percentage of total satisfied traffic is similar in this case. It can be seen from Figure 4c that the
Multi-type scheme achieves a higher total network routing cost than the One-type scheme. The main
reason is that the Multi-type scheme supports for much more network throughput therefore its resource
utilization is larger. We can observe that the Multi-type scheme overcomes the One-type scheme not
only the accepted demands and total traffic but also the total network routing cost in Figure 5 with the
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Bcube dataset. Moreover, the gap between the effective performance of the Multi-type scheme and the
One-type scheme becomes larger with the increase of number of service demands when evaluating
the ratio of supported demands and total satisfied traffic in Figure 5a,b. Figures 6 and 7 illustrate
the similar results for the Geant and Two-tier datasets. To summarize, the approach considering
differentiated demands is effective in maximizing the total satisfied traffic.
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Figure 4. Efficient traffic engineering solution considering differentiated demands with the
Internet2 dataset.
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Figure 5. Efficient traffic engineering solution considering differentiated demands with the
Bcube dataset.
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Figure 6. Efficient traffic engineering solution considering differentiated demands with the
GEANT dataset.
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Figure 7. Efficient traffic engineering solution considering differentiated demands with the
Two-tier dataset.

6.3. Performance Evaluation of the Traffic Engineering Solution Considering Multiple Time Periods

We evaluate the performance of our approach by comparing results achieved by the case of
multiperiod and the none-period case. Note that in the multiperiod case, we divide time to multiple
time periods where the traffic demand and routing cost of links may vary during different time periods.
Hence, there are different values of the ratio of accepted demand, the ratio of total satisfied traffic,
and the total network routing cost for different time periods. Then we use the worst one in all time
periods for each aspect in the multiperiod case. In the none-period case, each service demand has only
one traffic volume that is the maximal demand volume over all time periods in the multiperiod case.
It is similar for the routing cost of network links. We compare three performance metrics, including the
minimum ratio of accepted demand, the minimum ratio of total satisfied traffic, and the maximum
total network routing cost over all time periods of the multiperiod case to that of the none-period case.
The main objective of the EP problem is to minimize the total network routing cost.

The evaluation results show that the multiperiod scheme outperforms the none-period scheme in
terms of three metrics. Specially, Figure 8 depicts that the multiperiod strategy can save approximately
25% the total network routing cost and around 7% the minimum ratio of accepted demands with
the Internet2 dataset. In addition, the ratio of total satisfied traffic of the multiperiod scheme is
5–13% higher than that of the none-period scheme. For the evaluation using datasets of Bcube, Geant,
and two-tier, Figures 9–11 depict that the multiperiod scheme saves approximately 50% of the total
network routing cost compared with the none-period scheme. Similarly, the multiperiod scheme
obtains a higher percentage of accepted demands and total satisfied traffic in comparison with the
nonperiod scheme. To sum up, the traffic engineering solution considering multiple time periods is an
effective approach to minimizing the total network routing cost.
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Figure 8. Efficient traffic engineering solution considering multiple time periods with the
Internet2 dataset.



Sensors 2020, 20, 3198 18 of 22

Number of service demands

50 75 100 125 150 175 200P
e
rc

e
n
ta

g
e
 o

f 
a
c
c
e
p
te

d
 d

e
m

a
n
d
s

0.96

0.97

0.98

0.99

1

multi-period

none-period

(a) Accepted demands

Number of service demands

50 75 100 125 150 175 200P
e
rc

e
n
ta

g
e
 o

f 
to

ta
l 
s
a
ti
s
fi
e
d
 t
ra

ff
ic

0.97

0.98

0.99

1

multi-period

none-period

(b) Total satisfied traffic

Number of service demands

50 75 100 125 150 175 200

T
o
ta

l 
n
e
tw

o
rk

 r
o
u
ti
n
g
 c

o
s
t

×10
9

0

0.5

1

1.5

2

2.5

multi-period

none-period

(c) Routing cost

Figure 9. Efficient traffic engineering solution considering multiple time periods with the Bcube dataset.
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Figure 10. Efficient traffic engineering solution considering multiple time periods with the
GEANT dataset.
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Figure 11. Efficient traffic engineering solution considering multiple time periods with the
Two-tier dataset.

6.4. Performance Evaluation of the Traffic Engineering Solution Considering the Combination of Differentiated
Demands and Multiple Time Periods

We then evaluate the performance of the strategy considering both differentiated demands and
multiple time periods (called COM) against the scheme considering multiple time periods only (called
MP). For more details, in the first case, we aggregate both the differentiated demands scheme and the
multiple time periods scheme to the algorithm. For the second case, we only consider multiple time
periods scheme. However, notice that we use the new objective function as Equation (31) for the MP
case that leads to the differences of results compared with the mentioned multiple time periods results.

The results illustrate that the COM scheme achieves a higher ratio of accepted demands than the
MP scheme while both the total satisfied traffic and the total network routing cost results are equivalent.
As shown in Figure 12, the ratio of accepted demands obtained by the COM scheme is better than
that of the MP scheme with the Internet2 dataset. In addition, on the percentage of total satisfied
traffic and the total network routing cost aspects, the results are very closed. Figure 13 compares the
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traffic solution considering the COM scheme to the MP scheme with the Bcube dataset. It shows that
COM outperforms MP in both the ratio of accepted demands and total satisfied traffic while having
the same total network routing cost. For the Geant dataset, Figure 14 shows that the COM scheme
achieves at least 20% higher ratio of total satisfied traffic than the MP scheme with a number of service
demands from 50 to 200. The total network routing cost of COM is higher than that of MP because of
the extreme increment of satisfied traffic. The comparison between COM and MP with the two-tier
dataset also shows a similar result, presented in Figure 15. To summarize, the aggregation of the
multiple time periods scheme and the differentiated demands scheme provides an effective solution
for traffic engineering with multiple objectives.
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Figure 12. Efficient traffic engineering solution considering the combination of differentiated demands
and multiple time periods with the Internet2 dataset.
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Figure 13. Efficient traffic engineering solution considering the combination of differentiated demands
and multiple time periods with the Bcube dataset.
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Figure 14. Efficient traffic engineering solution considering the combination of differentiated demands
and multiple time periods with the GEANT dataset.
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Figure 15. Efficient traffic engineering solution considering the combination of differentiated demands
and multiple time periods with the Two-tier dataset.

7. Conclusions

In this paper, we investigated the TE problem considering the ECMP routing technique, SFC,
differentiated demands in various periods, and the fluctuation of traffic volume in a vIoT system.
We proposed three MILP models for achieving the optimal link weight configuration and routing
solution for the TE problem. We then developed efficient algorithms that provide an approximate
solution for the large scale problem. We evaluated the performance of the proposed algorithms
through simulations using both synthetic and real-world datasets of network traffic and topologies.
The evaluation results demonstrate that a traffic engineering strategy aggregating both the fluctuation
of demand volume and the different demand types can significantly increase the performance of a
vIoT system thanks to the offered features of service composition agilely created in NFV. There are
several interesting extensions of our TE approaches, including consideration of failure scenarios,
traffic prediction, and cache optimization for further improving the performance of an IoT system
based on NFV [17,37,38]. Another important direction might be the performance evaluation of energy
consumption in a vIoT system taking into account the mobility of IoT devices.
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