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Abstract: In this paper, we present an evaluation of four encoder–decoder CNNs in the segmentation
of the prostate gland in T2W magnetic resonance imaging (MRI) image. The four selected CNNs
are FCN, SegNet, U-Net, and DeepLabV3+, which was originally proposed for the segmentation
of road scene, biomedical, and natural images. Segmentation of prostate in T2W MRI images is
an important step in the automatic diagnosis of prostate cancer to enable better lesion detection
and staging of prostate cancer. Therefore, many research efforts have been conducted to improve
the segmentation of the prostate gland in MRI images. The main challenges of prostate gland
segmentation are blurry prostate boundary and variability in prostate anatomical structure. In this
work, we investigated the performance of encoder–decoder CNNs for segmentation of prostate
gland in T2W MRI. Image pre-processing techniques including image resizing, center-cropping and
intensity normalization are applied to address the issues of inter-patient and inter-scanner variability
as well as the issue of dominating background pixels over prostate pixels. In addition, to enrich the
network with more data, to increase data variation, and to improve its accuracy, patch extraction and
data augmentation are applied prior to training the networks. Furthermore, class weight balancing
is used to avoid having biased networks since the number of background pixels is much higher
than the prostate pixels. The class imbalance problem is solved by utilizing weighted cross-entropy
loss function during the training of the CNN model. The performance of the CNNs is evaluated
in terms of the Dice similarity coefficient (DSC) and our experimental results show that patch-wise
DeepLabV3+ gives the best performance with DSC equal to 92.8%. This value is the highest DSC score
compared to the FCN, SegNet, and U-Net that also competed the recently published state-of-the-art
method of prostate segmentation.
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1. Introduction

According to the report published by the GLOBOCAN 2018 [1], global statistics have indicated
that prostate cancer is the second most leading diagnosed cancer in men, after lung cancer. In 2018
alone, more than 1.2 million new cases of prostate cancer were reported worldwide with higher cases in
developed countries. Prostate cancer may be asymptomatic in the early stage and often has an indolent
course, and symptoms may not appear until the cancer is in its more advanced stages [2]. Hence,
early detection is highly critical in preventing further growth of cancerous cells in the prostate gland.

In the current clinical approach, the prostate-specific antigen (PSA) blood test and transrectal
ultrasound (TRUS) biopsy are applied together for the diagnosis of prostate cancer [3]. However,

Sensors 2020, 20, 3183; doi:10.3390/s20113183 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2515-4220
https://orcid.org/0000-0002-9812-0435
https://orcid.org/0000-0002-6180-1691
https://orcid.org/0000-0002-5615-4629
http://dx.doi.org/10.3390/s20113183
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/11/3183?type=check_update&version=2


Sensors 2020, 20, 3183 2 of 17

PSA testing has low specificity because men without cancer have also been identified with elevated
PSA and many patients with cancer did not have elevated levels of PSA [4]. On the other hand, TRUS
biopsy suffers from low sensitivity due to unclear optimal threshold for biopsy [5]. Due to the low
specificity of PSA and low sensitivity of TRUS biopsy, these tests have restricted diagnostic value [6].

Machine learning approaches in image-based diagnosis, disease prognosis, and risk assessment
are becoming increasingly successful. For the diagnosis of prostate cancer, magnetic resonance
imaging (MRI) is a common modality for evaluation of prostate cancer, providing superior anatomic
or pathologic visualization when compared with ultrasound and computed tomography (CT). In the
past few years, the use of MRI was proposed by the prostate cancer research community as the most
accurate non-invasive screening tool for prostate cancer diagnosis, staging [7], disease monitoring, and
treatment management [8].

The prostate gland can be divided into three zones, peripheral zone (PZ), transitional zone (TZ),
and the central zone (CZ). Having the advantages of good resolution and contrast in soft tissues, T2W
MRI is used to differentiate the different zones of the prostate gland [9]. It was established that the ratio
of developing prostate cancer in the prostate gland varies according to the zone. PZ has the highest
rate of 70–80%, whereas the TZ rate is 10–20%, while, in CZ, the rate is only 5% [10]. In a typical
examination of MRI images, the radiologist performs slice by slice visual inspection and prostate
segmentation which can be time-consuming especially for large-scale samples. In addition, the result
of manual segmentation varies depending on the skill of the expertise [11]. Hence, to improve the
diagnosis of prostate cancer, there is a need for an automatic segmentation technique that is robust
to variability in shape, size, image intensity around the gland and surrounding regions, anisotropic
spatial resolution, and scanner type [12,13].

In this article, we evaluated and compared the performance of four encoder–decoder CNNs; FCN,
SegNet, DeepLabV3+ and U-Net in segmenting prostate T2W MRI into whole gland (WG), or into
three zones PZ, TZ, and CZ depending on availability of dataset label. The training and testing of the
CNNs are conducted with selected image pre-processing techniques, data augmentation techniques
and selected loss function for dealing with the issue of class imbalance.

The paper is outlined as follows. In Section 2, we reviewed papers related to image segmentation
focusing on atlas-based segmentation, model-based segmentation, deep learning-based segmentation,
and patch CNN-based segmentation. This section also includes a summary of our contribution. Next,
Section 3 presents materials and methods, and Section 4 presents results and discussion. Lastly,
Section 5 concludes the paper and suggests further work in this area.

2. Related Work

Prostate segmentation, a necessary step in automatic image analysis, involves delineating the
prostate boundaries. Segmentation will limit subsequent image processing only on the organ of interest.
This section highlights some important works on prostate segmentation based on deformable models,
and region-based and patch-based CNNs.

Before the breakthrough of deep learning, segmentation based on deformable models [14,15],
hybrid methods [16–19], and atlas-based [20–23] were introduced. In principle, the deformable models
were implemented as the physical bodies with certain elasticity and force properties that try to keep
their form, while the image to be segmented was represented as a potential field with the force that
tries to stretch the model and adapt to it. To achieve this, deformable-based segmentation incorporates
knowledge about the shape, object orientation, continuity, elasticity, or smoothness of the region to
be segmented.

In atlas-based segmentation, two major steps are atlas construction and atlas registration where the
prior knowledge related to size, orientation, or shape needs to be incorporated [20–23]. The three basic
building blocks for atlas registration are image transformation, similarity measure, and optimization
algorithm that finds the maximum similarity measure between atlas and target region.
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Deformable-based methods are sensitive to initialization because the contour is driven by a
pre-defined energy function in a variational manner, giving local convergence. As a result, the
shape of the object may not be well preserved, especially in the presence of image noise and in the
non-homogeneous intensity region [14,15]. On the other hand, atlas-based methods lack the flexibility
in local tuning the segmentation boundary.

Martin et al. [17] combined the deformable model and probabilistic atlas-based model for the
segmentation of prostate MRI achieving the median Dice similarity coefficient (DSC) score of 0.86.
Zhang et al. [18] proposed a method that uses a clustering method to separate the prostate gland from
the surrounding tissues followed by a postprocessing phase through active contours, giving an overall
accuracy with mean DSC of 0.84 ± 0.04.

Methods based on deep learning had shown remarkable results relative to the combination of
deformable model and atlas-based segmentation. Hence, various methods were proposed to exploit
the advantages of both methods while avoiding their respective drawbacks, including combining both
deformable models and atlas-based models. In [16], Cheng et al. combined a supervised atlas-based
active appearance model (AAM) and CNN was achieving DSC value equal to 0.925. The method
utilized the volume of interest (VOI) generated by AAM and later inputs to CNN as learnable features,
and this has increased the overall accuracy of prostate segmentation. Yanrong Guo et al. [19] presented
a novel hybrid model by combining a deep learning model and deformable model where the features
extracted by the deep learning model were matched to the atlas map by a sparse matching method.
This method has resulted in DSC value of 87.1%± 4.2%. The subsequent paragraphs highlight some
semantic segmentation methods based on deep learning styles.

Long et al. [24] introduced a fully convolutional neural network (FCN) for scene segmentation
tasks. The FCN is built from a classical CNN but only consists of locally connected layers including
convolution, pooling, and upsampling, whereby the last fully connected layer is replaced by another
broad receptive field convolution layer. Since the architecture does not include fully connected layers,
the number of parameters and computation time is reduced. In addition, unlike the traditional CNN
model, the network can work with any image size without requiring any fixed number of units at any
stage, as all connections are local.

The application of CNN for the segmentation of prostate MRI was investigated in [25].
The network, known as PSNet is a fine-tuning of the FCN model proposed by Long et al. [24] trained
on the PASCALVOC data set [26] and retrained for the prostate segmentation. Specifically, PSNet
fine-tuned the last three layers of the FCN because these layers learn high-level specific features that
are related to the prostate gland [27,28].

In [29], Ronneberger et al. proposed U-Net model, which is proposed for medical imaging
segmentation tasks. The U-Net model concatenates the contracting side (encoder) and expanding side
(decoder) to compensate the loss of spatial resolution due to the max pooling operations. In another
work by Milletari et al. [30], the Dice loss function was used to solve the problem of class imbalance
between background and foreground pixels and obtained accurate 3D segmentation of the prostate
T2W MRI using U-Net architecture. In the work by Yu et al. [31], residual connections are incorporated
into the convolutional and deconvolutional part of U-Net and the proposed architecture won the first
place in 2017 Computer-Assisted Intervention Conference using the PROMISE12 challenge dataset.

In recent work by Rundo et al. [32], a new segmentation method based on U-Net was proposed.
The CNN network known as Use-Net introduced Squeeze-and-Excitation (SE) blocks in both encoder
and the decoder of U-Net architecture. The network was trained and tested on multi-dataset allowing
for both intra and cross dataset generalization. Their findings revealed that the SE blocks enable
adaptive feature recalibration, hence, providing excellent cross-dataset generalization.

Patch-based CNN segmentation methods were proven to result in better pixel-wise segmentation
of biomedical images [33–39]. In [33], Zhang et al. applied patch-based CNN for segmentation of the
multi-modality MRI brain dataset, T1, T2, and fractional anisotropy (FA) MRI. The brain region was
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segmented into white matter, grey matter, and cerebrospinal fluid. For each case, more than 1K patches
were extracted at four different sizes; 9× 9, 13× 13, 17× 17 and 22× 22 for training and testing.

In [34], Tajbakhsh et al. demonstrated that fine-tuning of a pre-trained CNN in a layer-wise
manner leads to incremental performance improvement in classification, detection, and segmentation.
The performance evaluation was made for three different medical imaging modalities; polyp
detection in colonoscopy images, pulmonary embolism detection in CT pulmonary angiography,
and intima-media boundary segmentation from the ultrasound of carotid intima-media thickness.
The training set comprised of stratified image patches with an equal number of positive and negative
classes. In another work by Kooi et al. [37], automatic detection of breast lesion in mammography was
investigated using 39,872 patches of size 250× 250 for training the CNN model.

In this article, we evaluated the performance of four CNNs; FCN, SegNet, DeepLabV3+, and U-Net
for segmentation of prostate T2W MRI trained in a patch-wise framework. The four CNNs are selected
as they have given excellent performance in other applications including road scene, biomedical image,
and natural image segmentation. Our contribution in this work includes a head-to-head comparison of
the four CNNs, trained in the best possible framework using selected image pre-processing techniques,
methods for increasing the number of images and its variation, and a method to tackle the issue
of class imbalance. In particular, image resizing, center-cropping, and intensity normalization are
applied for addressing the issues of inter-patient and inter-scanner variability as well as the issue
of dominating background pixel over a prostate pixel. Issues related to small training images are
addressed by using patch extraction while data augmentation is used to increase the variation in
images and has improved the network accuracy. In addition, the class imbalance issue was addressed
using the weighted cross-entropy loss function during network training. The selected methodology is
proven to improve the segmentation accuracy measured in terms of DSC values.

3. Material and Methods

In this section, we cover the methodology for training and testing of the CNNs in segmenting
the whole prostate gland, peripheral zone, and central gland from T2W MRI of two different datasets.
Firstly, a brief description of the four CNNs architecture is discussed. Secondly, the details of the two
datasets used in this work are described, covering the scanner types, image dimensions, and class
labels. In the third section, methods for image pre-processing, data augmentation, and patch extraction
are discussed. Next, the technique of class balancing is presented as a measure to prevent the network
from being biased toward classes with a larger number of pixels. Then, the weighted cross-entropy loss
function used in the optimization of the network parameters is presented. Lastly, the Dice similarity
coefficient (DSC) is presented as the performance metric for evaluating the CNN-based segmentation
methods. The general framework for evaluation of the CNNs is illustrated in Figure 1.

3.1. Deep CNN Architectures for Prostate Segmentation

The following deep CNN models which follow encoder–decoder structure are selected for
comparative performance evaluation of semantic segmentation of prostate T2W MRI; FCN [24],
U-Net [29], SegNet [40], and DeepLabV3+ [41]. A brief description of each CNN models is presented
in the subsequent paragraphs.

Fully convolutional neural network (FCNs) [24,42,43] is based on existing image classification
network such as AlexNet [44], VGG16 [45], and GoogleNet [46] to serve as the encoder module
(downsampling path) and appended with a decoder module (upsampling path) with transposed
convolutional layers. The encoder module is built from local connected layers such as convolution,
pooling, and upsampling without any dense layer in the architecture. Since all connections are local,
the network can work with any image size. The downsampling path and upsampling path will
respectively capture both the context and localization or spatial information. However, pooling or
downsampling will result in loss of spatial information. Skip connections are used to recover the spatial
information in downsampling layers, hence combining context information with spatial information.
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Specifically, the skip connections concatenate the feature map from downsampling with upsampling
layers at different levels of resolution.

Figure 1. General methodology for evaluation of encoder–decoder CNN architectures in semantic
segmentation of prostate T2W MRI.

Originally developed for biomedical image segmentation, U-Net is a variant of FCN that
was modified to work on a few training images giving better segmentation performance [29,47].
The network has a U-shaped architecture that consists of an encoder–decoder network and
interconnected by skip connections. The encoder extracts the spatial feature map from the input
image using the convolutional layer, while the decoder performs the upsampling process to get
segmented output from the encoder feature map. In feature map construction, a 3× 3 convolution
operations are performed, followed by stride of two 2× 2 max pooling. This process consists of four
convolutional operations and, after each downsampling, the number of filters is doubled in the next
convolutional layer. The output feature map of 3× 3 convolution operation is forwarded to the decoder
part which is upsampled using 2× 2 transposed convolution operation, reducing the feature map by
half. The upsampling stage and two convolution operations are repeated four times, while at each stage
the numbers of filters are halved. The information of feature maps from the convolutional operation of
an encoder is transferred to the decoder before the pooling operation. The skip connections between
the encoder–decoder networks are used to recover the information lost from the pooling operation.
The final segmented output is obtained by using a 1× 1 convolution operation on the upsampled
feature map. All convolutional layers in U-Net used rectified linear unit (ReLU) as the activation
function except for the final convolution layer which used sigmoid activation function.

SegNet is a pixel-wise semantic segmentation technique originally developed for outdoor and
indoor scene understanding [40,48]. The architecture consists of encoders using only forward
connections from VGG architecture, non-trainable layers, and a corresponding set of decoders followed
by a pixel-wise classifier. With no fully connected layer, this had reduced the network parameters
from 134 M to 14.7 M, which makes it suitable for computationally efficient embedded systems. If the
classification network is directly adopted for pixel-wise segmentation, the segmentation result will
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be poor. This is resulted from the max pooling and subsampling operations that reduce the feature
map resolution and hence reduce the output resolution. To maintain the same output image resolution
as the input image, the low-resolution feature maps are upsampled by SegNet using memorized
pooling indices. This enables the network to store boundary information and reduce the number of
trainable parameters.

DeepLabV3+ is another CNN developed for semantic segmentation that is comprised of the
encoder–decoder network [41,49,50]. The highlights of the architecture are the use of atrous or dilated
convolution and atrous spatial pyramid pooling (ASPP) [51]. To maintain the spatial resolution of
the output feature map, DeepLabV3+ used the Xception model as their backbone and made use
of depth-wise separable convolution in place of max pooling layers. Instead of using standard
convolution, depth-wise separable convolution is used which segregate the operation into depth-wise
and point convolution. Feature maps are generated from each input channel by depth wise convolution
which applies separable convolution with (r − 1) zeros being placed within the successive filters.
The output of a depth wise convolution is accumulated by utilizing point wise convolution. In the
decoder part, the encoder feature map is upsampled by a factor of 4 and then concatenated with
low-level features. Here, the 1× 1 convolution is applied for achieving reduction in the number of
channels. Lastly, 3× 3 convolution is applied on a feature map and subsequently being upsampling by
factor of 4 to get the output having equal size to the input.

3.2. MRI Dataset

Two MRI datasets are used for evaluation of the CNN architectures, from (1) NCI-ISBI 2013
challenge and (2) Universiti Kebangsaan Malaysia Medical Centre (UKMMC). The summary of the
two datasets is as follows:

1. NCI-ISBI 2013 is a prostate 3T collection of 40 patients having 542 T2-weighted MR slices available
at the Cancer Imaging Archive (TCIA) site [52]. The images were collected at Radboud University
Medical Center, Netherlands, using Siemens TIM 3 Tesla scanners [53]. This dataset has three
different image sizes, 384× 384, 320× 320 and 256× 256, having a thickness of 4 mm. The image
masks are labeled to 3-class, peripheral zone (PZ), Central Gland (CG), and background.

2. UKMMC dataset is a prostate 3T collection consists of 11 patients having 229 T2-weighted MR
slices that are collected from UKMMC. The images were acquired using a 3 Tesla Siemens TIM
MRI scanner with a surface coil. The image dimensions are 384 × 384 and 320 × 320, with
a thickness of 3 mm. The image masks are labeled to 2-class, whole prostate gland (WG),
and background.

3.3. Image Pre-Processing

Since the two datasets used in this work, NCI-ISBI 2013 and UKMMC, were obtained using
two different scanners, there is variation in terms of image dimensions and resolutions. Therefore,
image normalization is necessary in order to work with datasets having a common dimension while
reducing both inter-patient and inter-scan variability. Details on the pre-processing steps are given in
the subsequent paragraphs.

3.3.1. Image Resizing

The images of NCI-ISBI 2013 dataset come in three sizes, 384× 384, 320× 320 and 256× 256,
whereas, in the UKMMC dataset, the images come in two sizes, 384× 384 and 320× 320. Therefore, in
order to achieve common image size, image resizing is performed by scaling the images to a size of
(320× 320)-pixel using the nearest-neighbor interpolation method [54].
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3.3.2. Center-Cropping

The size of the prostate gland in the MRI scan is relatively small compared to the background,
and this will result in background pixels to dominate over the prostate pixel resulting in poor
prostate segmentation. Hence, center-cropping is necessary for reducing the number of background
pixels [55,56], and to reduce the computation time with redundant pixels. Since the output size
from image resizing is (320 × 320)-pixels, the dimensions of these images are center cropped to
(256× 256)-pixel. A sample of the center cropped image and its corresponding mask is shown in
Figure 2.

Figure 2. Center-cropping of MRI prostate image, original MRI (top-left), center-cropped image
(bottom-left), and the corresponding masks (top/bottom-right).

3.3.3. Intensity Normalization

Intensity normalization is used to reduce variation in the intensity distribution of images in one
dataset which occurs due to inter-patient variability [57]. This will also improve the comparability of the
images across different subjects and give better segmentation results. Hence, intensity normalization
is applied to both datasets.

3.4. Data Augmentation

During the training of deep neural networks, data augmentation is performed to improve the
accuracy of the training networks. Data augmentation will essentially increase the spatial variation of
the images and improve the network accuracy [58]. The two data augmentation techniques used are
random reflection and translation by ± 10 pixels in the x-axis and y-axis directions.

3.5. Patch Extraction

Training DNNs for accurate prostate segmentation requires large datasets, hence we used a
patch-wise framework. The four different encoder/decoder networks are evaluated in terms of DSC
for different sizes of patches, including 64× 64, 128× 128, and 192× 192, similar to the work of
Sekou et al. [59]. It is observed that the performance of the CNNs decreases in the smaller patch
sizes because of the small prostate region compared to the background region. In smaller patch sizes
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of 64× 64 and 128× 128, the prediction of the prostate gland is lower than in higher patch size of
192× 192. This explains why the CNN architectures will result in better segmentation in the case of
(192× 192)-patch than the (64× 64)-patch and (128× 128)-patch.

In our case, from each MRI slices, 20 and 30 (192× 192)-pixel random patches were generated
from NCI-ISBI 2013 and UKMMC dataset, respectively. For NCI-ISBI 2013, 460 images were selected
for training from a total of 542 MRI slices, giving 9200 images, a 20-fold increase in the number of
training images. On the other hand, since the UKMMC is a relatively small dataset, more patches are
needed to be generated from this dataset. From 176 MRI slices, patch extraction has generated 5280
total training images, which is a 30-fold increase from the original 176 slices. A sample of patches
generated from one of the datasets is shown in Figure 3.

(a)

(b) (c) (d)

Figure 3. Sample of three (192× 192)-pixel patches (b–d) generated from the (256× 256)-pixel image
in (a).

3.6. Class Weight Balancing

It is common in medical volume scan that the anatomy of interest occupies only a small region of
the scan, like in the case of prostate MRI. As a result, the number of pixels for image background is
higher than the prostate gland, resulting in imbalance class labels. Specifically, for the NCI-ISBI 2013
dataset, the ratio of pixels for background to central gland and peripheral zone is 95.5:1.9:2.6, whereas,
in the UKMMC dataset, the ratio of background to whole gland is at 94.94:5.06. Class imbalance can
be detrimental for the learning process as the network learns more on dominant classes and biases
towards these dominant classes. To improve the learning process and avoid being trapped in local
minima, the class weighting approach can be used as a systematic way to improve the low dominant
class [60]. To counteract class imbalance present in the dataset, larger weights are assigned for labels
with less total pixels and smaller weights for labels with more total pixels.

If the number of pixels in a particular class is denoted as Nc, where c corresponds to background,
CG and PZ for 3-class dataset, and c corresponds to background and WG for 2-class dataset. Hence, Nc

is (1× 3)-array and (1× 2)-array for 3-class dataset and 2-class dataset, respectively. Let T represent
the total number of pixels in the images, then the (1× 2) or (1× 3)-array of image frequency, Fc, of a
class is the ratio of Nc to T given by

Fc =
Nc

T
. (1)
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From here, the (1× 2) or (1× 3)-array of class weight, Wc, for a set of training data can be calculated
by finding the ratio of median of Fc to Fc

Wc =
median(Fc)

Fc
. (2)

Histograms of pixel distribution of 3-class NCI-ISBI 2013 dataset and 2-class UKMMC dataset, before
and after applying class weighting approach, are shown respectively in Figures 4 and 5.

(a) (b)

Figure 4. Pixel distribution of (a) original images and (b) after class weighting for the NCI-ISBI 2013 dataset.

(a) (b)

Figure 5. Pixel distribution of (a) original images and (b) after class weighting for the UKMMC dataset.

3.7. Loss Function

In this work, the weighted cross-entropy (WCE) loss function is selected for the CNNs because it
helps the network to better differentiate between background and prostate pixels, and is especially
handy when there is class imbalance. The WCE loss function penalizes each class based on the median
frequency of each class, which is formulated as follows [61]:

WCE = − 1
n

n

∑
i=1

Wc,i [Ti log Pi + (1− Ti) log(1− Pi)] , (3)

where the sum is run over all training images, n. The variable Pi is the predicted segmentation class,
Ti is the target or the ground truth segmentation label, and Wc,i is the class weight calculated from
Equation (2).
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3.8. Evaluation Metric

The performance of the CNNs for segmentation of prostate T2W MRI is evaluated based on
intersection between target and prediction sets using dice similarity coefficient (DSC) [62]. In essence,
DSC measures the resemblance of elements between prediction and target sets given as

DSC = 2
|T ⋂

P|
|T|+ |P| × 100, (4)

where |T| and |P| represent the number of elements in target and prediction sets, respectively. The DSC
values range between 0 to 1, with 1 indicating the best-case scenario.

4. Results and Discussion

4.1. Experimental Set-up

The code for training and testing the CNNs model is developed on the MATLAB 2019b platform,
using a PC equipped with 32 GB memory, Intel Core i7-8700k CPU , GeForce RTX 2080Ti graphic card
with 32 GB memory and 10.1 Cuda edition. During the training, the network weight is updated by the
Adam optimizer [63] with learning rate selected at 0.0001 and minibatch size equal to 16. Using patch
extraction, total training images generated from NCI-ISBI 2013 and UKMMC dataset are 9200 and 5280,
respectively. To ensure that the trained CNNs are well generalized, 5-fold cross validation strategy is
utilized [64]. Here, the data are divided into 80% for training and 20% for testing the networks [64,65].
The performance of the CNNs is obtained from an average value of the 5-fold cross-validation.

4.2. Quantitative and Qualitative Performance

The segmentation performance by the CNNs is quantitatively evaluated in terms of DSC values,
averaged over all test images. The DSC values for datasets NCI-ISBI 2013 and UKMMC are shown in
Tables 1 and 2, respectively. The results are presented for both without patch extraction and with patch
extraction. Subsequent paragraphs provide an analysis of segmentation results for both datasets.

Table 1. DSC values (in percentage) of prostate peripheral zone (PZ) and central gland (CG)
segmentation by FCN, SegNet, U-Net, and DeepLabV3+ for test images from the NCI-ISBI 2013
dataset.

Without Patch Patch-Wise

PZ CG PZ CG

FCN 69.2±5.8 85.1±4.8 72.7±5.1 88.6±2.9
SegNet 75.3±4.8 88.9±3.8 76.0±3.9 90.8±1.2
U-Net 76.3±3.5 89.8±2.6 76.8±3.3 91.6±1.4
DeepLabV3+ 76.4±3.3 90.7±1.2 78.9±1.9 92.8±0.7
L. Rundo [32] - - 76.0±4.1 91.5±3.2

Table 2. DSC values (in percentage) of prostate whole gland (WG) segmentation by FCN, SegNet,
U-Net, and DeepLabV3+ for test images from the UKMMC dataset.

Without Patch Patch-Wise

FCN 76.7±6.1 86.6±4.8
SegNet 79.8±5.7 84.3±4.2
U-Net 85.0±3.6 88.4±3.7
DeepLabV3+ 83.2±4.7 91.9±2.0

The encoder–decoder CNNs are trained and tested in two scenarios: (1) without patch extraction
using (256× 256)-pixel input images and (2) patch-wise extraction using (192× 192)-pixel patch size
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input images. The DSC values for NCI-ISBI 2013 dataset for FCN, SegNet, U-Net, and DeepLabV3+
are presented in Table 1. The NCI-ISBI 2013 is a 3-class labeled data where the prostate regions are
divided into two regions, peripheral zone (PZ) and central gland (CG). The DSC values in Table 1
indicate that the patch-wise method will result in better segmentation mainly because it has increased
the amount of training data hence, enriching the deep neural network with more data. In particular,
using patch-wise implementation, average DSC gain, calculated from the four CNNs is 2.5% and 2.1%
for PZ and CG, respectively. In addition, the results clearly show that DeepLabV3+ gives the best
prostate segmentation with the highest DSC values of 78.9% and 92.8% for PZ and CG, respectively.
In general, the better performance for the segmentation of CG compared to PZ by the CNNs is due to
the higher ratio of CG volume to PZ volume in the NCI-ISBI 2013 dataset.

As for qualitative analysis, we present a sample of segmented images as shown in Figure 6 for
both without and with the patch-wise method for PZ and CG regions. Visual comparison between
without patch and with patch-wise indicates that more accurate segmentation can be achieved by
patch-wise method. This highlights the significance of patch extraction which has enriched the CNNs
with more data and improves its accuracy. It is notable from Figure 6 that the mask generated by the
best CNN, DeepLabV3+ is closely similar in shape and size to the ground truth mask. In addition,
DeepLabV3+ can accurately segment the region around the prostate boundary. On the other hand,
FCN, SegNet, and U-Net are also able to segment prostate into PZ and CG regions but with less
accurate segmentation, especially around the pixels close to the prostate boundary.

Similar trends of performance are seen in the 2-class labeled UKMMC dataset, as given in Table 2.
Here, the ground truth mask is only available for the whole prostate gland (WG). Again, the best DSC
value of 91.9%, is generated by DeepLabV3+. Overall, the average improvement of the patch-wise
method over without patch is by 8.7%. For qualitative analysis, visual inspection on the segmented
image as shown in Figure 7 is performed. From Figure 7, it is clear that DeepLabV3+ is better than
FCN, SegNet, and U-Net in segmenting the WG. Notably, FCN, SegNet, and U-Net are not able to
accurately segment the WG, especially around the upper and lower sections of the WG.

To further confirm the better performance of patch-wise DeepLabV3+ over three other CNNs,
a significance test is performed using the Wilcoxon signed-rank test generating p-values for the
DeepLabV3+ versus the rest. The significance level is set at 0.05 and a null hypothesis is that the
DeepLabV3+ versus three other CNNs will not improve the DSC values of the segmented images.
The p-values tabulated in Table 3 for both NCI-ISBI 2013 and UKMMC datasets are all less than 0.05
which imply that we can reject the null hypothesis. In other words, this gives the indication that
patch-wise DeepLabV3+ can better perform prostate segmentation than U-Net, SegNet, and FCN
when measured in terms of DSC values.

Table 3. P-value of DeepLabV3+ versus U-Net, SegNet and FCN for NCI-ISBI-2013 and UKMMC
datasets, using patch-wise implementation.

NCI-ISBI 2013 UKMMC

DeepLabV3+ vs. U-Net 0.025 0.041
DeepLabv3+ vs. SegNet 0.022 0.046
DeepLabV3+ vs. FCN 0.016 0.035

The better performance of the DeepLabV3+ can be attributed to its architecture that uses the
Xception model as the backbone and making use of atrous separable convolution for retaining the
spatial resolution of the resultant feature maps. This allows the network to extract denser feature map
by controlling the field view for precise localization and assimilation of context. In addition, utilizing
atrous convolution enables the network to precisely define area with arbitrary scale by rebuilding
them at various scales in atrous spatial pyramid pooling (ASPP). This has essentially resulted in a
faster and efficient encoder–decoder network that covers better spatial information at multiple scales
as compared to other encoder–decoder networks.
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Performance comparison of DeepLabV3+ in terms of DSC values with some selected techniques
including the state-of-the-art technique is summarized in Table 4. Direct comparison of DeepLabV3+
with other published techniques is difficult due to different in datasets, scanning protocols as well as
numbers of images. Rough Comparison with other prostate segmentation techniques proposed in the
past are listed in Table 4. If we consider the segmentation of WG by [19,20,30,31], the best DSC value is
89.4% by Yu et al. [31], which employed residual connection in U-Net. Our patch-wise DeepLabV3+
using a UKMMC dataset has resulted in a DSC value of 91.9%, which is 2.5% better than [31]. This may
not be a completely fair comparison since it was not using the same dataset. However, this comparison
may provide valuable insight on what is the best encoder–decoder segmentation method. Now, let’s
consider segmentation of PZ and CG proposed by Litjens et al. [23] and Rundo et al. [32]. Then,
comparing the DSC values indicate that our deep-wise DeepLabV3+ gave better DSC by 4.8% (PZ)
and 3.7% (CG) than the multi atlas-based segmentation [23]. For more fair comparison, we compared
our deep-wise DeepLabV3+ with the recently published state-of-the-art method proposed by Rundo
et al. [32] which uses squeeze-and-excitation blocks in encoders and decoders of U-Net architecture.
The deep-wise DeepLabV3+ gave a higher DSC value than the U-Net method in [32], with an increase
of 2.9% (PZ) and 1.3% (CG).

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 6. Segmentation of prostate T2W MRI, from NCI-ISBI 2013 dataset into PZ and CG regions.
(a) Original image, (b) ground truth boundary, where predicted boundary (red), overlay on the
ground truth (blue), based on the method without patch extraction using, (c) FCN, (d) SegNet,
(e) U-Net and (f) DeepLabV3+, and based on patch extraction using (g) FCN, (h) SegNet (i) U-Net and
(j) DeepLabV3+.
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Table 4. Comparison of DSC values (in percentage) of atlas-based, deformable model-based,
CNN-based, and our patch-wise DeepLabV3+.

Work Images Dataset Network DSC (WG) or (PZ,
CG)

Klein et al. 2008 [20] 50 volumes 3T MRI
Atlas matching using
localized information 84.4

Guo et al. 2015 [19] 66 images University of Chicago
Hospital

Deformable model
using SSAE 87.1

Litjen et al. 2012 [23] 48 images 3T MRI
Multi atlas-based
segmentation 74, 89

Milletari et al. 2016 [30] 80 volumes PROMISE12 V-Net 86.9

Yu et al. 2015 [31] 80 volumes PROMISE12
ConvNet with residual
connections 89.4

Rundo et al. 2019 [32] 40 images NCI-ISBI 2013 U-Net with SE block 76.0±4.1, 91.5±3.2

Our Work 40 images NCI-ISBI 2013 Patch-wise DeepLabV3+ 78.9±1.9, 92.8±0.7

Our Work 11 images UKMMC Patch-wise DeepLabV3+ 91.9±2.0

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 7. Semantic segmentation of WG prostate T2W MRI, from UKMMC dataset. (a) Original image,
(b) ground truth boundary where predicted boundary (red), overlay on the ground truth (blue), based
on the method without patch extraction using, (c) FCN, (d) SegNet, (e) U-Net and (f) DeepLabV3+,
and based on patch extraction using (g) FCN, (h) SegNet (i) U-Net and (j) DeepLabV3+.

5. Conclusions

In this paper, the evaluation of four encoder–decoder CNNs, including FCN, SegNet, U-Net, and
DeepLabV3+ for segmentation of prostate T2W MRI is presented. The proposed methodology for the
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investigation includes methods for image pre-processing, patch extraction, data augmentation, and
class weight balancing. These techniques have resulted in the normalized dataset, increased training
images as well as its spatial variation, and reduced the effect of imbalance class. The selection of
appropriate techniques prior to training the network is essential to achieve a well-trained network
that gives good segmentation accuracy. Comparison with atlas-based, deformable model based,
CNN-based, and state-of-the-art techniques has proven that patch-wise DeepLabV3+ gave better
performance in segmentation of prostate WG, PZ, or CG. In summary, the best segmentation was
achieved by a DeepLabV3+ model, which can be attributed to its atrous convolution operations and
ASSP architecture. The accuracy can be further improved with more augmented data by injecting a
generative adversarial network (GAN) to the deep models.
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