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Abstract: There will be a dearth of electrical energy in the prospective world due to exponential
increase in electrical energy demand of rapidly growing world population. With the development
of internet-of-things (IoT), more smart devices will be integrated into residential buildings in smart cities
that actively participate in electricity market via demand response (DR) programs to efficiently manage
energy in order to meet this increasing energy demand. Thus, with this incitement, an energy management
strategy using price-based DR program is developed for IoT-enabled residential buildings. We propose
a wind-driven bacterial foraging algorithm (WBFA), which is a hybrid of wind-driven optimization
(WDO) and bacterial foraging optimization (BFO) algorithms. Subsequently, we devised a strategy
based on our proposed WBFA to systematically manage the power usage of IoT-enabled residential
building smart appliances by scheduling to alleviate peak-to-average ratio (PAR), minimize cost of
electricity, and maximize user comfort (UC). This increases effective energy utilization, which in turn
increases the sustainability of IoT-enabled residential buildings in smart cities. The WBFA-based strategy
automatically responds to price-based DR programs to combat the major problem of the DR programs,
which is the limitation of consumer’s knowledge to respond upon receiving DR signals. To endorse
productiveness and effectiveness of the proposed WBFA-based strategy, substantial simulations are carried
out. Furthermore, the proposed WBFA-based strategy is compared with benchmark strategies including
binary particle swarm optimization (BPSO) algorithm, genetic algorithm (GA), genetic wind driven
optimization (GWDO) algorithm, and genetic binary particle swarm optimization (GBPSO) algorithm in
terms of energy consumption, cost of electricity, PAR, and UC. Simulation results show that the proposed
WBFA-based strategy outperforms the benchmark strategies in terms of performance metrics.

Keywords: energy management; internet-of-things; residential building; sensors; smart appliances;
price-based demand response programs; scheduling; smart grid
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1. Introduction

With the rapid growth in population and economic development, dependence on electrical energy
is ever so increasing and, consequently, the energy consumption is on the hike. To further emphasize,
the authors recorded that the electricity demand of the energy sector will increase to 40% and both the
commercial and residential sectors will increase to 25% by 2025 [1]. The obsolete electric grid is not
capable of coping with this rising electricity demand and contemporary challenges like hybrid generation,
two-way communication, and two-way power flow. Therefore, the modern power grid, namely smart grid
(SG), developed as intelligent electric grid that accommodates internet-of-things (IoT), modern control
technologies, information and communication technologies (ICTs), two-way power flow, and hybrid
generation. In order to cope with this rising electricity demand, SGs may actively involve either of the
two programs: installation of power generating plants or broadcast demand response (DR) programs for
energy management [2].

DR programs are the key incentive programs of the SGs that persuade consumers to participate in
the electricity market via advanced metering infrastructure (AMI). The DR programs have two classes:
(a) incentive-based DR programs and (b) price-based DR programs. In (a), distribution system operators
(DSOs) are IoT-enabled agents that remotely control consumer’s appliances when needed with short
notice beforehand. In (b), IoT-enabled users are stimulated to spontaneously manage their power usage in
response to offered price-based incentives [3]. Since residential buildings have an energy consumption of
more than 80%—a remarkable portion of the total energy—(b) is an imperative program that produces
affirmative results for both DSOs and consumers while performing energy management [4].

In DR programs, one challenge is the lack of user knowledge which prevents users from
participation [5]. One of the developed solutions is to employ automatic controllers in users’ premises that
actively participate and contribute to solving an optimization problem, known as energy management
controller (EMC). The EMC when enabled with IoT will effectively minimize consumer’s cost of
electricity without sacrificing UC, which is a motivation for end-users to take part in DR programs [6].
The EMC output is the optimal power usage schedule of residential building smart appliances.
Besides, smart appliances, plugin hybrid electric vehicles (PHEVs), renewable energy sources (RESs),
and energy storage systems may penetrate to residential buildings in order to improve sustainability [7,8].
Thus, in-home PHEVs and energy storage systems facilitate consumers to store energy from RESs
during daytime and discharge during nighttime to return many benefits from the investment. However,
objectives are achieved at high capital cost. The authors in References [9–11] proposed power usage
scheduling strategies for residential buildings energy management. The developed strategies are affective
in minimizing cost of electricity as well as peak electricity demand. Moreover, in these works, users are
attracted to active participation due to cost minimization without sacrificing UC. The authors introduced
a novel concept of user priority in energy management systems via power usage scheduling using DR
programs [12–16]. Home appliances with priority as well as thermal and operational constraints enable
EMC to turn on and off appliances on a priority basis.

The above literature provides enough studies relevant to the theme of efficient energy management
in SG. Though the focus of some studies is on minimization of cost, some studies catered peak demand
reduction, some studies catered alleviation peak-to-average ratio (PAR), and some studies handled UC.
To the best of our knowledge, none of the aforementioned studies fully utilized AMI, DR programs,
and IoT-enabled environments of the SG to satisfy users and DSOs both parties at the same time.
Therefore, in this study, we utilize AMI, DR programs, and IoT-enabled environments of the SG to
perform efficient energy management of residential buildings in smart cities in order to minimize cost,
curtail PAR, and maximize UC, simultaneously for both users and DSOs satisfaction. The highlights and
distinguishing features of this study are given below:
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• A practical optimization model is formulated for efficient energy management of residential building
by power usage scheduling of IoT-enabled smart appliances utilizing AMI and different DR programs
like time of use pricing scheme (ToUPS), day-ahead pricing scheme (DAPS), and real-time pricing
scheme (RTPS) of the SG.

• The most popular DR programs like ToUPS, DAPS, and RTPS are mathematically modeled and
implemented for efficient energy management of residential buildings in smart cities.

• In References [16–19], minimization of electricity cost, and alleviation of PAR objectives are catered.
In this work, in addition to electricity cost and PAR, the UC in terms of waiting time or delay is
formulated and investigated to solve the energy management problem by power usage scheduling of
residential building smart appliances using DR programs in IoT-enabled environment of the SG.

• Optimization problem and constraints are constructed for managing power usage of IoT-enabled
residential building smart appliances via scheduling to reduce cost of electricity, alleviate PAR,
and maximize UC.

• A wind-driven bacterial foraging algorithm (WBFA) is developed for IoT-enabled EMC to actively
participate in price-based DR programs in order to return optimal power usage schedule for residential
building smart appliances.

• The efficacy of the proposed WBFA-based strategy is validated by comparing it to the benchmark
strategies based on GA [15,16], BPSO algorithm [17], GBPSO algorithm [18], and GWDO
algorithm [19] in terms of objectives.

The rest of this manuscript is arranged in this manner: First, related work is discussed in Section 2.
In Section 3, the proposed energy management framework is discussed. Energy management via
scheduling problem description and formulation are described in Section 4. Proposed and benchmark
strategies are described in Section 5. Extensive simulations are conducted and their results are discussed
in Section 6. At last, in Section 7, the manuscript is concluded and also research directions are provided as
future work.

2. Related Work

In SG, in the field of energy management, a lot of literature work has been carried out to cope
with the rising electricity demand. The literature work relevant to the theme is classified into types:
(a) energy management based on mathematical models, (b) energy management based on meta-heuristic
and heuristic methods, and (c) energy management based on hybrid methods. This classification is for
better understanding. The detailed demonstration is as follows:

2.1. Energy Management Based on Mathematical Models

In Reference [20], the authors developed linear programming (LP) for scheduling battery
charging/discharging and smart appliances operation using DAPS and RTPS DR programs for the purpose
to facilitate consumers in terms of reduction of electricity expenses and maximization of UC. An integer
LP (ILP)-based energy management system mechanism is developed in Reference [21] to reduce cost and
mitigate peak load. The developed model is a hybrid architecture of PV and power grid serving residential
buildings load. Although, the desired objectives are obtained at the expense of increased complexity
and high execution time. A novel mixed-integer non-LP (MINLP)-based residential load scheduling
mechanism is developed for efficient energy management using RTPS [22]. An MINLP is implemented in
Reference [23] for energy management using automated DR programs. The residential buildings appliances
such as thermal, critical, non-deferrable, and deferrable are scheduled to minimize cost of electricity with
acceptable UC. Novel fractional programming tools for home energy management are developed in
Reference [24]. The aim is to minimize cost by household load scheduling under distributed energy
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resources (DERs) and electric utility companies. The authors developed in Reference [25] MINLP-based
prototype for scheduling heating, ventilating, and air-conditioning (HVAC) systems using cost and HVAC
constraints. A predictive mixed integer programming (PMIP)-based scheduling mechanism is developed
for residential building energy management [26]. The authors aim to minimize cost of electricity and
to alleviate peaks in demand. The authors in Reference [27] proposed a novel mechanism based on
stochastic model predictive control (SMPC) and MINLP for household appliances and energy resource
scheduling. A model predictive control (MPC) algorithm-based collaborative economic model for power
usage scheduling of smart cities is developed in Reference [28]. The combined approach aims to cope with
rising electricity demand with available energy as well as to minimize cost. An intelligent MILP-based
model is developed for the urban area having diverse energy sources [29]. The authors aim to raise their
monetary income due to cost reduction. The related work of energy management based on mathematical
methods is summarized in Table 1.

2.2. Energy Management Based on Meta-Heuristic and Heuristic Methods

The authors proposed a scheduling strategy based on heuristic algorithms like a glowworm swarm
particle optimization algorithm for efficient energy management in Reference [30]. The model developed
is endorsed by comparative evaluation with the benchmark schemes in terms of performance metrics.
The novel mechanism is composed of machine learning models and heuristic algorithms for household
load scheduling like fixed load, deferrable load, and regulate-able load using the DR program [31].
A framework based on an evolutionary algorithm (EA) is developed in Reference [32] for demand-side
management (DSM) of commercial, residential, and industrial sectors. The authors aim to minimize cost
and peaks of electricity consumption to cope with rising electricity demand. However, the cost of electricity
minimization in the residential sector is less as compared to both the industrial and commercial sectors.
Authors developed a strategy based on bacterial foraging optimization (BFO) algorithm to minimize cost
of electricity and discomfort of users [33–36].

The authors employed GA-based EMC for household appliances scheduling in References [37–39].
The GA-based EMC performs household appliances scheduling using combined RTPS and inclined block
rate scheme (IBRS) in order to minimize cost of electricity, mitigate peak load demand, and to solve energy
scarcity problem.

The EMC based on the particle swarm optimization (PSO) algorithm and its variant are employed
in Reference [40–43] for scheduling energy resources, residential building smart appliances and battery
charging/discharging scheduling in order to meet rising electricity demand. This study aims to mitigate
peak load demand and cost of electricity simultaneously. A novel WDO algorithm is developed for solving
household appliances scheduling in References [44,45]. The EMCs employed based on the WDO algorithm
and its variants are for the purpose to minimize the cost of electricity and UC in terms of waiting time.
Meta-heuristic algorithms are used to program EMC for residential building power usage scheduling in
References [46,47]. These models are beneficial because it minimizes cost of electricity and PAR, which is
beneficial for users as well as DSOs. The related work of heuristic and meta-heuristic algorithms is
presented in Table 2.
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Table 1. A summary of mathematical methods-based energy management strategies for residential building in terms of objectives, techniques, demand response (DR)
programs, appliances categorization, and limitations.

Energy Management Studies Techniques DR Programs Appliances Categorization Objectives Limitations

Appliances and energy storage
scheduling for DSM [20]

LP RTPS General household appliances Maximizing consumers savings UC is compromised while maximizing
monetary savings

Optimal household appliance
scheduling [21]

MILP ToUPS Shiftable load, weather based
load, and interruptible load

Minimizing electricity bill The electricity bill is reduced at the
expense of increased system complexity

Residential appliance scheduling via
home energy management with DERs
and appliance scheduling (HEMDAS)
[22]

MINLP RTPS and fixed price Controllable thermal appliances,
controllable electrical appliances,
and appliances

Achieving trade-off between
energy cost and inconvenience

PAR is ignored, which is barer for
achieving the desired trade-off

Home energy management via home
area network (HAN) [23]

MINLP Dynamic pricing and
automatic DR

Deferrable, curtailable, thermal,
and critical appliances

Maximizing both savings and
UC

Objectives are achieved at the cost of
high system complexity

Residential load scheduling [24] Fractional programming
tools

RTPS Improving cost efficiency The cost-efficient solution is
obtained at the expense of UC

Complexity is increased

Smart heating and air conditioning for
Home energy management [25]

ToUPS, RTPS, and critical
peak pricing scheme
(CPPS)

MINLP and PMIP Maximizing both consumers
convenience and savings

Energy bill reduction Objectives are achieved at the cost of
high system complexity

Automatic scheduling of home
appliances [26]

PMIP, MILP, and model
predictive control (MPC)

RTPS Thermal and nonthermal Minimizing electricity bill and
peak power consumption

Objectives are obtained at the cost of UC

Deferrable appliances and energy
resources scheduling [27]

MINLP and MPC RTPS Deferrable appliances and
Non-deferrable appliances

Maintaining the balance between
demand and supply

The balance between supply and
demand is maintained at increased
capital cost

Selfish and cooperative building energy
management [28]

EMPC RTPS Heat pumps Minimizing electricity cost Electricity cost is reduced for both
selfish and cooperative buildings while
UC is ignored, which is tightly linked
with electricity cost

Modular energy management system
for urban areas [29]

MILP Urban area energy
systems

Thermal, heating, and cooling
prosumers

Maximizing annual cost savings System complexity is increased while
maximizing annual savings
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Table 2. A summary of heuristic and hybrid methods-based energy management strategies for residential smart homes in terms of objectives, techniques, DR programs,
appliances categorization, and limitations.

Energy Management Studies Techniques DR Programs Appliances
Categorization

Objectives Limitation

Optimal energy management in
micro-grid [30]

Glowworm swarm particles
optimization algorithm

Direct load control
(DLC)

Shiftable load Reducing number of
optimization variables
and adoption of real valued
optimization methods

Increased model complexity

Optimal learning-based energy
management system [31]

Heuristic algorithms DAPS Regulatable load,
fixed load, and
deferrable load

Reducing electricity bill
payment and peak power
consumption

Increased computational
overhead

Heuristic optimization towards
DSM [32]

EA DAPS Regulateable load,
fixed load, and
deferrable load

Reducing peak load and
reshaping load profile

Rebound peaks may be
created while achieving the
objectives

An optimal household appliances
scheduling [38,39]

GA RTPS-IBRS Regulateable load,
fixed load, and
deferrable load

Reducing electricity cost and
PAR

Objectives are achieved at
the cost of increased system
complexity

Realistic residential load scheduling
[42,43,45]

GA, GWDO, BPSO, and WDO RTPS-IBRS Critical, interruptible,
and non-interruptible

Reducing electricity cost and
PAR

Objectives are achieved at
the cost of increased system
complexity

Residential load scheduling towards
DSM [48–51]

GA, teacher learning based
optimization (TLBO) algorithm,
ILP and HGGS algorithm

RTPS, IBRS, ToUPS,
and CPPS

Critical, interruptible,
and non-interruptible

Reducing electricity cost,
PAR, and discomfort

Objectives are achieved at
raising system complexity
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2.3. Energy Management Based on Hybrid Methods

An intelligent energy management strategy is developed based on a hybrid of the teacher learning
algorithm and GA using a DR program to schedule household load in order to minimize cost of
electricity, alleviate PAR, and maximize UC in Reference [48]. However, the objectives are obtained
at the expense of sacrificing system simplicity. The authors cascaded the BPSO algorithm with ILP to
schedule thermostatically controlled, non-interruptible, and interruptible household load using price-based
DR programs [49]. The major goal of the authors is to reduce cost as well as thermal discomfort. Although,
the objective function and constraints for solving energy management problems seem unpractical.
An energy management strategy is developed using hybrid ToUPS and IBRS for scheduling controllable
and uncontrollable household appliances subjected to priority and operational constraints in Reference [50].
This work aims to minimize cost of electricity and to maximize UC. However, cost of electricity is reduced
at the expense of increased PAR, which disturbs the stability of the power system. A framework is
developed in Reference [51], which is based on a hybrid genetic gravitational search (HGGS) algorithm.
The proposed framework is based on HGSA schedule household load in a cloud computing environment to
reduce the aggregated cost of electricity. The proposed strategy has outstanding performance as compared
to the individual PSO and gravitational search (GS) algorithms. However, PAR and UC are ignored though
they are directly related to the bill of electricity. The related work of energy management based on hybrid
methods is summarized in Table 2.

3. Proposed Energy Management Framework

The proposed framework is elaborated in this section. The DSOs are IoT-enabled agents that transfer
DR programs like ToUPS, DAPS, and RTPS to stimulate IoT-enabled users to actively participate in energy
management via power usage scheduling of residential building smart appliances using received DR
signals. The proposed framework composed of IoT-enabled DSOs and residential buildings utilizing
AMI of the SG. The residential building is enabled with IoT and equipped with EMC, home gateway,
smart appliances, smart meter, remote control, indoor display (IDD), and wireless home area network.
The schematic diagram of the proposed framework is depicted in Figure 1.

Smart Home

Distribution system operators

Interface

Users

Info.

Power  Ajustable Applianes Critical Appliances

Time Adjustable Appliances

Control
Algorithms

GBPSO,
GWDO, WBFA

GA, BPSO,

and
Modelling

Measurements

Controller

EMC

EMC

Smart MeterUser

RTPS, DAPS, ToUPS

Interface

HEMC

MonitoringLogging

Control Indications

Management

Figure 1. Proposed schematic energy management framework for residential building using DR programs
in IoT-enabled environment of the smart grid (SG).
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The AMI is an essential attribute of the IoT-enabled SG that performs a pivotal role in the central
nervous system in the area of energy management via power usage scheduling. The AMI is a two-way
communication infrastructure between IoT-enabled DSOs and consumers. The key role of AMI is to
collect and deliver recorded energy consumption from smart meters to the DSOs and to transmit DR
pricing signals from DSOs to consumers via smart meters and residential building gateway in real-time.
The residential building gateway could be separate equipment or might be an integrated entity with smart
meter that establish an interface between HAN and wired network. The smart meter could be an indoor or
outdoor entity installed in residential buildings between EMC and AMI. The key responsibility of smart
meter is to measure, record, and process consumed energy data, and delivered it to the DSOs. Furthermore,
it sends DR pricing signals to the IoT-enabled EMC to perform efficient energy management.

In this study, the residential building under consideration is equipped with smart appliances like
power adjustable appliances, critical appliances, and time adjustable appliances. The power adjustable
appliances have elastic rated power and follow a pre-defined operating schedule. The time adjustable
appliances have an elastic operational time and are designed to operate with fixed power rating. They are
further classified into two classes like interruptible (dishwasher, tumble dryer, and washing machine) and
non-interruptible (electric water heater and vacuum cleaner) [18]. The IoT-enabled EMC is employed in the
residential buildings, which is programmed with our proposed WBFA to respond in real-time to receive
DR pricing signals to combat the limitation of the dearth of users’ knowledge, which is the hurdle that
prevents implementation of DR programs. The employed WBFA-based EMC enabled with IoT takes smart
appliances power rating, price-based DR programs, length of time operation, and accessible power grid
energy as inputs in order to schedule power usage of residential building smart appliances in the presence
of objective function and constraints. The IoT-enabled EMC in a residential building can communicate
with smart appliances through diverse communication links like Wi-Fi, ZigBee, HomePlug, and Z-Wave
in order to share the generated power usage schedule with smart appliances. The energy management
process of the residential building via power usage scheduling of smart appliances is monitored through
IDD or remotely through laptops or mobile phones using the IoT facility. All of the processes is illustrated
through the working flow in Figure 2.

The proposed energy management framework aims to remotely control and monitor the power
usage of residential building smart appliances in order to manage energy by scheduling without human
intervention using DR programs. The major objectives of the proposed energy management framework
are given below:

• Electricity cost minimization
• PAR alleviation
• UC maximization
• Effective energy utilization

These objectives are achieved by employing WBFA-based EMC that schedules power usage of
residential building smart appliances using price-based DR programs by effective energy utilization in the
IoT-enabled environment in the SG.
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Figure 2. Proposed schematic framework work or functional diagram for energy management via
scheduling energy consumption of IoT-enabled smart homes, with the user interface, utility company,
and price-based DR modules: The single arrow-head shows one-way flow, and the double arrow-head
shows two-way flow.

3.1. Proposed Framework Inputs

Inputs to the proposed framework are available energy from power grid, DR programs, appliances
power rating, length of time operation, and power usage pattern. The detailed demonstration of the inputs
are given below.

3.1.1. Residential Building Smart Appliances

The residential building (smart home) is equipped with smart appliances like power adjustable
appliances AP

a , time adjustable appliances AT
a , and critical appliances AC

a . The residential building smart
appliances have the following parameters that are clearly defined operational time interval, power rating,
priority, category, status, and position. The mathematical description is as follows:

A =
{

AT
a , AP

a , AC
a

}
(1)

The status indicator Sa
t = {1, 0} and position indicator Xa

t = (ra
t , wa

t ) for every smart appliance a
at timeslot t are defined, where ra

t represents an appliance remaining timeslots, and wa
t represents an

appliance waiting timeslots. The detailed demonstration is given below:
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1. Power adjustable appliances: These types of smart appliances have elastic rated power and operate
with min. rated power during high-price timeslots and operate with max. rated power during
low-price timeslots to participate in cost minimization, alleviation of PAR, and maximization of UC.
A second priority is assigned to such types of appliances. These smart appliances are represented by
AP

a . These appliances are also termed as power-regulating appliances. Power-adjustable appliances
positioned at the initial and next timeslots are formulated as follows:

XN
t = (To

P, β− α + To
P + 1) (2)

XP
t+1 =


rP

t , 0, Pmin p
r if St= 1, rP

t ≥ 1
rP

t , 0, Pmax p
r if St= 1, rP

t ≥ 1
0, 0 otherwise

(3)

where XP
t and XP

t+1 denote current status and next timeslot status of power-adjustable appliances,
respectively. The parameter To

P is total operation timeslots, α is operation start time, β is operation
end time, rP

t is the number of remaining timeslots, and St is the status indicator for power adjustable
appliances. The power adjustable appliances regulate between minimum power rating Pmin p

r and
maximum power Pmax p

r .
2. Time adjustable appliances: These smart appliances have time elastic operating mechanisms and

operate with rated power. These appliances are represented by AT
a . These appliances are further

categorized as: non-interruptible time adjustable appliances ANI
T and interruptible time adjustable

appliances AI
T . The third and fourth priorities are assigned to such type of appliances, respectively.

The mathematical definition is as follows:

AT
a =

{
AI

T , ANI
T

}
(4)

• Interruptible time adjustable appliances AI
T : Operation time shifting like advance or delay of

such types of appliances is permitted. These appliance operations can be interrupted and delayed
even during run time before to finish the assigned task if needed. Such a type of appliance
highly contributes in minimization of electricity. Furthermore, these smart appliances could not
be turned on during high-price hours and could be shutdown or shifted to low-price hours in
order to ensure cost minimization. These smart appliances are also termed deferrable appliances.
The position of such types of appliances for current and next timeslots is defined as follows:

X I
t = (To

I , β− α + To
I + 1) (5)

X I
t+1 =

{
rI

t , wI
t − 1, PI

r if St= 0, wI
t ≥ 1

rI
t − 1, wI

t PI
r if St= 1, rI

t ≥ 1
(6)

where X I
t and X I

t+1 denote current status and next timeslot status of interruptible time adjustable
appliances, respectively. The parameter To

I is total operation timeslots, α is operation start
time, β is operation end time, rI

t is the number of remaining timeslots, wI
t is the number of

waiting timeslots, PI
r is the power rating, and St shows on/off status of smart appliances and of

interruptible time adjustable appliances.
• Non-interruptible time adjustable appliances ANI

T : Non-interruptible time adjustable appliances
are delay tolerable and does not tolerate interruption during operation until the completion of
task. The position of non-interruptible time adjustable appliances at current and next timeslots
is defined as follows:
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XN
t = (To

N , β− α + To
N + 1) (7)

XN
t+1 =

{
rN

t , wN
t − 1, PNI

r if St= 0, wN
t ≥ 1

rN
t − 1, 0 , PNI

r if St= 1, rN
t ≥ 1

(8)

where XN
t and XN

t+1 denote current status and next timeslot status of non-interruptible time
adjustable appliances, respectively. The parameter To

N is total operation timeslots, α is operation
start time, β is operation end time, rN

t is the number of remaining timeslots, wN
t is the number of

waiting timeslots, PNI
r is power rating, and St shows on/off status for these appliances.

3. Critical appliances: These smart appliances operate at rated power and cannot tolerate delays
or interruption once the operation has started. These appliances serve on a priority basis.
These appliances have a predefined schedule that does not disturb UC. These appliances are
represented by AC

a .

Smart appliance input parameters equipped with the residential building are briefly described and
presented in Table 3.

Table 3. Description of smart appliances parameters equipped with residential building like duration,
category, operation time interval, priority, and power rating (WM, washing machine; TD, tumble dryer;
DW, dish washer; VC, vacuum cleaner; RF, refrigerator; EWH, electric water heater; AC, air conditioner;
WDP, water dispenser; MO, microwave oven; EK, electric kettle; and ET, electric toaster).

Category Appliances Duration
(Hours/Day)

Power
(kW)

Operation
Start Time

Operation
End Time

Priority

Time adjustable appliances 4

Interruptible time adjustable
appliances

WM 6 3.0 9:00 am 3:00 pm

TD 4 3.3 4:00 pm 8:00 pm
DW 2 2.5 10:00 pm 12:00 am

Non-interruptible time
adjustable appliances

3

VC 2 1.5 10:00 am 12:00 pm
EWH 3 1.8 5:00 am 8:00 am

Power adjustable appliances 2

RF 24 0.5–1.5 8:00 am 8:00 am
AC 24 0.8–1.8 8:00 am 8:00 am
WD 24 0.5–2.0 8:00 am 8:00 am

Critical appliances 1

MO 2 1.2 2:00 pm 4:00 pm
2 1.9 8:00 am 1:00 am

EK 2 1.9 4:00 pm 6:00 pm
2 1.9 8:00 pm 10:00 pm
2 1.2 7:00 am 9:00 am

ET 2 1.2 1:00 pm 3:00 pm
2 1.2 8:00 pm 10:00 pm
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3.1.2. ToUPS, DAPS, and RTPS Price-Based DR Programs

This study introduces ToUPS, DAPS, and RTPS price-based DR programs that are fed as an input to
our proposed WBFA-based EMC in the IoT-enabled environment. These DR pricing signals are delivered
by DSOs to the WBFA-based EMC to schedule the power usage of smart appliances in order to minimize
the cost of electricity, alleviate PAR, and maximize UC. These price-based DR programs are adopted
from federal energy regulating commission (FERC) [52] as shown in Figure 3. The DAPS price-based
DR program is commonly used for household load scheduling of IoT-enabled smart cities. In DAPS,
price-based DR programs have three price levels for the complete day, like high, medium, and low price
hours as shown in Figure 3. In similar passion, RTPS is defined for the whole day with hour resolution as
depicted in Figure 3. Similarly, ToUPS price-based DR programs have also three varying price levels: off,
mid, and on-peak price hours. The ToUPS is mathematically modeled as follows:

γ(t) =


γ1, if t ∈ T1

γ2, if t ∈ T2

γ3, if t ∈ T3

(9)

where γ(t) is the ToUPS electricity price at timestep t and γ1, γ2, and γ3 are the prices at off-peak,
mid-peak, and on-peak periods, respectively. The ToUPS is defined for the whole day with hour resolution
or alternatively T1 ∪ T2 ∪ T3 = 24 h and γ1 < γ2 < γ3. The ToUPS price-based DR program is also
illustrated in Figure 3. The time interval from 1 to 8 and 22 to 24 h are off-peak hours and corresponds
to T1 and γ1 of Equation (9). Similarly, the time intervals from 8 to 16 and 21 to 22 h are mid-peak hours
reflecting T2 and γ2 in Equation (9). Furthermore, the time interval from 16 to 21 h is on-peak hours and
indicates T1 and γ3 in Equation (9). The EMC based on our proposed WBFA shifts the power usage from
on-peak hours to off-peak hours in order to minimize cost electricity, to alleviate PAR, and to maximize
UC in IoT-enabled environment of the SG.
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Price-based DR program: DAPS

(a) DAPS

Figure 3. Cont.



Sensors 2020, 20, 3155 13 of 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Timeslots (hours)

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

E
le

ct
ric

ity
 p

ric
e 

(c
en

ts
)

Price-based DR program: RTPS

(b) RTPS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Timeslots (hours)

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E
le

ct
ric

ity
 p

ric
e 

(c
en

ts
)

Price-based DR program: ToUPS

(c) ToUPS

Figure 3. DAPS, RTPS, and ToUPS price-based DR programs adopted from federal energy regulating
commission (FERC) for energy management using IoT-enabled environment of the SG.

3.2. Proposed Framework Outputs

The WBFA-based EMC utilizes residential building smart appliance parameters (operation time
interval, power rating, priority, status, etc.), price-based DR programs, and accessible power grid energy
as inputs to solve the optimization problem by scheduling power usage of residential buildings under
IoT-enabled environment of the SG. The smart appliances of the residential building follow the schedule
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assigned by WBFA-based EMC to minimize cost, to alleviate PAR, and to maximize UC by effective energy
utilization. The output of the proposed framework is an optimal power usage schedule of smart appliances
of a residential building which actively participate in the energy management area of the SG.

4. Energy Management Via Scheduling Problem Description and Formulation

First, the energy management problem is stated and formulated for each objective individually
like cost of electricity minimization, PAR alleviation, and UC maximization. Then, the overall energy
management problem is stated and formulated as an optimization problem. The detailed demonstration is
given below.

4.1. Energy Management Problem Description

Energy management via power usage scheduling is a cumbersome and challenging problem due
to stochastic, nonlinear, and random behavior of end-users. In this context, most researchers focus on
energy management via power usage scheduling of residential building smart appliances. Numerous
strategies have been proposed in the literature to manage power usage of residential buildings via
smart appliance scheduling using price-based DR programs in an IoT-enabled environment of the SG.
The authors in References [15,16] developed a GA-based strategy for appliance scheduling in order to
reduce the cost of electricity and to mitigate PAR. However, UC is sacrificed while minimizing the cost of
electricity. This strategy has some inherent limitations and the problem of unguided mutation that makes
loads unbalanced [53]. A BPSO algorithm-based strategy is developed for smart appliance scheduling
of residential buildings in Reference [17]. However, the scheduling time horizon further divides into
shorter timeslots and increases the model complexity that results in an increased computation overhead.
This strategy has the limitation of increased model complexity of which could be avoided.

Thus, keeping in view the above challenges, first, we proposed the WBFA algorithm, and then we
developed a strategy, where EMC is programmed with our proposed WBFA algorithm to automatically
respond to DR pricing signals to schedule power usage of residential buildings to ensure efficient energy
management. We select WDO and BFO algorithms and proposed the WBFA algorithm due to the following
characteristics: the ease of implementation, flexibility for specified constraints, low computational
complexity, low computational time, and fast converging speed. The energy management problems
are solved via power usage scheduling using DR signals. The solution could be the optimal power usage
schedule of residential building smart appliances in IoT-enabled environment of the SG. The end-users will
follow the returned optimal power usage schedule in order to effectively utilize available energy and to
minimize the cost of electricity, mitigate PAR, and to maximize UC. In subsequent sections, each objective
is demonstrated and formally formulated as follows:

4.2. Residential Building Energy Consumption Formulation

The power consumption is the consumed electrical energy of smart appliances of the residential
building during the scheduling period. This study assumed that a residential building has three types
of smart appliances like power adjustable appliances AP

a , critical appliances AC
a , and time adjustable

appliances AT
a .

First, time adjustable appliances have two more types: (a) interruptible time adjustable, and (b)
non-interruptible time adjustable appliances. The consumed electricity per timeslot of interruptible
appliances is formulated as follows:

EI
c(t) = PI

r × St (10)
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where EI
c(t) is the consumed electricity per timeslot, PI

r represents power rating, and St is the on/off status
indicator of (a) catagory appliances. The net consumed electricity by (a) category appliances is formulated
as follows:

EI
T =

24

∑
t=1

N

∑
a=1

EI
c(t) ∀ I ∈ A (11)

The consumed electricity of (b) category appliances at each timeslot is formulated as follows:

ENI
c (t) = PNI

r × St (12)

where ENI
c (t) is the consumed electricity at each timeslot t, PNI

r represents power rating, and St is the
on/off status indicator of (b) catagory appliances. Thus, net the consumed electricity by (b) category
appliances is formulated as follows:

ENI
T =

24

∑
t=1

N

∑
a=1

ENI
c (t) ∀ N ∈ A (13)

Thus, the net consumed electricity per day by time adjustable appliances can be formulated as follows:

Eta
T = EI

T + ENI
T (14)

where EI
T and ENI

T are the per day consumed electricity by (a) category appliances and (b)
category appliances, respectively, and Eta

T represents the net consumed electricity of both (a) and (b)
categories appliances.

The consumed electricity per timeslot and per day of power adjustable appliance then can be
formulated as follows:

Ep
c (t) =

{
Pmin p

r × St for on− peak timeslots of ∂(t), ρ(t), γ(t)
Pmax p

r × St for off− peak timeslots of ∂(t), ρ(t), γ(t)
∀ p ∈ A (15)

Ep
T =

24

∑
t=1

N

∑
a=1

Ep
c (t) (16)

4.3. Cost Formulation for Consumed Electricity

Electricity cost is the dues to be deposited by the users to DSOs for using electrical energy for a
specified time horizon. This study formulated cost of electricity using ToUPS, DAPS, and RTPS price-based
DR programs offered by DSOs. The FERC in 2009 noticed that users who actively participated in DR
programs and shifted their load from on-peak hours to off-peak hours have received 65 percent benefit.
The cost paid by users to DSOs for consumed electricity using DAPS can be formulated as follows:

CDA
T =

24

∑
t=1

(
N

∑
a=1

Ea
c (t)× St × ∂(t)

)
(17)

Equation (17) denotes cost to be deposited by consumers for consumed electricity using DAPS price-based
DR program. The CDA

T is the net cost paid by users for operating all categories of residential building
smart appliances, Ea

c (t) is consumed electricity of each appliance a at timeslot t, and ∂(t) is DAPS for each
timeslot t.



Sensors 2020, 20, 3155 16 of 41

Similarly, cost to be paid for operating residential building smart appliances using RTPS and ToUPS
can be formulated as follows, respectively:

CRP
T =

24

∑
t=1

(
N

∑
a=1

Ea
c (t)× St × ρ(t)

)
, (18)

CUP
T =

24

∑
t=1

(
N

∑
a=1

Ea
c (t)× St × γ(t)

)
, (19)

where CRP
T and CUP

T denote net electricity bill to be paid under RTPS and ToUPS, respectively. Furthermore,
the parameters ρ(t) and γ(t) represent the offered price rates to the consumers through RTPS and
ToUPS, respectively.

4.4. Peak-to-Average Ratio Formulation

The DSOs stimulate users to shift their power usage from on-peak timeslots to off-peak timeslots
to alleviate peak load for the purpose of minimizing peaks in demand. PAR is defined as the ratio of
peak power usage to average power usage. It is imperative for both DSOs and users due to two reasons:
(a) smoothen out the load to avoid the need for peak power plants and (b) minimizes users’ cost of
consumed electricity. The PAR is formulated as follows:

Rp
a = 24×

max
(

EI
c(t), ENI

c (t), Ep
c (t), Ec

c(t)
)

ET

 , (20)

where Rp
a represents the PAR, and ET denotes total energy consumption.

4.5. User Comfort and Discomfort

UC is related to energy consumption, waiting time, temperature, illumination, air quality, humidity,
sound, and the demographic profile of the residents [54,55]. In this work, the UC in terms of waiting
(how much delay a user faces for activity by shifting appliances from on-peak hours to off-peak hours)
is considered. The optimal power usage before and after scheduling is different because the operation
of appliances is shifted from high-price timeslots to low-price timeslots. Therefore, the user confronts
frustration that is formulated in respect of waiting time. As the trades-off exists between the cost of
electricity and waiting time, the users who could wait more would deposit less cost and the users who
could not wait more would deposit high cost. The waiting time of power-adjustable appliances is zero due
to predefined 24-h lengths of operation time. Such types of appliances contribute to scheduling through
their power flexible nature. The UC in terms of waiting time is formulated as follows:

wa =

T
∑

t=1

n
∑

a=1

∣∣∣(To,unsch
a,t − To,sch

a,t

)∣∣∣
Tlo

a
(21)

where wa represents waiting that each appliance a may face due to appliance shifting, To,unsch
a,t is operation

status of appliances before scheduling, To,sch
a,t is operation status of appliances after scheduling, and Tlo

a is
the appliances total length of operation time. The WBFA-based EMC adjusts and shifts the appliances
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before and after the specified time in response to price-based DR programs and consumer’s priority.
The maximum delay (waiting time) that an appliance can bear is determined as follows:

wd
a = Tt

a − Tlo
a (22)

where wd
a is the maximum delay that an appliance may face while shifting operation from on-peak hours

to off-peak hours and Tt
a is the appliances total time interval. UC is sacrificed with the increase in wd

a .
The user discomfort is maximum when wa is equal to wd

a ; this is the worst case, which might not happen
usually. The user discomfort in respects of percentage is formulated as follows:

D =
wa

wd
a
× 100 (23)

4.6. Overall Energy Management Optimization Problem Formulation

This study formulates the power usage scheduling of residential buildings for efficient energy
management as an optimization problem. It is preferable for an optimization perspective that IoT-enabled
residential buildings effectively utilize available energy in such a way to maximize UC, mitigate PAR,
and minimize the cost of electricity paid to DSOs. The energy management problem is formulated as an
optimization problem as follows:

min
(

CT , wa, Rp
a

)
(24)

subject to
ET ≤ Capacity (25)

Esch
T = Eunsch

T (26)

To,sch
i 6= To,unsch

i (27)

Tlo,sch
a = Tlo,unsch

a (28)

The constraint in Equation (25) represents the power grid capacity constraint that confirms that the
power grid is not overburdened and is capable to take part in power usage scheduling of residential
buildings. Through the constraint in Equation (26), it is ensured that the net energy consumption before
and after scheduling is equal. The constraint in Equation (27) denotes the status of activity whether it
is in-progress or completed. This constraint is in support of fair comparison. Equation (28) ensures that
length of time interval before and after scheduling must be same, subject to a fair comparison.

5. Proposed and Benchmark Strategies for Efficient Energy Management

The WBFA-based strategy and benchmark strategies like BPSO algorithm, BFO algorithm,
WDO algorithm, GA, GWDO algorithm, and GBPSO algorithm are adopted to solve the optimization
problem of energy management of residential buildings by optimal power usage scheduling. The detailed
description of the proposed and benchmark strategies are as follows:

5.1. GA-Based Strategy for Efficient Energy Management

In References [15,16], GA based strategy is adopted to schedule residential building smart appliances
for the purpose of minimizing PAR and the cost of electricity. The DR program, accessible power grid
energy, and residential building smart appliance operational parameters are fed as input to the GA. The GA
uses these inputs to generate a solution of the population for input chromosomes. Each chromosome
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represents a candidate solution. The GA-based strategy evaluates the fitness function using randomly
created population and stores the best results returned during evaluation. The stored best solution is
passed through the crossover and mutation phase to acquire the global optimal solution. The crossover
probability and mutation probability parameters are control parameters of GA, which are directly related
to the convergence rate. In order to obtain optimal power usage scheduling, the crossover rate is fixed at
cr = 0.9 and the mutation rate is fixed at pm = 0.1. The population returned after crossover and mutation
phase will be the optimal population representing the optimal power usage schedule of residential building
smart appliances. The controlling parameters of GA are listed in Table 4. The stepwise procedure of GA is
shown in Figure 4 for a better understanding of the GA-based strategy for IoT-enabled residential building
smart appliances.

Start Initialization 

Generate initial population

Evaluate Fitness function F(i)

Initilize looop for finding current best 

i = i+1

Fpr(i) = Fc(i)

Generate new population on the basis 

of current best values

Record current best

i < popsize

Select two individuals 

Parent 1 Parent 2

Is crossover 

finished?

Generate new population

Crossover

End

Yes

Yes

Yes

No

No

No

Yes

Select one offspring 

Mutation

Assign Fitness

Is mutation 

finished No

Yes

No

Figure 4. GA-based strategy for efficient energy management of residential building smart appliances in an
IoT enabled environment of the SG.
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Table 4. Control parameters and decision variables of the proposed and benchmark strategies for efficient
energy management of residential buildings in IoT enabled environment of the SG.

Proposed and Benchmark Algorithms

BFO GA BPSO WDO GBPSO GWDO Proposed WBFA

Parameters Value

Pop 100 Pop 100 Pop 100 Pop 100 Pop 100 Pop 100 Pop 100
Itr 200 Itr 200 Itr 200 Itr 200 Itr 200 Itr 200 Itr 200
n 11.0 n 11.0 n 11.0 n 11.0 n 11.0 n 11.0 n 11.0
es 24.0 pc 0.90 c1 2.00 RT 3.00 c1 2.00 RT 3.00 RT 3.00
rs 5.00 pm 0.10 c2 2.00 g 0.20 c2 2.00 g 0.20 g 0.20
cs 5.00 –– –– wi 2.00 α 0.40 wi 2.00 α 0.40 α 0.40
ss 2.00 –– –– w f 0.40 dimmin −5.00 w f 0.40 dimmin −5.00 dimmin −5.00
Ci 0.01 –– –– vmin −4.00 dimmax 5.00 vmin −4.00 dimmax 5.00 dimmax 5.00
ped 0.50 –– –– vmax 4.00 vmin −0.30 vmax 4.00 vmin −0.30 vmin −0.30
Ci 0.98 –– –– –– –– vmax 0.30 pc 0.90 vmax 0.30 vmax 0.30
–– –– –– –– –– –– –– –– pm 0.10 pc 0.90 es 24.0
–– –– –– –– –– –– –– –– –– –– pm 0.10 rs 5.00
–– –– –– –– –– –– –– –– –– –– –– –– cs 5.00
–– –– –– –– –– –– –– –– –– –– –– –– ss 2.00

5.2. BFO Algorithm-Based Strategy for Efficient Energy Management

The BFO algorithm-based strategy [56] is elaborated in this section. The BFO algorithm is stimulated
through the foraging manners of a bacteriu1m. The bacterium swims in search of nutrients to discover the
best nutrients for the purpose to maximize energy. In optimization problems, the fittest nutrients represent
the optimal solution. The BFO algorithm-based strategy comprises of three steps: (i) elimination-dispersion,
(ii) reproduction, and (iii) chemotaxes. The control parameters of the BFO algorithm-based energy
management strategy are listed in Table 4. Before starting the three-step procedure, the first relevant
parameters initialization is conducted. Then, the chemotaxes phase starts; in this phase, we randomly
generate a bacteria population matrix. In optimization problems, each bacterium position represents a
candidate solution. The chemotaxes phase also represents the tumbling or swimming of a bacterium,
which is analogous to convergence or divergence of the optimization problem. As discussed earlier,
we generated a population matrix randomly generated; that is why initially the solution diverges. The matrix
of the population achieved after fitness evaluation is the local optimal population converging towards the
local best solution. The stepsize and bacterium position is denoted by θ(i, :) and ci respectively. The solution
convergence rate can be controlled with stepsize. Furthermore, with small stepsize solution trapped into
local minima and with large stepsize solution diverging from the global optima, the population obtained
after chemotaxes are the local best population representing the local best solution. Through the reproduction
phase, the search to find the optimal solution is accelerated and refined in order to obtain a feasible solution.
The elimination-dispersion step of the BFO algorithm tries to achieve a global optimal solution by discarding
irrelevant and redundant information. The global optimal solution obtained represents the optimal power
usage schedule of residential building smart appliances, which is utilized for efficient energy management.
The stepwise procedure of the BFO algorithm-based strategy is shown in Figure 5.
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Start

Initialization of parameters Ne, Nr, Nc,

Np, Ns, D, Ci

Initialize elimination-dispersion loop
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Initialize reproduction loop (k=k+1)

Initialize chemotaxis loop (j=j+1)

Compute initial cost J(i, j, k, l )
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Figure 5. BFO algorithm-based strategy for efficient energy management of residential building smart
appliances in an IoT enabled environment of the SG.
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5.3. BPSO Algorithm-Based Strategy for Efficient Energy Management

The BPSO algorithm-based strategy [57] is elaborated in this section. The BPSO algorithm is a binary
variant of the PSO algorithm. It works on the principle of birds flock foraging. The birds flock moving in
search of food that has a specific position and velocity. The BPSO algorithm-based strategy composed of
two steps: (a) position and (b) velocity. The population matrix is controlled by the velocity of the particle,
and the candidate solution is controlled by the position of the particle. The particle initial velocity is
determined as follows:

vj = vmax × 2× (rand(swarm, n)− 0.5) (29)

The position matrix is a solution matrix representing an optimal power usage schedule of residential
building smart appliances, where each entry in the position matrix represents on/off status of smart
appliances. First, we randomly generate the position matrix, and the position matrix is updated via fitness
evaluation. After fitness evaluation, the local best solution is acquired known as pbest, and when the
termination criterion is met, the global optimal solution is acquired known as gbest. The gbest is the optimal
power usage schedule of residential building smart appliances obtained from the BPSO algorithm-based
strategy is utilized for efficient energy management. The velocity function includes key parameters like
the inertia factor, previous acceleration coefficients, and best position values. These parameters play a vital
role in controlling the convergence behavior of the solution. The parameters used in simulations are listed
in Table 4. As the BPSO algorithm is a binary variant of PSO algorithm, we used the sigmoidal function
with velocity function to obtain the binary variant. The conversion is mathematically stated as follows:

Sigmod(j, i) =
1

1 + e−vnew
(30)

The binary variant of the position matrix is obtained as follows:

xnew = 1 i f rand(1) ≤ Sigmoid(j, i)

xnew = 0 i f rand(1) > Sigmoid(j, i)
(31)

The binary variant of the position matrix is fed to the fitness evaluation phase; the evaluation process
iterates for several epochs in order to achieve the global best gbest position matrix. The returned global
optimal solution represents the optimal power usage schedule of residential building smart appliances,
which is utilized for efficient energy management in order to minimize cost of electricity, to alleviate PAR,
and to maximize UC. The stepwise procedure of the BPSO algorithm-based strategy for efficient energy
management is shown in Figure 6.
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Figure 6. BPSO algorithm-based strategy for efficient energy management of residential building smart
appliances in an IoT enabled environment of the SG.

5.4. WDO Algorithm-Based Strategy for Efficient Energy Management

The WDO algorithm is elaborated in [58]. A WDO algorithm is a nature-inspired algorithm that works
on the principal’s wind atmospheric motion. The WDO algorithm is composed of two steps: air parcel
position function and air parcel velocity function. In our scenario, the air parcel matrix represents the
solution matrix. In N-dimensional space, the moving air parcels are exposed to various friction forces such
as frictional force, coriolis force, pressure gradient force, and gravitational force. The parameters used in
the velocity function update formula are presented in Table 4.

The control parameters of WDO algorithm are initialized. After initialization randomly generate the
parcel position matrix, where each entry in the position matrix represents the status of residential building
smart appliances. Then, the initial velocity is determined as follows:

vi = vmax × 2× (rand(populationsize, n)− 0.5) (32)
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Now, the randomly created parcel position matrix is updated through the fitness evaluation function.
The updated position matrix represents the optimal power usage schedule of residential building smart
appliances. The velocity is also updated. Then, the parcel position matrix is updated as follows:

xnew = xcur + unew∆t (33)

The velocity lower and upper bound during each epoches are determined as:

unew = umax i f unew > umax

unew = −umax i f unew < umax
(34)

Furthermore, the position and velocity updated procedure iterates until the termination criterion
is met or the optimal solution is returned. The WDO algorithm-based strategy output is a global best
solution gbest representing power usage schedule of residential building smart appliances. The entire
stepwise WDO algorithm-based strategy is shown in Figure 7.

Start

Initialization

Population size, max number of 

iterations, coefficients, boundaries 

and pressure function definition.

Generate random 

population(position) and velocity 

Evaluate pressure on air parcels 

(Fitness function)

Initialize loop for finding current best

Fpr(i) = Fc(i)

Update velocity by using best values 

and check velocity limits

Record current best

i < popsize

Generation< 

max. generation

End

Yes

No

Yes

No

Generate new population

Yes

No

Figure 7. WDO algorithm-based strategy for efficient energy management of residential building smart
appliances in an IoT enabled environment of the SG.
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5.5. GWDO Algorithm-Based Strategy for Efficient Energy Management

The GBPSO algorithm is elaborated in [18]. The GBPSO algorithm is a hybrid of the GA and
BPSO algorithms. The GBPSO algorithm utilizes the beneficial characteristic of both the GA and BPSO
algorithms. The GA is effective in the alleviation of PAR, and the BPSO algorithm is efficient in the
reduction of electricity cost. Thus, GBPSO algorithm-based strategy fully utilizes the desired features of
both algorithms in order to achieve optimal power usage schedule of residential building smart appliance.
The purpose of optimal power usage scheduling is to minimize the cost of electricity and PAR, to maximize
UC, and to efficiently utilize DSOs energy. The GBPSO algorithm is composed of two steps: executing
complete steps of the BPSO algorithm (refer to Section 5.3) and feeding the output of the BPSO algorithm
to crossover and mutation phases of GA (refer to Section 5.1). The power usage schedule returned from the
GBPSO algorithm is optimal because the steps of GA are applied to the global optimal solution obtained
from the BPSO algorithm instead of random values. The GBPSO algorithm-based strategy parameters are
presented in Table 4. The entire stepwise procedure of the GBPSO algorithm-based strategy is shown in
Figure 8.
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Fpr(i) = Fc(i)
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Assign Fitness

Is mutation 

finished
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No

Figure 8. GBPSO algorithm-based strategy for efficient energy management of residential building smart
appliances in an IoT enabled environment of the SG.
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5.6. GWDO Algorithm-Based Strategy for Efficient Energy Managment

The GWDO algorithm is elaborated in [19]. Likewise, the GWDO algorithm is a hybrid algorithm
obtained by cascading the entire WDO algorithm with the crossover and mutation steps of GA. The GWDO
algorithm cascades two algorithms because GA is efficient in PAR minimization and the WDO algorithm is
efficient in both cost minimization and UC maximization. The GWDO algorithm-based strategy schedules
the power usage pattern of residential building smart appliances to satisfy users and DSOs both parties.
The GWDO algorithm is of two steps like in the GBPSO algorithm: (a) entire working procedure of WDO
algorithm [19] and (b) crossover and mutation steps of GA [16]. The global best result returned from the WDO
algorithm is passed through crossovers and mutation steps of GA to achieve optimal power usage schedule
of residential building smart appliances. This optimal power usage schedule is utilized by smart appliances
in order to minimize the cost of electricity and PAR with affordable UC. The GWDO algorithm parameters
are presented in Table 4. The entire working procedure of the GWDO algorithm is shown in Figure 9.
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Figure 9. GWDO algorithm-based strategy for efficient energy management of residential building smart
appliances in an IoT enabled environment of the SG.
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5.7. Proposed Wind-Driven Bacterial Foraging Algorithm-Based Strategy for Efficient Energy Management

The WBFA is an algorithm obtained by cascading WDO and BFO algorithms. The proposed
algorithm is designed by adopting the whole working procedure of the WDO algorithm and the
elimination-dispersion, chemotaxis, and reproduction operation steps of the BFO algorithm. These two
algorithms from the pool of heuristic algorithms are picked up because the WDO outperforms in terms
cost minimization and UC maximization, and on the other hand, the BFO algorithm is efficient in terms of
minimization of PAR. Therefore, key characteristics of both WDO and BFO algorithms are fused in WBFA
to schedule power usage of residential building smart appliances in order to ensure the cost of electricity
minimization, the alleviation of PAR, and the maximization of UC. The WBFA is composed of four
stages: (a) WDO algorithm, (b) elimination-dispersion, (c) reproduction, and (d) chemotaxis. The control
parameters of the WBFA-based strategy are listed in Table 4. The output of the lagging stage is fed as input
to the leading stage in order to acquire an optimal power usage schedule of residential building smart
appliances. The stepwise procedure of WBFA is illustrated in Figure 10. The outstanding performance of
the proposed algorithm is due to deeper layer layout and more control parameters as compared to the
existing algorithms. This deep layer layout and more control parameters enable the algorithm to obtain
our desired objectives. However, due to the deeper layout and more control parameters, it takes more time
to execute as compared to the existing algorithm because trade-off exists in nature.
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Figure 10. WBFA-based strategy for efficient energy management of residential building smart appliances
in an IoT enabled environment of the SG.
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The proposed algorithm WBFA and adapted algorithms like GBPSO, GWDO, GA, and BPSO
evaluation in terms of convergence speed and execution time are shown in Figures 11 and 12, respectively.
The good convergence speed and high precision of our proposed WBFA algorithm are due to two reasons:
(i) BFO algorithm keeps the diversity of the population and remedies the defect of falling in local optima
of WDO algorithm and (ii) the WDO algorithm cures the slow speed of the convergence shortcoming of
the BFO algorithm. The moderate execution time (122 s) of the proposed algorithm WBFA is due to the
application of key steps that BFO on the optimal result returned from the WDO algorithm. The existing
algorithms like GBPSO and GWDO have high execution times of 145 s and 133 s, respectively.
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Figure 11. Proposed and adapted algorithms convergence speed analysis.
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Figure 12. Proposed and adapted algorithm execution times analysis.

The proposed WBFA algorithm and adapted algorithms like GBPSO, GWDO, GA, and BPSO
numerical results in terms of convergence speed, execution time, and complexity are depicted in Table 5.
Thus, the proposed algorithm has moderate execution time and complexity and fast convergence speed.

Table 5. Evaluation of the proposed WBFA algorithm and adopted algorithms such as GWDO, GBPSO,
GA, and BPSO in terms of complexity, convergence rate, and execution time.

Performance Metrics
Proposed and Adopted Algorithms

BPSO GA GBPSO GWDO Proposed WBFA

Complexity (level) Low Low High High Moderate
Convergence speed (iterations) 128th 121th 100th 39th 20th

Execution time (sec) 102 95 145 133 122
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6. Simulation Results and Discussion

Extensive simulations are conducted to validate our proposed WBFA-based strategy in terms of energy
management using price-based DR programs as depicted in Figure 3a–c, respectively. For simulations,
MATALAB R© M-file platform is utilized installed on Intel R© CoreTM i3-3420M CPU @ 2.4 GHz and 6 GB
RAM with Windows 10. The DAPS price-based DR program has three price levels: low, medium, and high,
as shown in Figure 3a. The high-price hours are also known as on-peak hours. Its duration spans from 11 to
16 h. The medium-price hours are also termed as mid-peak hours. Its duration ranges from 1 to 11 h; likewise,
a low-price hour is also named as off-peak hours. Its range spans from 18 to 23 h. The remaining timeslots
are assumed as medium-price hours. Likewise, RTPS-based price-based DR program has also three price
hours: high-price hours ranging from 7 to 10 timeslots, medium-price hours spanning from 11 to 15 timeslots,
and the rest of the timeslots as low-price hours. The ToUPS price-based DR program has also three levels
likewise DAPS and RTPS price-based DR programs: high-price hours spanning from 16 to 21 timeslots,
medium-price hours, and low-price hours. The proposed WBFA-based strategy is compared with benchmark
strategies based on GA [15,16], BPSO algorithm [17], GBPSO algorithm [18], and GWDO algorithm [19] in
simulations. These existing strategies are selected due to architecture resembling the proposed WBFA-based
strategy. For performance evaluation of the proposed WBFA based strategy, four performance metrics are
selected from the pool of metrics: (a) cost of electricity, (b) energy consumption, (c) PAR, and (d) UC.

The power usage of residential building smart appliances is scheduled using price-based DR programs
as depicted in Figure 13a–c to minimize the cost of electricity, to alleviate PAR, and to maximize UC by
efficient energy utilization. The overall power usage profile before scheduling and after the scheduling of
residential building smart appliances is shown in Figure 13. The proposed and benchmark strategies are
capable of scheduling power usage of the IoT-enabled residential buildings by employing DAPS price-based
DR program as depicted in Figure 13a. Figure 13a depicts that both strategies have shifted load from
high-price hours to low-price hours by employing DAPS price-based DR program. However, it is obvious
that our proposed WBFA-based scheduled power usage profile is comparatively most favorable. The peak
power usage of the proposed WBFA-based strategy and benchmark strategies during high-price hours are
4 kWh, 2.3 kWh, 2.2 kWh, 2.4 kWh, and 6.2 kWh, respectively. Therefore, from Figure 13a, it is obvious that
the proposed WBFA-based strategy has comparatively average peak power usage. Which is the evidence
that proposed WBFA-based strategy schedules power usage of residential building smart appliances in such
a manner to minimize the cost of electricity and to maximize UC. The benchmark strategies only catered
PAR and cost of electricity. In contrast, when our proposed WBFA-based strategy is not adopted by the users,
then they purchase energy from 2 to 9 timeslots and 13 to 17 timeslots, which are medium- and high-price
hours that result in peak energy consumption and overwhelm the power grid. Likewise, power usage
scheduling of residential building smart appliances using RTPS of proposed and benchmark strategies and
before scheduling scenarios are illustrated in Figure 13b. The peak power usage of the proposed WBFA-based
strategy is 6 kWh, BPSO is 2 kWh, GA is 7.1 kWh, GBPSO is 3 kWh, and GWDO is 3.9 kWh as illustrated
in Figure 13b. Thus, the proposed WBFA-based strategy has average peak power usage as compared to
benchmark strategies. This average peak power consumption of the proposed WBFA-based strategy is due
to optimal power usage scheduling of residential building smart appliances keeping in view all objectives.
On the other hand, the focus of benchmark strategies is only on cost and PAR. The power usage of residential
building smart appliances scheduling using ToUPS price-based DR program for the proposed WBFA based
strategy and benchmark strategies is shown in Figure 13c. The proposed WBFA-based strategy has a peak
power consumption of 5.2 kWh, which is average peak power consumption when comparatively analyzed.
The reason for this optimal performance of our proposed strategy is that it performs energy management via
power usage scheduling of residential building smart appliance keeping in view UC. On the other hand,
benchmark strategies focus only on the cost of electricity and PAR while ignoring UC.
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(a) Scheduled energy consumption pattern with DAPS.
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(b) Scheduled energy consumption pattern with RTPS.
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(c) Scheduled energy consumption pattern with ToUPS.

Figure 13. Power usage of residential building smart appliances before and after scheduling using DR
programs in IoT-enabled environment of the SG.
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The cost of electricity per hour analysis of the proposed and benchmark strategies for consumed
electricity is shown in Figure 14. Figure 14a clearly demonstrates that both strategies (proposed and
benchmark) can minimize cost of electricity by scheduling under DAPS price-based DR program as
compared to without power usage scheduling. However, it is obvious that the overall cost of electricity
per hour of our proposed WBFA-based strategy is low as compared to benchmark strategies. On the
other hand, cost of electricity of our proposed WBFA-based strategy during high-price hours is high
because of the consideration of UC. The cost of electricity per hour of the proposed WBFA-based strategy
and benchmark strategies using RTPS price-based DR program is shown in Figure 14b. It is obvious
that our proposed WBFA-based strategy scheduling is optimal as compared with benchmark strategies,
and consequently, users enjoy the lowest per hour cost of electricity. Likewise, in the case of ToUPS
price-based DR programs, the lowest cost of electricity per hour of the proposed WBFA-based strategy as
compared to benchmark strategies is also shown in Figure 14c.

The aggregated cost of electricity numerical values evaluation for both the proposed WBFA-based
strategy and benchmark strategies is illustrated in Figure 15. Aggregated cost per day evaluation of
the proposed WBFA-based strategy and benchmark strategies for the DAPS price-based DR program is
shown in Figure 15a. The net costs of electricity per day of benchmark strategies like GBPSO, GWDO,
GA, BPSO, and our proposed WBFA-based strategy are 36 cents, 35 cents, 42 cents, 37 cents, and 34 cents,
respectively. The percent decrements of benchmark strategies like GBPSO, GWDO, GA, BPSO, and our
proposed WBFA-based strategy are 23.4%, 25%, 10.6%, 21.2%, and 27.6%, respectively. From numerical
results, it is obvious that the WBFA-based strategy has minimized the aggregated cost of electricity per
day remarkably as compared to the benchmark strategies and without power usage scheduling. The net
cost of electricity per day of the proposed WBFA-based strategy and benchmark strategies under the RTPS
price-based DR program is illustrated in Figure 15b. The aggregated costs of electricity of the benchmark
strategies like GBPSO, GWDO, GA, BPSO, and our proposed WBFA-based strategy are 10.3 cents, 10.1 cents,
15 cents, 16 cents, and 9.5 cents, respectively. Likewise, the aggregated cost using ToUPS price-based
DR program of the proposed WBFA-based strategy and benchmark strategies is shown in Figure 15c.
Our proposed WBFA-based strategy outperforms existing strategies (GA, BPSO, GBPSO, and GWDO) in
terms of electricity bill reduction. The percent decrement of our proposed strategy is 52.10%, which the
higher reduction in the bill as compared to the reductions in the electricity bills of GA, BPSO, GBPSO,
and GWDO, which are 12.70%, 4.2%, 48.10%, and 50.20%, respectively. The statistical observations of cost
of the proposed WBFA-based strategy and existing strategies using DAPS, RTPS, and ToUPS DR programs
are listed in Tables 6–8, respectively. It is concluded that the proposed WBFA-based strategy outperforms
existing energy management strategies in terms of electricity cost minimization.

Proposed WBFA-based strategy and existing strategies evaluation in terms of PAR using ToUPS, DAPS,
and RTPS price-based DR programs is shown in Figure 16. The evaluation of both strategies (proposed
and existing) in terms of PAR using DAPS is shown in Figure 16a. The users who have not employed our
proposed strategy or existing strategies for scheduling have very high PARs of 5. When users employ
existing strategies like GWDO, GBPSO, GA, BPSO, and our proposed WBFA-based strategy, the power
usage scheduling leads to reduced PAR of 3.8, 3.6, 3.7, 3.1, and 2.1, respectively. Thus, our proposed
WBFA-based strategy minimizes cost as well as alleviates PAR by 58%, which is indispensable for SG
reliable operation. Likewise, our proposed WBFA-based strategy curtailed PAR by 54% and 62% with
RTPS price-based DR program (refer to Figure 16b) and with ToUPS price-based DR program (refer to
Figure 16c), respectively. The percent decrement in PAR of our proposed WBFA-based strategy and existing
(GA, BPSO, GWDO, and GPSO) strategies using DAPS, RTPS, and ToUPS price-based DR programs is
listed in Tables 9–11, respectively.
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(a) Electricity cost with DAPS.
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(b) Electricity cost with RTPS.
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(c) Electricity cost with ToUPS.

Figure 14. Cost of electricity per hour evaluation before and after scheduling of the proposed WBFA-based
strategy and existing strategies using DR programs in IoT-enabled environment of the SG.
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(a) Aggregated cost of electricity per day using DAPS DR program.
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(b) Aggregated cost of electricity per day using RTPS DR program.
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(c) Aggregated cost of electricity per day using ToUPS DR program.

Figure 15. Aggregated cost of electricity per day evaluation before and after scheduling using DR programs
in IoT-enabled environment of the SG.
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Table 6. Aggregated cost of electricity per day evaluation before and after scheduling using DAPS DR
program in IoT-enabled environment of the SG.

Parameters
Proposed and Benchmark Strategies with DAPS

GA BPSO GBPSO GWDO WBFA

Electricity cost 42 37 36 35 34
Difference 5 10 11 12 13
Decrement (%) 10 21 23 25 27

Table 7. Aggregated cost of electricity per day evaluation before and after scheduling using RTPS
price-based DR program in IoT-enabled environment of the SG.

Parameters
Proposed and Benchmark Strategies with RTPS

GA BPSO GBPSO GWDO WBFA

Electricity bill 15 16 10.3 10.1 9.5
Difference 1.1 0.1 5.8 6 6.6

Decrement (%) 6.8 0.62 36 37 40

Table 8. Aggregated cost of electricity per day evaluation before and after scheduling using ToUPS
price-based DR program in IoT-enabled environment of the SG.

Parameters
Proposed and Benchmark Strategies with ToUPS

GA BPSO GBPSO GWDO WBFA

Electricity cost 9.2 10.1 5.4 5.2 4.9
Difference 1.35 0.45 5.15 5.35 5.56

Decrement (%) 12.7 4.2 48.1 50.2 52.1

UC and discomfort analysis of the proposed strategy using price-based DR program is depicted in
Figure 17. The frustration faced by consumers in terms of waiting time with the proposed strategy under the
DAPS price-based DR program is depicted in Figure 17a. The user discomfort (waiting time) and electricity
cost are inversely related, and trade-off exists between waiting and electricity cost. The waiting time of all
appliances in the IoT-enabled smart home is numerically visualized in Figure 17a; the waiting times of time
adjustable appliances, critical appliances, and power-adjustable appliances are high, medium, and low,
respectively. The high waiting time of time-adjustable appliances is due to their delay-tolerant nature,
and these appliances contribute to the electricity bill reduction. On the other hand, the waiting time of
power-adjustable appliances is low because they are not delay-tolerant and take part in scheduling through
their power flexible nature. In a similar manner, the waiting time of all smart appliances in IoT-enabled
residential building is numerically visualized in Figure 17b,c using RTPS and ToUPS, respectively.
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Table 9. Evaluation of aggregated PAR per day before and after scheduling using DAPS price-based
DR program.

Parameters
Proposed and Benchmark Strategies with DAPS

GA BPSO GBPSO GWDO WBFA

PAR 3.4 3.1 3.8 3.6 2.1
Difference 1.6 1.9 1.2 1.4 2.9

Decrement (%) 32.0 38.0 24.0 28.0 58.0

Table 10. Evaluation of aggregated PAR per day before and after scheduling using RTPS price-based
DR program.

Parameters
Proposed and Benchmark Strategies with RTPS

GA BPSO GBPSO GWDO WBFA

PAR 3.3 3.1 3.6 3.5 2.3
Difference 1.7 1.9 1.4 1.5 2.7

Decrement (%) 34.0 38.0 28.0 20.0 54.0

Table 11. Evaluation of aggregated PAR per day before and after scheduling using ToUPS price-based
DR program.

Parameters
Proposed and Benchmark Strategies with ToUPS

GA BPSO GBPSO GWDO WBFA

PAR 3.8 3.0 3.9 3.70 1.9
Difference 1.2 2.0 1.1 1.3 3.1

Decrement (%) 24.0 40.0 22.0 26.0 62.0

Observation of average waiting time for the proposed and existing energy management strategies in
terms of numerical values is illustrated in Figure 18. The average waiting times of the proposed WBFA,
and GA, BPSO algorithm, GWDO algorithm, GBPSO algorithms are 4 h, 3 h, 3.3 h, 3.5 h, and 4.1 h,
respectively, using DAPS, as depicted in Figure 18a. In terms of average waiting time, the GA-based
strategy is superior to all strategies. The most suitable reason for this behavior is the existence of a trade-off
between electricity cost and average waiting time. The average waiting time of our proposed WBFA-based
strategy is high because electricity cost and PAR are reduced at the cost of moderate user discomfort.
The average waiting time (user discomfort) is reduced at the expense of high electricity bill payment,
as shown in Figure 18b. The average waiting times under RTPS of the proposed WBFA, and existing GA,
BPSO algorithm, GWDO algorithm, GBPSO algorithms are 4.5 h, 3.2 h, 3.3 h, 3.4 h, and 4.4 h, respectively.
In a similar passion, user discomfort is reduced at the expense of high electricity bill payment, as depicted
in Figure 18c.
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(c) PAR with ToUPS.

Figure 16. Aggregated PAR per day evaluation before and after scheduling using DR programs in
IoT-enabled environment of the SG.
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(a) With DAPS.
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(b) With RTPS.

WM TD DW VC EWH RF AC DP MO EK ET

Home appliannces

0

1

2

3

4

5

6

7

8

9

W
ai

tin
g 

tim
e 

(h
ou

rs
)

(c) With ToUPS.

Figure 17. Evaluation of UC in terms of waiting per day after scheduling with proposed WBFA based
strategy using price-based DR programs (TD, tumble dryer; WM, washing machine; DW, dishwasher;
VC, vacuum cleaner; RF, refrigerator; EWH, electric water heater; AC, air conditioner; DP, dispenser;
MO, microwave oven; EK, electric kettle; and ET, electric toaster).
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(a) With DAPS.
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(b) With RTPS.
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Figure 18. Evaluation of UC in terms of waiting time per day before and after scheduling of the proposed
WBFA-based strategy and existing strategies using DR programs in IoT-enabled environment of the SG.

7. Conclusions and Future Research Directions

Electricity efficient utilization, optimal electricity consumption, and cost minimization can be
acquired by employing DR programs. However, the dearth of knowledge prevents the development
and employment of DR programs in consumer premises. Diverse methods like classical, mathematical,
heuristic, meta-heuristic, and hybrid are applied to implement and employ DR programs for energy
management of the residential building in IoT-enabled environment of the SG. In this work, we propose



Sensors 2020, 20, 3155 38 of 41

the WBFA algorithm, which is a hybrid of the WDO and BFO algorithms. The EMC programmed with
our proposed WBFA algorithm automatically responds to DR programs to participate in the energy
management of the residential building in IoT-enabled environment of the SG. We adopted DAPS,
RTPS, and ToUPS price-based DR programs; our proposed WBFA-based strategy schedules power
usage of residential building smart appliances under these DR programs. The objective of our proposed
WBFA-based strategy is to minimize the cost of electricity, to alleviate PAR, and to maximize UC. Simulation
results demonstrate that employing ToUPS DR program for energy management leads to the lowest cost
of electricity, PAR, and stable power usage schedule of residential building smart appliances compared
to DAPS and RTPS DR programs. Furthermore, our proposed WBFA-based strategy minimized cost of
electricity and PAR by 27.6% and 58% by employing the DAPS DR program, by 40% and 54% by employing
the RTPS DR program, and by 52.1% and 62% by employing the ToUPS DR program, respectively,
as compared to without employing price-based DR programs. Thus, employing ToUPS DR program for
energy management leads to providing favorable outcomes for both consumers and DSOs.

This study can be extended into various directions in the future:

1. The energy management via scheduling can be performed through the coordination of residential
building smart appliances in the presence of power grid, RE, energy storage systems, and EVs by
embedding sensors on the participant. To handle such a coordinated environment, the EMC would
be made intelligent and smart by incorporating sensing, communication, and the IoT modules on
the traditional EMC. Furthermore, for this coordinated environment, net metering is required where
consumers would become prosumers. The prosumers can generate renewable energy and store it into
the energy storage system and EVs that have storage batteries. The prosumers sell their generated and
stored energy back to the power grid in order to ensure reliable, stable, sustainable, and economical
power grid operation. The prosumers enabled with intelligent and smart EMC and net metering
features can actively participate in regulated energy markets with price-based DR programs and
incentive-based DR in order to facilitate both the power grid and consumers.

2. This work can be extended to fog- and cloud-based energy management via scheduling using the DR
program in the SG.

3. An energy management model with a hybrid generation (RE and fossil fuel) system can be extended
by considering vehicles to grid parking stations as a controllable load based on game-theory-based
optimization algorithm.

4. A MILP-based efficient energy management modular framework may be proposed for both urban
and ruler energy systems for performance and sensitivity analysis.

5. An innovative energy management model may be proposed in cloud computing for efficient load
scheduling using a hybrid genetic gravitational search algorithm.

6. To perform efficient energy management, an intelligent forecaster or machine learning-based
forecaster for price and load is required before to schedule the energy consumption pattern
of consumers.

7. In the future, we will engage in some advanced, intelligent, and hybrid appliances that have time-
as well as power-flexible nature in the energy management strategy. Such types of appliances will
provide more opportunities for EMC to engage them in energy management in order to provide
economical and sustainable solutions.
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