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Abstract: Development of contaminant detection systems in various natural and industrial
environments has been favored in recent years thanks to the evolution of processors and sensors.
Our group works specifically on contaminant detection systems in inland waters: immediate and
continuous detection is a fundamental requirement in this type of sensing. Regarding the sensors,
the proposed system is based on fluorescence, since it offers a method in which there is no contact with
water, which means less wear on the components and a great saving in cleaning and maintenance.
On the other hand, the spectrum processing is of great importance, since it is used both in the
generation of a library of fluorescence spectra taken in the laboratory and in the continuous analysis
of the samples and in the comparison algorithm for identification. The validity of the system is based
on the last process that is carried out in a very short time. This article describes a system to process
spectra in a more accelerated way.
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1. Introduction

Fluorescence-based methods for compound detection have been used mainly in the laboratory for
several years thanks to technological developments in both light emission and detection. The evolution
of HP (high power) UV-LEDs (ultraviolet-light emitting diodes) at increasingly shorter wavelengths,
as well as new small spectrometers, facilitate the development of lightweight contaminant detection
systems for inland waters [1].

The demand for these systems has increased over time, as the implementation of water quality
control stations is increasingly widespread. These systems must meet various conditions such as
robustness, continuous operation, and small size. Against these advantages, the measurements are less
precise than those carried out in the laboratory, but in the case explained here (detection), the speed
in the treatment of the data obtained is important, since it is intended to alert about the presence of
elements foreign to the aquatic environment.

The analyzers used in these stations should normally be submerged into the water, so periodic
maintenance is necessary. On the other hand, fluorescence systems do not have direct contact with water,
and hence, their maintenance is lower. The analyzers of basic parameters (oxygen, pH, temperature),
have evolved a lot in recent years [2–7], and have been extended to other types of measurements
(ammonia, carbon, phosphates, etc.) whose values must be kept within margins that depend—among
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others—on calendar date, environment and provenance of the water under study. Unlike these, there
are substances that seriously damage the quality of water and should not be present [1,8–11].

In this paper, a method of processing the spectra obtained through a system developed by the
authors is presented. It meets the aforementioned requirements since with the use of very few variables,
very fast results can be obtained for the detection of contaminating substances.

Hydrocarbons have been chosen for this study since they are a very good starting point from
which development can be extended [12,13]. They are on the surface, as they are less dense than water.
They are also volatile and therefore they have good fluorescence. Finally, its presence is very negative
for the flora and fauna of rivers and reservoirs.

2. Materials and Methods

To implement the processing system, it is first necessary to store substance data in a database on
which the comparisons will be carried out. By using a fast processing architecture this database can
then be enlarged and managed by the addition of new entries.

2.1. Obtaining Patterns for the Database Building

In the laboratory, the compounds were characterized by obtaining the fluorescence spectrum in a
workbench with an HP-UV LED light source that emitted at an ultraviolet wavelength (365 nm) and
with a power of 3 W. All measurements were made with the contaminant in distilled water at 25 ◦C
and at fixed distances from both the emitter and the detector [1].

In this way, various hydrocarbons in common use in the automotive sector were taken by way of
example to verify that even though they are similar compounds, their detection was possible by means
of the fluorescence spectrum that was emitted when illuminated by an ultraviolet light source:

• Diesel A: It is used by all types of vehicles, from small size to large tonnage. Type A diesel is the
most refined, producing a quality superior to the rest and making it more suitable for vehicles.
Although it is thought that its use will decrease with the passage of time, it is still largely present.

• Diesel A +: The name of this type of fuel differs depending on the brand, but it is in widespread
use almost everywhere in the world. This is diesel A but with added additives to improve the
care and performance of the engine, since it differs in the cetane level (“ignition interval”), being
in this case somewhat higher.

• Diesel B: It is the fuel for agricultural and industrial use. It is a less sensitive type of motor fuel
than those that use type A. Diesel B is subsidized in many states, which offers a reduction on the
taxes that are applied to it. Its use for heating is rather reduced, since its calorific value is lower
than C since it contains fewer paraffins.

• Diesel C: It is the fuel used in the heating. It has a high content of paraffin and a higher density,
with great calorific value. It is the one that contains the most impurities.

• Gas 95: This motor vehicle fuel is in widespread use, and therefore there is a lot of traffic that
transports it in very variable amounts.

• Gas 98: Like the previous one, but it differs mainly in the octane number.

Furthermore, in order to be identified, the dyes carried by each of these fuels must be taken into
account, which may influence their fluorometric response. All the compounds studied are transported
and stored extensively and in different quantities ranging from tens of liters to tons, so there is a high
probability of accidental spills.

The sample was irradiated by the light source so that the compound emitted a fluorescence
spectrum that was collected with a system consisting of (1) an optical fiber without collimator, and (2) a
mini-spectrometer connected to a PC running MATLAB®(MathWorks®, Natick, MA, USA) program,
a common tool for this objective [10,14–17], which was responsible for the processing and preliminary
storage. The optical power of the spectrum was proportional to the amount of the substance present,
and the evolution of HP-LEDs caused devices with more optical power to appear on the market,
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making calibration necessary. Despite the fact that the conditions in which the sample was found were
those of the laboratory, the spectra obtained were not exempt from noise. Therefore, in a very short
time interval (10 ms) five samples were taken, from which we then obtained the average. A similar
process will be performed in the detection system.

To ensure that the pattern presented an allowable margin of error, various measures were taken in
different procedures. This way, several steps were necessary in order to minimize the possible error in
the comparison. Likewise, in the comparison process it must be taken into account that the greater the
number of spectra stored, the longer the identification will take. Therefore, the development of an
optimal algorithm, as well as a pattern storage system containing the minimum data possible was
essential for the validity of the method.

The complete process of obtaining patterns involved the following steps:

• Measurements and averaging.
• Normalization and band limitation.
• Smoothing
• Decomposition into simple functions.
• Obtaining the relevant pattern and estimation of the error.

2.1.1. Measurements and Averaging

Data collection, and in particular those carried out during short exposure times, was susceptible
to error. In the case at hand, where one tries to generate a warning (alarm), it is then necessary to
minimize the error. With the used spectrometers (with CCD) the measurement is clearer if the exposure
time is increased [1]. For example, for the detection of gasoline 95 pollutants with an optical excitation
power corresponding to the nominal current (650 mA), a maximum of 2900 counts (approximately) is
obtained with an exposure time of 10 ms, whereas if the exposure is 20 ms the maximum increases to
4800 counts. Therefore, it was necessary to set a trade-off so that the reading was validated while at the
same time the process was fast enough. In our case, in view of the results, a measurement of 10 ms
was enough. Figure 1 shows the proportional difference in optical power (in counts) of the spectrum
when the compound was illuminated with the HP-UV LED at different currents. The spectra shown
were smoothed with a Savitzky-Golay filter and had a greater range of wavelengths than that used for
this work so that differences were better observed. It should be noted that once these responses were
normalized, they were very similar, as seen below.
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Figure 1. Spectra obtained when a Gas 95 sample is illuminated with an HP-UV LED (High Power
Ultra-Violet Light Emitting Diode) at different working currents. The spectra shown were smoothed
with the SG filter and had a greater range of wavelengths than that used for the job so that differences
were better observed.
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On the other hand, and to carry out a first noise reduction, five measures have been taken to
compute the average value. Then, an average spectrum can be obtained approximately every 50 ms.
The spectrometers used in the experiments shown were not without noise. It was also necessary to take
into account that although the system to be developed will encounter a controlled flow of water, it was
possible that there will be alterations in it, so taking several measures was necessary. Figure 2 shows
an example of noise reduction when five measurements were made. In order to validate the method,
the test is shown with the spectra where the signal-to-noise ratio was lower (with the spectrum with
the lowest optical power obtained with the 0.22 Ampere current) so that the noise was proportionally
higher. The comparison process lag described below has to be added to this step so that the whole
detection analysis time can be calculated. In any case, it must result in a reduction time which is
suitable for its installation in a real-time measurement system.
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Figure 2. To illustrate noise reduction using the average of five measurements, the measurements
made with the lowest current are shown, since proportionally the noise will be greater: (a) The five
overlapping measurements are shown. Note a floor of approximately 1000 counts; (b) performing the
average in the five samples, the noise obtained was lower than in any of the measures.

2.1.2. Normalized and Limitation

With the purpose to obtain a robust pattern that was as independent as possible of the optical
power of the reading process, it was necessary to normalize the average obtained in the previous
section. Similarly, depending on the spectrometer used, spectra may appear with a ground level that
does not provide information, so once the spectrum limitation has been carried out, it is necessary
to eliminate this floor and then normalize. In Figure 2 it is shown that within the range provided,
a subtraction of about 1000 counts can be made on the vertical axis.

In addition, in view of the results obtained with the hydrocarbons studied, the wavelengths can
be considerably limited with regard to those measured by the spectrometer because information is
restricted to a range narrow enough. In this way, the processing was also reduced and it can be carried
out in less time.

2.1.3. Smoothing

In order to discover extrema reliably, we first implemented signal smoothing (i.e., noise reduction).
There are several smoothing methods that work differently depending on the nature of the signal and
the noise it contains. Each type of filtering enhances or attenuates different aspects with more or less
emphasis. Among the various filters that can be used to eliminate noise, three basic ones were suitable
for filtering the responses obtained from the spectrometer:

• MF: Moving average (median) window filtering
• FFT: Fast Fourier Transform filtering
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• SG: Savitzky-Golay filtering.

Figure 3 shows differences among the three proposed filtering methods for the spectra obtained
in the laboratory when filtering with a 10-point window in all cases. When processing the data,
in the identification step, it is essential that filtering is the most suitable for the recognition method.
In the percentile filtering (red) some noise remains, so the subsequent decomposition of the signal for
identification will be more complex, increasing the processing time and increasing the error. The entire
smoothing comparison was carried out with different orders in all the systems analyzed.
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a detail of the measurement at 220 mA with a sample of gasoline 95. MF: median filtering. FFT:
fast fourier transform. SG: Savitzky-Golay filtering. Note that SG filtering eliminates noise without
compromising maximums and minimums.

In FFT filtering, smoothing is very pronounced, and information may be lost and given the
similarity in the response produced by some compounds, the probability of error increases since it
reduces the effect of signal peaks and valleys.

Savitzky-Golay filtering is therefore the most suitable for this type of application. Not surprisingly,
it is widely used in chemometric or mass spectrometric applications [1,13,18,19], where processes
similar to those presented here are performed. In our case, this filter has been shown to be the most
efficient to obtain the spectra because the main characteristics remain (i.e., significant peaks and valleys).
For spectroscopic data, the method is effective to preserve both peak wavelength and width. The entire
smoothing comparison was carried out with different orders in all the systems analyzed.

Performing a local polynomial regression around each point and creating a new one, smoothing
the value for each data point results in a signal that is essentially more faithful than that obtained with
the moving average window method. This approach tends to preserve the characteristics of the data
such as the height of the peak as well as its width (which might be neglected if other methods are used
instead). However, for large window sizes, the adjacent average of the resulting signal may differ too
much from the input signal, while Savitzky-Golay may still retain the overall profile [16,20,21].

2.1.4. Decomposition into Simple Functions

The use of statistical models to represent responses of experimental results [22,23] is very useful
only when the parameters of the model are known beforehand. The most obvious advantage of using
these parametric methods is the reduction in storage and processing time.

Goshtasby and O’Neill proposed in a 1994 paper [24] that, given a uniformly spaced sequence
of individual data, it is possible to approximate the data to a sum of Gaussian functions with
predetermined precision. Using this mathematical foundation in an accelerated computation process
in the decomposition of the spectra obtained is the purpose of the procedure presented here.
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To verify whether the fluorescence produced by different optical powers is such that it allows the
identification of the compound based on the comparison with the spectrum generated under optimal
conditions, the Gaussian or Lorentzian decomposition of the spectrum is a very useful technique
because storing the data is relatively simple; it is enough to store the wavelength, width (function width
when it acquires 1

2 of its peak value: FWHM—Half Width at Half Maximum) and multiplying factor
(H) of each of the components. The combination of all the components will establish a result-function
which will be compared against the measured signal.

In chemical analysis, it is assumed that the property of interest of a sample (be it concentration,
viscosity, octane number, etc.) is related to the technique used to analyze that sample. In the case
of detection and identification, the value provided by the technique (fluorescence) is compared with
previously measured values. From this concept, a multivariable comparison model can be developed,
to observe and compare properties of interest of multiple instrumental measurements. This technique
allows quantification from non-selective measurements (that is, in the presence of common interferences
in field measurement), and is especially useful in the analysis of spectrometric measurements.

In the case presented here, this method is useful both to quantify the concentration of the element
that produces the fluorescence and to determine the fluorescence produced as a function of the incident
optical power (extrapolated to the amount of pollutant), since it presents a linear behavior up to the
nominal current.

Hydrocarbons are more or less long chains of carbon and hydrogens and the added elements
depend on each manufacturer. This way the purpose of this decomposition is not to identify
its constituent components or concentrations [25] but identify the spectrum showing by a
measurement [15,18]. Performing a spectrum adjustment with Gaussians or Lorentzians [24,26]
from a purely mathematical point of view, it is a very useful tool that can lead to valid identification.

To perform the curve fitting method successive iterations Levenberg-Marquardt [27,28] algorithm
(LMA or just LM) is used to obtain a permissible error. As the number of Gaussians or Lorentzians
increases, the result is optimized, but the amount of data to be stored increases and the identification
process slows down. It is necessary to choose a figure-of-merit function that measures the agreement
between the data and the model with a particular choice of parameters, to the avoid risk of
overfitting [29], that is, the same model but with more explanatory variables. In the case presented here,
it was preferable to choose the model with the least number of explanatory variables, since although
the sum of squares of the residuals was always less with more variables, a slight increase in error was
assumed to obtain a shorter calculation time.

The model parameters were adjusted to achieve a minimum in the merit function, producing
the best fit parameters. The adjustment process was a minimization problem in many dimensions.
The data were generally subject to measurement errors (called noise in the context of signal processing),
so the typical data may not exactly fit the model being used, even when that model was correct.
Therefore, we set an error less than the possible noise incorporated into the sample. Although there are
several models with which to measure this error, the weighted sum of squares residuals (WSSR), or
chi-square function has been used.

χ2(a) =
N∑

i=1

[
yi − y(xi; a)

σi

]2
=

N∑
i=1

ωi[yi − y(xi; a)]2 (1)

where the weightsωi are based on standard deviation σi
2. The result is shown below with a different

number of components, until a small enough error is obtained, considering a maximum of six to
validate the method, since, as previously stated, the aim was to achieve a system with the smallest
number of data. As an example, in Table 1 the results of the decomposition of the diesel A spectrum
when the nominal current flows through the LED is shown.
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Table 1. Adjustment results with Gaussians of the diesel A spectrum after five iterations.

Diesel A

Function Wavelength (nm) Height (H) Width (FWHM)

Gaussian 1 421.57 0.744981 15.31856
Gaussian 2 445.36 0.563943 11.21524
Gaussian 3 472.76 0.966697 20.87015

χ2 = 0.0145169

Figure 4 shows the spectrum of diesel A after being bounded and normalized, the Gaussian
functions and the result of the sum of these according to the error are indicated in Table 1.
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The method we present is based on an educated grid-search to find the kernel function that
best reproduces the observed signal. As a working hypothesis, we assumed that the raw signal was
composed of the sum of a series of kernel functions plus a certain amount of noise. The method
consisted of estimating where the maxima were in the most reliable way. We describe in detail below.
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1. First item. Initial Signal Filtering

The first thing to do is to filter the function. Filtering requires two parameters: the order of
the polynomial “po”" and the filter length “fl”. This is done with the function FilterSignal (fl, po)
that implements the Sgolay algorithm. Sgolay filtering requires a polynomial order “po” to set a
local polynomial over a length given by “fl”. Unfortunately, the result is very sensitive to parameter
combinations. For example, a small fl gives a peaky curve, but if “fl” is too large it renders too smoothed
curves and relevant information on possible local maxima is lost. By setting one of the parameters,
e.g., the polynomial order to minimum po = 3, we can set the parameter “fl” free and obtain different
smooth strengths.

2. Potential Extrema Selection through Density-Based Clustering.

Once the smoothed function “smoothSignal” is found for a given fl, we proceed to the estimation
of local maxima by looking at the first and second numerical derivates. We searched points where the
first derivative was approximately 0 with a given tolerance “deriv_tol”. The result was pairs of points
{(lambda, h)} (position and height).

This technique works well for detecting maximums, minimums and chair points. The problem
is that, depending on the level of smoothing, we can obtain false local extrema that would render
false peaks.

Therefore, on this set of extreme candidates, we performed a density cluster analysis.
The advantage of using a density-based method is that it allows us to detect when two maximum
potentials are too close together. In this case, it is unlikely that these are real peaks. The DBSCAN
[DBSCAN] algorithm uses two parameters: MinPts and eps. Here MinPts is the minimum number of
points of a region to be considered dense while eps is the radius of the neighborhood around a point
[DBSCAN]. This algorithm allows us to classify points in different clusters and in noise (those points
not belonging to any cluster) according to their spatial proximity.

In our case, we analyzed the proximity of maxima in the (lambda, h) space. We isolated cluster
centroids and kept the point in case this was reported as noise. This allowed a fine-grain screening
through a majority vote of possible extremes at a local level isolating the representative of the local
community from extremes as a potential extrema.

3. Screening of Local False Maxima.

Once the positions and heights of the possible ends had been identified, the task was to discard
any false maxima that may have been cast in the previous step.

The idea was that if a large proportion “maxpercent” (e.g., 80%) of the points in a window of
“span” around a maximum had lower h values, we discarded the points as a true maximum. This
allowed us to skip false local maxima with very little computational cost.

4. Building the Fitting Model.

Once the maximums were set—let us say there were m of them—we used a representation of the
signal function by means of a weighted sum of kernels:

f (x, y) ∼
m∑

i=1

gi(x, y;α). (2)

If, for example, we used Gaussian kernels, we would have three parameters for each kernel: mean,
variance and height (3m in total).

5. Fitting by the NLS Method.

The idea was to optimize these parameters with an educated guess for their initial and final values
to direct the search in the most efficient manner. This guess was made in the following way.

Estimation for lambda: lambda_o ± lambdaspan, being lambda_o the value we found in the
previous stage.
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On the other hand, both sigma and h were left free-oscillating between reasonable values (e.g.,
sigma = [0, max_x/2]) and h [0, max_y].

As a result of the analysis, we got an R-squared (RSQ) value. Once we calculated the RSQ, we
repeated the whole process again for different filtering values and found the best model. That was the
one with the lowest RSQ (see Figure 6).
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2.2. Identification Methods

This section describes the proposed method for the identification of the compounds stored in
the database. Since the system is proposed for continuous detection, the processing should be as fast
as possible, while it is possible to further optimize the result subsequently incorporating machine
learning techniques.

Regarding the detection capacity for variable amounts of the pollutant, it has been previously
shown that since the fluorescence produced is proportional to the amount of the compound to be
detected [13], and also to the power of light emitted [1], this study used this second method so that
less optical power was equivalent to a lesser amount of the compound [30]. Figure 7 shows the
decomposition of the diesel spectrum A at different optical powers obtained from the injected current
in a box plot diagram. The deviation from the nominal current was very small at all wavelengths.
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was identified.

Quantitative differences were significant, but when the spectra were normalized, the information
of each of the compounds was preserved, providing robustness to the procedure.

2.2.1. Trial and Error System

This is a heuristic method widely used in the laboratory, since large databases and powerful
computers are available, as well as enough time frames to carry out this task. The scheme of the
logical identification system in which the spectrum obtained from a sample is compared with all in the
database (Figure 8) and the generation of standard footprints is carried out in the laboratory. In the
field analyzer, each spectrum of the sample taken is decomposed into Gaussian functions where the
wavelengths have been fixed based on the pattern-footprint which it is intended to compare with.
This process is repeated for all the element templates stored in the database. If the heights (H) and
widths (FWHM) at those wavelengths match within an allowed error threshold, the program interprets
the match. When there is coincidence with more than one compound, the one with the lowest error
is taken.
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To verify if the results were distinguishable enough from each other, the template of the diesel A
compound (Figure 7) and the Gaussian decomposition of the rest of the compounds was superimposed
in Figure 9 on a box-plot diagram, each of them with three optical powers. This example is illustrative
since with only three Gaussians the problem is solved after having limited the wavelength range.
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As shown in Figure 9, it was possible to implement a simple procedure for the identification of
the sample compound, since the components were sufficiently separated in each wavelength, both in
height (H) and width. (FWHM) [26,31].

2.2.2. Proposed Method

Although the method we have presented is valid both in laboratory conditions and in the field as
long as the number of compounds is not very high, it is necessary to develop another method that
allows us to increase the database. This way it can detect multiple substances quickly, maximizing the
computing capacity of current processors.

Once it has been verified that the decomposition into simple functions can be carried out quickly,
the problem of comparing the results arrives from the fact that each compound to be compared presents
a template at different wavelengths since it has different local maxima and minima.

The method presented here consists of performing a search on a common series of wavelengths
to all the stored compounds since this would lead to a single processing of the spectrum, where the
outputs obtained would be the heights (H) and widths (FWHM) obtained. The comparison procedure
is then reduced to the subsequent numerical comparison, allowing multiple improvements and the
introduction of learning processes (Figure 10).
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These common wavelengths could then be obtained from any computer implementation of the
procedure; taking significant lengths as a starting point these were displaced in each iteration until an
admitted error was achieved. If after a predetermined number of iterations a satisfactory result was
not obtained, then an additional wavelength was added (Figure 11).
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Figure 11. Determination of wavelengths to be used in the common template.

In view of the results, some of the components in certain compounds were greatly reduced, but
it was more profitable in terms of computing time to have insignificant components than to add
more functions.

3. Results

As previously stated, the wavelengths for a common template, constructed only with Gaussian
functions, are shown in Table 2.

Table 2. Common template wavelengths.

Function Wavelength (nm)

Gaussian 1 403.618
Gaussian 2 414.007
Gaussian 3 426.558
Gaussian 4 446.841
Gaussian 5 475.212

Taking as reference the common template where all the compounds appeared and the normalized
values they could take, and superimposing the box-plot diagram of the compound to be detected; two
examples are seen in Figures 12 and 13.
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4. Conclusions

In view of the results obtained and based on the diagrams presented, it is possible to develop
a CART decision tree from which an identification program can be obtained since there is enough
difference in heights and widths of the functions in which each spectrum is decomposed.

Both the generation system of individual footprints of each compound and the field identification
system can be carried out based on the concepts set forth herein, and the platform on which it is
installed must be differentiated in each case.

Once the validity of the presented method has been verified, it is necessary to continue debugging
it, so that greater precision and differentiation of each of the compounds can be obtained.

On the other hand, it is necessary to expand the library of stored spectra. Furthermore, the authors
work on obtaining spectra of the contaminants not only depends on the amount of the compound,
but also on its degradation. As they are volatile compounds, hydrogen-carbon chains pass into the air,
and therefore the spectrum can present differences. This characteristic can also serve to determine the
time that the pollutant has been exposed to air.
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