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Abstract: This work is inspired by motion control of cleaning robots, operating in certain endogenous
environments, and performing various tasks like door cleaning, wall sanitizing, etc. The base
platform’s motion for these robots is generally similar to the motion of four-wheel cars. Most of the
cleaning and maintenance tasks require detection, path planning, and control. The motion controller’s
job is to ensure the robot follows the desired path or a set of points, pre-decided by the path planner.
This control loop generally requires some feedback from the on-board sensors, and odometry modules,
to compute the necessary velocity inputs for the wheels. As the sensors and odometry modules
are prone to environmental noise, dead-reckoning errors, and calibration errors, the control input
may not provide satisfactory performance in a closed-loop. This paper develops a robust-observer
based sliding mode controller to fulfill the motion control task in the presence of incomplete state
measurements and sensor inaccuracies. A robust intrinsic observer design is proposed to estimate the
input matrix, which is used for dynamic feedback linearization. The resulting uncertain dynamics
are then stabilized through a sliding mode controller. The proposed robust-observer based sliding
mode technique assures asymptotic trajectory tracking in the presence of measurement uncertainties.
Lyapunov based stability analysis is used to guarantee the convergence of the closed-loop system,
and the proposed strategy is successfully validated through numerical simulations.

Keywords: path tracking; measurement error; robust estimation

1. Introduction

In the recent past, wheeled mobile robots have played a critical role in automating various cleaning
and sanitation tasks [1,2]. The importance cannot be stressed more in this pandemic situation. Not only
the cleaning robots provide isolation from hazardous and infectious environments, but also they are
much more efficient in the overall performance. A cleaning robot generally consists of a base platform
with multiple wheels, which may be omnidirectional depending upon applications. The wheeled
base platform can carry a versatile set of cleaning modules for different types of cleaning/sanitation
requirements. For example, a Human Service Robot (HSR) can have multiple manipulators, which can
be fitted with brushes, vacuum pumps, rollers, etc. Similarly, the base platform of a floor cleaning
robot may have sweeping brushes, bin bags, etc.

The last two decades have given rise to the development of many types of cleaning robots,
depending on the required functionality. The authors of [3] presented a pavement cleaning platform
called Panthera, whose width can change according to static and dynamic environments. The design
and development of a reconfigurable floor cleaning robot h-Tetro are discussed in [4]. The drain
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maintenance and sanitation tasks are automated by a four-legged robot with wheels [5]. The HSR
platforms are predominantly used for door cleaning, table scrubbing, lift panel sanitation etc.

Even though the cleaning robots discussed above vary in their shape, structure, and functionality,
they have one common thing, which is a wheeled base platform. The number of wheels and their types
are decided by the range of motion required for the task. An outdoor cleaning robot may require three
or four wheels for its movement [6,7], whereas a small indoor cleaning robot may run on two active
wheels [8]. The HSR type of robots are fitted with omnidirectional wheels for their movement [9].
Certain reconfigurable robots may contain one wheel in each unit [10,11]. Most of vertical robots also
require magnetic or suction wheels for their movement [12].

Given a particular type of platform, the overall task is divided into many sub-steps. For example,
a door cleaning robot should first detect the doors in an indoor environment, followed by reaching that
particular position avoiding any static or dynamic obstacles [9,13]. Given an instantaneous position
and a goal position, the path planning task can be carried out using many techniques. Once a reference
path is generated, the motion control algorithm should be able to follow that path without any issues.
A motion control policy takes the reference path and sensor measurements as its input, and provide
the required input velocity/torque to the motors governing the wheels.

The motion control for wheeled mobile robots (WMRs) has received considerable attention
from the research community due to its importance in the efficient completion of the required task.
Numerous linear and nonlinear control laws are proposed for trajectory following and posture
stabilization of WMR [14,15]. Sometimes, the mathematical model is transformed into a polar
coordinate form to simplify the design procedure [16]. Some popular approaches for such tasks
are PID control, feedback linearization, backstepping design, linear quadratic regulator (LQR),
model predictive control, etc., [17,18]. The disturbances and uncertainties present in the robot are
tackled by robust [19,20] or adaptive [15] control techniques.

All the control techniques require the measurements of the state variables, that define the
mathematical model of the robot. As the measurements are carried out through sensors and odometry
module, full state measurements always add to the cost and complexity of the electronics module of a
robot. If some measurements are not available, then output feedback control laws [21] or estimation
based control strategies [22,23] are used. The static and dynamic feedback techniques are very useful
in terms of practical viewpoint.

It is comparatively easy to get the position measurements, compared to the heading angle,
which may require additional cost for gyroscope and IMU. Moreover, a relative coordinate
(discrepancy between actual robot posture, and desire posture) can be easily obtained in most of
the practical applications by using vision based data or LIDAR/RADAR. However, the outputs
of sensor modules and odometry modules are not very accurate inside the indoor environment.
The sensor unpredictability may result from various noise and environmental factors. The odometry
section may be affected by quantization errors and the accumulation of errors due to dead-reckoning.
If the data used for the control module may not point to the exact posture/position of the robot,
then they may lead to an inaccurate following of the desired trajectory. Hence, it becomes important to
consider these issues while designing control laws for robots.

Many designs of robot tracking controllers for dealing with the absence of heading angle
measurement could be found in literature [22]. However, most of the estimation techniques assume
the available position measurements are disturbance free. Moreover, the standard designs like
PID, output feedback linearization, dynamic feedback linearization [15] may not provide a desired
closed-loop performance in the presence of measurement uncertainties. The absence of heading
angle information and the presence of measurement uncertainties are the motivation behind this
paper. To solve both the problems simultaneously, the work proposes an observer-based robust
dynamic feedback linearization for trajectory tracking control in WMR. The dynamic feedback
linearization requires the computation of a Jacobian type matrix comprising of trigonometric
functions of heading angle, which is unavailable for measurement. Unlike the earlier observer
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designs, the trigonometric functions are directly estimated in the presence of uncertainties in position
measurements. The dynamic feedback linearizing controller is made robust by exploiting the sliding
mode technique. The closed-loop stability of the robust observer and sliding mode controller is
analysed using Lyapunov technique. The proposed technique assures asymptotic trajectory tracking
for car-like robots, whose validation is proved using numerical simulations.

The mathematical model of the robot is described in Section 2. The method proposed for
estimating the heading angle is given in Section 3. Section 4 describes the robust control law
of the system. The simulation results are analyzed and discussed in Section 5 for the validation.
Finally, Section 6 concludes the work.

2. Mathematical Model

This paper considers a four-wheel driven car-like robot for deriving trajectory tracking control
law. The mathematical model of the robot is derived using two assumptions, similar to [24].

(i) There is no lateral slip while in motion.
(ii) The robot motion platform does not have any flexible parts.

The geometric relation between the robot center of gravity (COG), and the wheel centers can be
observed from Figure 1 (the origin coincides with COG). The pose of the robot at any moment can be
defined by p = [xr, yr, β]T , where β is the heading of the robot with respect to the local coordinate frame.
The distance between the front and rear wheels is L1, whereas L2 represents the width of the robot. All
the four wheels (W f o, W f i, Wro, Wri) are at a distance L from the robot COG. The parameter α denotes
the angle between the line of sight of the robot (through COG) and each wheel. Given the position
(xo, yo) of the COG, the longitudinal and transversal position of each wheel can be described below.

W f i(x, y) = xo + Lcos(α + β), yo + Lsin(α + β)

W f o(x, y) = xo + Lcos(−α + β), yo + Lsin(−α + β)

Wri(x, y) = xo + Lcos(π − α + β), yo + Lsin(π − α + β)

Wro(x, y) = xo + Lcos(π + α + β), yo + Lsin(π + α + β)

(1)

The lateral slip of the vehicle is neglected. Hence, the resulting constraint

ẋosin(β) + ẏocos(β) = 0 (2)

is a nonholonomic one. Similar constraints for the four wheels can be derived by exploiting the wheel
positions and their steering angles.
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Figure 1. Schematic of the robot.

2.1. Differential Steering

A car-like robot with independent steering at each wheel can be driven in various ways. As the
focus of the paper is to study the effect of measurement and odometry errors on trajectory tracking,
we have chosen the Ackermann-Jeantand methodology. In this technique, the outer wheels (W f o, Wro)
have the same speed, and the inner wheel (W f i, Wri) velocities are also kept the same. This model is
also called the reverse differential technique, where the inner and outer wheel speeds are derived as:

vin = v(1− 2L2

L1
tan(β))

vout = v(1 +
2L2

L1
tan(β))

ωin = ω(
L1

L1 − L2tan(β)
)

ωout = ω(
L1

L1 + L2tan(β)
)

(3)

where v and ω are linear and angular velocities of robot COG respectively.

The forward kinematics of the simplified robot model can be described as:

ṗ =

ẋ
ẏ
β̇

 =

cos(β) 0
sin(β) 0

0 1

 [
v
ω

]
(4)

2.2. Dynamic Feedback Linearization

The trajectory tracking (path following) problem can be defined as [25]: Given a set of desired
time-varying coordinate (xd(t), yd(t)), derive a pair of admissible control input (v, ω) such that the
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robot can follow the desired path from any arbitrary position (x, y), with minimum/zero discrepancies.
So the controlled variables for this problem are x and y.[

ẋ
ẏ

]
=

[
cos(β) 0
sin(β) 0

] [
v
ω

]
(5)

From (5), it can be observed that the control input ω does not explicitly effect (ẋ, ẏ).
However, it can affect them implicitly through the heading angle β. As there exists a singularity
in the input matrix, it is not possible to satisfy controllability condition, which is critical for controller
design. One of the celebrated ways to circumvent this issue, is to use a dynamic feedback linearization
method. The dynamic feedback linearization technique for nonlinear systems, search for a dynamic
controller whose output can act as the input for the robot.

For this purpose, consider an integrator of the form

ζ̇ = f , v = ζ (6)

where f will be decided later. This integrator acts as a dynamic compensator whose output ζ will act
as the control input v. If the positions (x, y) are differentiated twice, one may derive:[

ẍ
ÿ

]
=

[
cos(β) −ζsin(β)

sin(β) ζcos(β)

] [
f
ω

]
= ΘU (7)

where U = [ f , ω] ∈ R2 is the transformed control input pair, and Θ is the new input matrix.
The trajectory tracking problem for the robot modeled as (4) is converted to the problem of

determining an admissible U for the mathematical model given in (7). A simple inversion control law

U = Θ−1(ξ) (8)

transforms the system (7) into a linear system of the form:[
ẍ
ÿ

]
= ξ (9)

where ξ = [ξ1, ξ2]
T is the new control input. A simple proportional-differential (PD) type control law

for ξ can solve the tracking problem for (7).

Remark 1. The control problems for the wheeled mobile robots can be broadly categorized into trajectory
tracking and posture stabilization problems. For a four-wheeled robot with independent driving and steering,
the posture stabilization problem can be divided into two steps. The robot should first go to a desired position
(xd, yd), and then the steering motors can complete the orientation task. Hence, a trajectory tracking controller
with a PID for steering can complete this task.

The above control law assumes that the measurements for x, y, β are available and accurate.
As this is not the case in many practical applications, the control law should be able to deal with it.

It is assumed that the position measurements for x and y are available but corrupted by some
unknown but bounded disturbances. It should be noted that the implementation of dynamic feedback
linearization the control law U = Θ−1ξ requires an explicit calculation of the input matrix Θ. As the
measurement for the heading angle β is unavailable, it is not possible to use the control law directly.
The following subsection describes an approach to estimate the matrix Θ.
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3. Estimation of Θ

The matrix Θ comprises of the known variable ζ = v, and the unknown terms cos(β), sin(β).
One can estimate the heading angle β, and derive the unknown terms. However, it is easier to estimate
the unknown terms directly without bothering about the heading angle measurement. This approach
is also advantageous in cases where the measurement for the heading angle is not accurate. For the
purpose of designing an observer, define

p1 = x, p2 = y, p3 = sin(β), p4 = cos(β). (10)

The dynamics of these variables can be written as:

ṗ1 = ζ p4

ṗ2 = ζ p3

ṗ3 = ωp4

ṗ4 = −ωp3

(11)

The states p1 and p2 are available for measurement, even though they are corrupted. These data
may be corrupted due to random noise, and some deterministic errors like quantization error during
implementation. To remove the random noise, the measurements are passed through Kalman filter,
and the technique is widely documented. If the computation power is limited, one may use a simple
low pass filter to remove any high-frequency noise. Here, it is assumed that the measurements are
already passed through an adequate filter to remove any random high-frequency noise. The filtered
measurements can be represented as:

px = p1 + nx, py = p2 + ny (12)

where nx and ny are measurement uncertainties in x and y respectively. The following assumptions
are important for practical implementation.

Assumption 1. There exist two positive constants c1, c2 such that the measurement uncertainties and their
derivatives satisfy,

||nx|| ≤ c1, ||ny|| ≤ c1, ||ṅx|| ≤ c2, ||ṅy|| ≤ c2. (13)

Assumption I is automatically satisfied in most of the practical scenarios. By design, the sensors
measuring the position can not give an unbounded value. Moreover, the errors due to sensor
inaccuracies and dead-reckoning are always bounded. The rate of change of these errors (ṅx, ṅy)
can be large in case of a sudden change/fault and produce a high-frequency noise, but they can be
eliminated by a suitable filter. The controller needs to act on a finite part of them, which can not be
filtered. So restricting (ṅx, ṅy) is not conservative in practical situations.

Assumption 2. The linear velocity v of the robot is always positive except at the origin of the error coordinates.

Assumption II means, the velocity of the vehicle can not be zero apart from the origin, or when
tracking error is zero. This assumption can be satisfied by ensuring the minimum velocity to be a very
small non-zero value unless the robot is at the origin [15].
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A reduced order observer is constructed using px, py as:

˙̄p3 = ω p̂4 − l(t)(ζ p̂3)

˙̄p4 = −ω p̂3 − l(t)(ζ p̂4)

p̂3 = p̄3 + l(t)px

p̂4 = − p̄4 + l(t)py

(14)

where p̄3, p̄4 can be regarded as intermediate variables, and p̂3, p̂4 are the estimates for the unknown
terms sin(β), cos(β). The time varying observer gain l(t) is selected as:

l(t) = (lo − la)exp(−lnt) + la (15)

where the design scalars lo, la and ln are positive constants, which need to be tuned for better
performance. It should be noted that the observer gain is always positive ∀, t ≥ 0, and satisfies

la ≤ l(t) ≤ lo, (16)

for the choice lo > la. The estimate for the matrix Θ can be computed as:

Θ̂ =

[
p̂4 −ζ p̂3

p̂3 ζ p̂4

]
(17)

Convergence Analysis of the Observer

It is important to assure the convergence of the estimates p̂3 and p̂4 to their true values. For this
sake define two error variables

p̃3 = p3 − p̂3, p̃4 = p4 − p̂4 (18)

Exploiting the Equation (11), the measurements (12) and the observer dynamics (14), the dynamics
of estimation error can be derived as:

˙̃p3 = ω p̃4 − l(t)(ζ p̃3)− l(t)(ṅx)

˙̃p4 = −ω p̃3 − l(t)(ζ p̃4)− l(t)(ṅy)
(19)

The convergence can be analyzed for two cases.
Case 1: First consider the case when the measurement uncertainties nx, ny are slowly varying.

For this case
ṅx = ṅy ≈ 0. (20)

The estimation error dynamics becomes,

˙̃p3 = ω p̃4 − l(t)(ζ p̃3)

˙̃p4 = −ω p̃3 − l(t)(ζ p̃4)

⇒
[

˙̃p3
˙̃p4

]
=

[
−l(t)ζ ω

−ω −l(t)ζ

] [
p̃3

p̃4

] (21)

As ζ = v and l(t) > 0, ∀t ≥ 0 from (16), it can be concluded that ζl(t) > 0, ∀t ≥ 0.
Consider a candidate Lyapunov function

Vo =
1
2
[ p̃3, p̃4][ p̃3, p̃4]

T . (22)
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The time derivative of this function along (21) can be derived as:

V̇o =
1
2
[ p̃3, p̃4](

[
−l(t)ζ ω

−ω −l(t)ζ

]
+

[
−l(t)ζ ω

−ω −l(t)ζ

]T

)

[
p̃3

p̃4

]

⇒ V̇o ≤ [ p̃3, p̃4]

[
−l(t)ζ 0

0 −l(t)ζ

] [
p̃3

p̃4

]
⇒ V̇o ≤ −l(t)ζVo.

(23)

Therefore, the estimation error exponentially converges to zero in presence of slowly varying
measurement uncertainties.

Case 2: For measurement disturbances which are not slowly varying, the rate of variation is
bounded by the constant c2 defined in Assumption I. Taking the same Lyapunov function for case 1,
and deriving the rate of change of this function along the error dynamics (19), one can obtain:

V̇o ≤ [ p̃3, p̃4]

[
−l(t)ζ 0

0 −l(t)ζ

] [
p̃3

p̃4

]
+ l(t)[ p̃3, p̃4]

[
ṅx

ṅy

]
(24)

⇒ V̇o ≤ −l(t)ζVo + l(t)||
[

p̃3

p̃4

]
||||

[
ṅx

ṅy

]
|| (25)

⇒
√̇

Vo ≤ −l(t)
ζ

2

√
Vo +

l(t)√
Vo
||
[

p̃3

p̃4

]
||c2 (26)

⇒
√̇

Vo ≤ −l(t)
ζ

2

√
Vo + c2||l(t)|| (27)

Hence, there exists a positive constant γ1 such that,

⇒ ||
[

p̃3(t)
p̃4(t)

]
|| ≤ exp(−tl(t)

ζ

2
)||

[
p̃3(0)
p̃4(0)

]
||+ 2γ1c2

ζ
(28)

Therefore, the estimation error is always bounded, and the steady state value is given by 2γ1c2
ζ .

The constant γ1 depends on the norm of the observer gain l(t).
Selection of lo, la, ln: Generally in the neighborhood of t ≈ 0 (transient behavior) the variation

in measurement uncertainties are smaller compared to the norm of estimation errors ||
[

p̃3 p̃4

]
||.

By choosing a moderate gain lo > la > 0, the estimation error quickly converges to a small value.
However, after the initial transients, the estimation error can be smaller than the constant c2. So a
larger l(t) may amplify the measurement uncertainty. Therefore, the observer gain should be very
small for the steady state uncertainty attenuation. We know,

lim
t→∞

l(t) = la. (29)

So la should be chosen sufficiently small. The constant ln determines the time evolution of the
observer gain l(t). It should not be tuned according to the need. The above analysis can be summarised
as the following theorem.

Theorem 1. Let the assumptions I and II hold true. If an observer is constructed as given in (14), and the
observer gain is chosen as (15), then the estimation errors exponentially converge to zero for slow varying
measurement uncertainties. Moreover, the observer guarantees estimation error convergence to a small
neighborhood of origin for measurement uncertainties satisfying assumption I.
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4. Robust Control Law

From the previous section, it can be concluded that the estimation error converges to zero
exponentially, or converges to a very small neighborhood of zero. So, it is safe to assume that the
estimate Θ̂ also converges to its true value Θ. However, there may be a small deviation for case 2
described in the previous section. Let’s choose a control law

U = Θ̂−1(ξ + ξr) (30)

for the mathematical model (7). The variable ξ = [ξ1, ξ2]
T represents a nominal PD control law,

and ξr = [ξr1, ξr2]
T represents the robust term to deal with inaccuracies in Θ̂, x, y. As the estimation

error is very close to zero,
ΘΘ̂−1 = I(1± ε) (31)

where I is an identity matrix of second-order, and ε is a small positive number. Here, the deviation is
assumed to be the same in both the diagonal elements. Even though they are different, the controller
design remains the same. Rewrite the closed-loop system as:[

ẍ
ÿ

]
=

[
ξ1 + dx + ξr1

ξ2 + dy + ξr2

]
(32)

where dx and dy represent the lumped disturbances arising due to the uncertainties present in x, y,
and the additional terms ±εξ1,±εξ2. The following assumption is made to design the robust part ξr

of the control law.

Assumption 3. There exist two positive sclars d1 and d2 such that

||dx|| ≤ d1, ||dy|| ≤ d2. (33)

The assumption III is not conservative since the estimation error is very small, and the
measurement errors are bounded from assumption I. From (32), it is clear that the closed-loop dynamics
are decoupled. So the control input pairs ξ1, ξr1 and ξ2, ξr2 can be designed independently.

For this purpose, choose two sliding surfaces:

sx = ėx + k1ex, sy = ėy + k2ey (34)

where ex = x − xd, ey = y − yd, and k1, k2 are positive scalars. Let’s define a candidate
Lyapunov function

Vx =
1
2

s2
x. (35)

The time derivative of Vx along (32) is given by

V̇x = sx ṡx = sx(ẍ− ẍd + k1 ėx)

= sx(ξ1 + ξr1 + dx − ẍd + k1 ėx)
(36)

Choose ξ1 = ẍd − k1 ėx − k3sx (k3 is a positive scalar), hence

V̇x = sx(−k2sx + ξr1 + dx) (37)

choose ξr1 = −(1 + d1)tanh(sx), then

V̇x ≤ −k3s2
x − (1 + d1)sxtanh(sx) + d1||sx||

⇒ V̇x ≤ −k3s2
x − (1 + d1)||sx||+ d1||sx||.

(38)
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So the rate of change of Vx is negative definite, and sx → 0 asymptotically.

sx → 0⇒ ėx = −k1ex ⇒ x → xd. (39)

A similar analysis can be done for the sliding function sy. The controller design procedure can be
summarized in the following theorem.

Theorem 2. Let all the assumptions be satisfied. If the observer design is done according to Theorem 1, and the
control law is chosen as

ξ1 = ẍd − k1 ėx − k3sx, ξr1 = −(1 + d1)tanh(sx)

ξ2 = ÿd − k2 ėx − k4sx, ξr2 = −(1 + d2)tanh(sy)[
f
ω

]
= Θ̂−1

[
ξ1 + ξr1

ξ2 + ξr2

]
v = ζ

(40)

then the trajectory tracking errors ex, ey asymptotically converge to zero.

Selection of ξ1(0): To assure perfect trajectory tracking, one should choose
ξ1(o) =

√
x(0)2 + y(0)2, which simplifies the control law into a feed-forward action. This also avoid

zero crossing of v, which may create problem in observer convergence and stability in a closed-loop.
Another effective way to avoid this problem is to reset ξ1(t), whenever it is very near to zero.

5. Simulation Results and Discussion

To verify the efficacy of the proposed approach, the closed-loop simulations were carried out for
different cases. The path tracking task was common in all the cases, where the desired path was to
track a circle of 2 m radius. For this purpose, the desired commands for X and Y positions are given as
xd = 2sin(t), yd = 2cos(t).

The distance between wheels (L2) was assumed to be 0.4 units, the length of the robot (L1) was
considered as 0.7 units, and the wheels were assumed to be placed at an angle (α) 30 degrees from
the COG. The observer gains could be chosen to be any positive number as discussed in Section 3.
However, care should be taken such that the observer could assure robust performance in the presence
of both slow and fast varying uncertainties. After some trial and error, the design parameters of
time-varying observer gain were chosen as lo = 1.1, la = 0.2, ln = 0.7, i.e.,

l(t) = 0.9 exp(−0.7t) + 0.2. (41)

The controller parameters should be chosen such that the transient and steady state performance
are satisfactory. This could be ensured by analyzing the poles in closed loop, or tuning the gains till
a satisfactory response was obtained. The design parameters for the sliding mode controller were
chosen as k1 = k2 = 3, k3 = k4 = 2.5.

The initial condition of the robot COG was chosen as (3,1). To ensure perfect trajectory tracking
the initial condition for the dynamic integrator was chosen as ξ1(0) =

√
10.

Initially the simulation was carried out in the absence of any measurement errors nx = ny = 0.
It can be observed from Figure 2 that the robot was able to successfully track the circular path,
starting from an initial position (x(0), y(0)) = (3, 1). The observer also efficiently estimated the signals
cos(β) and sin(β), after an initial transient. Figure 3 shows, the transients were well within maximum
bounds for cos(β) and sin(β).

The same tracking task was given again with corrupting the x and y measurements by a set of
slow varying signals nx = 0.3tanh(x), ny = 0.2 ∗ tanh(y). It should be noted that, the measurement
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disturbances nx, ny satisfied assumption 1. The estimation error, trajectory convergence, and path
tracking are given in Figures 4–6.
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Figure 2. Circular path tracking without sensor errors.
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It can be observed from Figure 6 that the COG of the robot had a small discrepancy with the
desired path. This can be explained by the small errors in the convergence of x and y state trajectories
(Figure 5). It should also be noted that the estimation errors (Figure 4) converged to a very small bound
after initial transients.

To test the robustness of the technique against fast varying measurement errors, the position in x
and y coordinates were corrupted with a set of fast varying signals nx = 0.3sin(10t), ny = 0.25cos(10t),
which satisfied assumption 1.

The estimation errors shown in Figure 7 point to the fact that the observer was able to attenuate
the effect of the uncertainties to a large extent. However, a small oscillating error still remained in
the steady state. For this reason, the trajectories converged to a small steady state error, as shown in
Figure 8. As the trajectories oscillate with a very small magnitude in the steady state, the path tracking
also result in a very small error (as shown in Figure 9).
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Figure 7. Estimation error in presence of fast varying of measurement errors.
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Figure 8. Convergence of X and Y position of robot in presence of fast varying measurement errors.
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Figure 9. Circular path tracking with fast varying measurement errors.

To test the efficacy of the proposed controller, it was compared with a conventional PID and a
dynamic feedback linearization strategy without the sliding mode controller (SMC). The tracking
errors for all three controllers are shown in Figures 10 and 11. The PID controller took a longer time
to settle down, and had comparatively larger transients. As the measurements were corrupted with
disturbances, they were amplified by the derivative part of the control law. A better performance could
be expected from PI control law, but it could not assure transient performance in nonlinear systems.
The dynamic feedback linearization without SMC was able to assure a bounded tracking performance.
However, the steady state errors were comparatively larger due to the absence of any robust part in
the controller.
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Figure 10. Comparison of position error in x direction.
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6. Conclusions

A new robust observer-based control strategy is developed for car-like robots in endogenous
environments, where accurate measurements for robot pose is difficult to obtain. The proposed
approach can simultaneously deal with uncertainties in position measurement and absence of heading
angle information. A robust observer with time varying gain was used to directly estimate the
trigonometric functions involving heading angles. The estimates were exploited to formulate a dynamic
feedback linearization based sliding mode design. The Lyapunov stability analysis assures closed-loop
stability, and simulation results show the efficacy of the proposed methodology. The controller does not
account for any modeling uncertainties and friction effects, which are the subjects of the future works.
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