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Abstract: Sparse dictionary learning (SDL) is a classic representation learning method and has been
widely used in data analysis. Recently, the `m-norm (m ≥ 3, m ∈ N) maximization has been proposed
to solve SDL, which reshapes the problem to an optimization problem with orthogonality constraints.
In this paper, we first propose an `m-norm maximization model for solving dual principal component
pursuit (DPCP) based on the similarities between DPCP and SDL. Then, we propose a smooth
unconstrained exact penalty model and show its equivalence with the `m-norm maximization
model. Based on our penalty model, we develop an efficient first-order algorithm for solving
our penalty model (PenNMF) and show its global convergence. Extensive experiments illustrate
the high efficiency of PenNMF when compared with the other state-of-the-art algorithms on solving
the `m-norm maximization with orthogonality constraints.

Keywords: dual principal component pursuit; orthogonality constraint; sparse dictionary learning;
stiefel manifold

1. Introduction

In this paper, we focus on solving the optimization problem with orthogonality constraints:

min
W∈Rn×p

f (W) := − 1
m

∥∥∥W>Y
∥∥∥m

m

s.t. W>W = Ip,
(1)

where W is the variable, Y ∈ Rn×N is a given data matrix, and Ip denotes the identity

matrix in Rp×p. Besides, the `m-norm is defined as ‖Y‖m =
[∑n

i=1
∑N

j=1(Yij)
m
] 1

m with constant

m ∈ (2, 4]. For brevity, the orthogonality constraints W>W = Ip in (1) can be expressed
as W ∈ Sn,p := {W ∈ Rn×p|W>W = Ip}. Here, Sn,p denotes the Stiefel manifold in real matrix
space, and we call it the Stiefel manifold for simplicity in the rest of our paper.

The sparse dictionary learning (SDL) exploits the low-dimensional features within a set of
unlabeled data, and therefore plays an important role in unsupervised representative learning.
More specifically, given a data set Y = [y1, y2, . . . , yN ] ∈ Rn×N that contains N samples in Rn, SDL aims
to compute a full-rank matrix D ∈ Rn×p named as dictionary, and an associated sparse representation
X = [x1, . . . , xN ] that satisfies

Y = DX, (2)
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or equivalently, find a W = D>−1
such that

X = W>Y. (3)

As a result, the SDL can be solved by finding a W ∈ Rn×n, which leads to a sparse W>Y.
Some existing works introduce the `0-norm or `1-norm penalty term to promote the underlying sparsity
of W>Y and present various algorithms for solving the consequent optimization models, see the work
in [1–15] for instance. Interested readers are referred to a recent paper [16] and the references therein.
However, the `1-norm minimization-based models are known to be sensitive with noise, and so far
the existing approaches are not efficient enough for the purpose of solving real application problems
which are often large-scale [17]. Consequently, a proper model with an efficient algorithm for SDL is
desired, especially for the large-scale case.

Recently, an `4-norm maximization model is proposed in [17], which can recover the entire
dictionary in a single run. This new formulation is motivated by the fact that maximizing a higher-order
norm promotes spikiness and sparsity at the same time. The authors of [17] demonstrate that
the global minimizers of `4-norm maximization with orthogonality constraints are very close to the true
dictionary. Moreover, concaveness of the objective function in Equation (1) enables a fast fixed-point
type algorithm, named matching, stretching, and projection (MSP). MSP achieves significant
speedup compared with existing methods based on `0-norm or `1-norm penalty minimization.
As maximizing any higher-order norm over a lower-order norm constraint leads to sparse and spiky
solutions, Shen et al. [18] extend `4-norm maximization technique to a generalized lm-norm
maximization (m ≥ 3). In addition, the authors propose a gradient projection method (GPM) for
solving it with guaranteed global convergence.

However, both MSP and GPM invoke polar decomposition to keep the feasibility in each iteration.
As illustrated in [19–21], orthonormalization lacks concurrency, which results in low scalability
in column-wise parallel computing, particularly when the number of columns is large.

Several infeasible approaches have been developed to avoid orthonormalization. Gao et al. [19]
propose the proximal linearized augmented Lagrangian method (PLAM) as well as its enhanced
version, PCAL. Based on the merit function used in Gao et al. [19], Xiao et al. [21] propose an exact
penalty model with a convex and compact auxiliary constraint, named PenC, for optimization problems
with orthogonality constraints. The authors propose an approximated gradient method named PenCF
for solving PenC and showed its global convergence and local convergence rate under mild conditions.
The above-mentioned infeasible approaches do not require orthonormalization in each iteration.
Numerical experiments illustrate the promising performance of these infeasible approaches with
the existing state-of-the-art algorithms.

Although PCAL and PenCF avoid the orthonormalization process by taking infeasible steps,
these approaches require additional constraints to restrict the sequence in a compact set in Rn×p,
which can undermine their overall efficiency. Therefore, to develop an efficient algorithm on solving
SDL, an infeasible model without constraints is desired.

Similar to the `1-norm penalty model for SDL, dual principal component pursuit (DPCP)
aims to recover a tangent vector in Rn from samples Y = [y1, . . . , yn] ∈ Rn×N contaminated by
outliers. Specifically, DPCP solves the following nonsmooth nonconvex optimization problem with
a spherical constraint:

min
W∈Rn

∥∥∥W>Y
∥∥∥

1

s.t. W>W = 1.
(4)

Due to the ability on recovering an n − 1 dimensional hyperplane from Rn, DPCP has wide
applications in 3D computer vision, such as detecting planar structures in 3D point clouds in KITTI
dataset [22,23] and estimating relative poses in multiple-view [24].
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Existing approaches [25–28] for solving convex problem (4) are not scalable and not competent
in high dimensional cases [29]. On the other hand, the Random Sampling and Consensus (RANSAC)
algorithm [30] has been one of the most popular methods in computer vision for the high relative
dimension setting. RANSAC alternates between fitting a subspace to a randomly sampled minimal
number of points (n− 1 in the case of DPCP) and measuring the quality of selected subspace by using
the number of data-points close to the subspace. In particular, as described in [29], RANSAC can
be extremely effective when the probability of sampling outlier-free samples inside the allocated
time budget is large. Recently, Tsakiris and Vidal [31] introduce Denoised-DPCP (DPCP-d) by
minimizing

∥∥y−W>Y
∥∥2

F + γ ‖y‖1 over the constraints W>W = 1, y ∈ RN . In the same paper,
Tsakiris and Vidal [31] propose an Iteratively-Reweighted-Least-Squares algorithm (DPCP-IRLS) for
solving the non-convex DPCP problem (4). The authors illustrate that DPCP-IRLS can successfully
handle 30% to 50% of outliers and showed its high efficiency compared with RANSAC. In addition,
Zhu et al. [32] propose a projected subgradient-based algorithm named DPCP-PSGM, which exhibits
great efficiency on reconstructing road-plane in the KITTA dataset. There are also some approaches
using smoothing techniques to approximate the `1-norm term such as Logcosh [8,33], Huber loss [34],
pseudo-Huber [5], etc. Then, algorithms for minimizing a smooth objective function on a sphere can be
applied. Nonetheless, these smoothing techniques often introduce approximation errors as the smooth
objective functions usually lead to dense solutions. Qu et al. [35] and Sun et al. [8] propose a rounding
step as postprocessing to achieve exact recovery [16] by solving a linear programming, which leads to
addition computational cost.

The main difficulties in developing efficient algorithms are the nonsmoothness and nonconvexity
in DPCP models. By observing the similarity between SDL and DPCP, we consider to adopt
the `m-norm maximization to reformulate DPCP as a smooth optimization problem on sphere.

1.1. Contribution

In this paper, we first point out that the DPCP problem can be formulated as the `m-norm
(m ∈ (2, 4]) maximization (1) with p = 1. Therefore, both SDL and DPCP can be unified as a smooth
optimization problem on the Stiefel manifold.

Motivated by PenC [21], we propose a novel penalty function as the following expression,

h(W) := f (W)− 1
2

〈
W>W − Ip, Φ(W>∇ f (W))

〉
+

β

6
‖W‖6

F −
β

2
‖W‖2

F , (5)

where β > 0 is the penalty-parameter and Φ is the operator that symmetrizes the square matrix,
defined by Φ(M) = M+M>

2 . We show that h(W) is bounded from below, then the convex compact
constraint in PenC can be avoided. Therefore, we propose the following smooth unconstrained penalty
model for `m-norm maximization (PenNM),

min
W∈Rn×p

h(W). (6)

We prove that Equation (6) with m ∈ (2, 4] is an exact penalty function of Equation (1) under
some mild conditions. Moreover, when p = 1, we verify that PenNM does not introduce any
first-order stationary point other than those of Equation (1) and x = 0. Based on the new exact penalty
model, we propose an efficient orthonormalization-free first-order algorithm named PenNMF with
no additional constraint. In PenNMF, we adopt an approximate gradient in each iterate instead of
the exact one in which the second-order derivative of the original objective involves. The global
convergence of PenNMF under mild conditions can be established.

The numerical experiments on synthetic and real imaginary data demonstrate that
PenNMF outperforms PenCF and MSP/GPM in solving SDL, especially in large-scale cases.
As an infeasible method, PenNMF shows superior performance when compared with MSP and GPM,
which invoke an orthonormalization process to keep the feasibility. Moreover, when compared with
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PenCF, PenNMF also shows better performance, implying the benefits of avoiding the constraints
in PenC. In our numerical experiments on DPCP, our proposed model (1) with p = 1 shows comparable
accuracy with `1-norm based penalty model (4) on solving road-plane recovery in KITTA dataset.
In some test examples, (1) can have even better accuracy than (4). Besides, PenNMF takes less CPU time
while achieving comparable accuracy in reconstructing road-plane in KITTA dataset when compared
with other state-of-the-art algorithms such as DPCP-PSGM and DPCP-d.

1.2. Notations and Terminologies

Norms: In this paper, ‖·‖m denotes the element-wise m-th norm of a vector or matrix,

i.e., ‖A‖m =
(∑

i=1
∑

j=1 |Aij|m
)1/m

. Besides, ‖·‖F denotes the Frobenius norm and ‖·‖ denotes
the 2-th operator norm, i.e., ‖A‖ equals the maximum singular value of A. Besides, we denote σmin(A)

as the smallest singular value of a given matrix A. The operator A ◦ B stands for the Hadamard
product of matrices A and B with the same size. |A| and A◦l represent the component-wise absolute
value and l-th power of matrix A, respectively. Besides, for two symmetric matrices A and B, A � B
denotes that A− B is semi-positive definite, and A � B denotes that A− B is positive definite.

Optimality Condition: W is a first-order stationary point of (1) if and only if
(In −WW>)∇ f (W) = 0;

W>∇ f (W) = ∇ f (W)>W;
W>W = Ip.

(7)

Besides, W is a first-order stationary point of PenNM if and only if ∇h(W) = 0.

2. Model Description

In this section, we first discuss how to reformulate DPCP as an `m-norm maximization with
orthognoality constraints. To construct a orthonormalization-free algorithm, we minimize h(W)

rather than directly solve (1). As an unconstrained penalty problem for (1), the model (6) may
introduce additional infeasible first-order stationary points. Therefore, in this section, we characterize
the equivalence between (1) and (6) to provide theoretical guarantees for our approach.

2.1. `m-Norm Maximization for DPCP Problems

Based on the fact that maximization of a higher-order norm promotes spikiness and sparsity,
we maximize the `m-norm of Ŵ>Y over the constraint Ŵ>YY>Ŵ = 1. The model can be expressed as

min
Ŵ∈Rn

− 1
m

∥∥∥Ŵ>Y
∥∥∥m

m

s.t. Ŵ>YY>Ŵ = 1.

Although with different constraints to (1), (4) can be reshaped to the formulation of (1).
Let Y = RZ be the rank-revealing QR decomposition of Y, where Z ∈ Rn×N is an orthogonal matrix
and R ∈ Rn×n is an upper-triangular matrix, and denote W = R−TŴ, then the optimization model
can be reshaped as

min
W∈Rn

− 1
m

∥∥∥W>Z
∥∥∥m

m

s.t. W>W = 1.
(8)

Clearly, problem (8) is a special case of (1) with p = 1. Moreover, suppose W∗ is a global minimizer
of (8), the solution for DPCP problem can be recovered by Ŵ∗ = R−TW∗. The detailed framework for
solving DPCP by `m-norm maximization is presented in Algorithm 1.
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Algorithm 1 Framework for Solving DPCP by `m-Norm Maximization.

Require: Data matrix Y ∈ Rn×N

1: Perform QR-factorization for Y. Namely, Y = RZ where R is upper-triangular matrix and Z ∈
Rn×N is orthogonal matrix;

2: Compute the solution Ŵ for (1);
3: Return W∗ = R−TŴ

2.2. Equivalence

In this subsection, we first derive the expression for ∇ f (W) and ∇h(W).

Proposition 1. The gradient and the Hessian of f (W) can be expressed as

∇ f (W) = Y
[
|Y>W|◦(m−1) ◦ sign((Y>W))

]
;

∇2 f (W)[D] = (m− 1)Y
[
(Y>W)◦(m−2) ◦ (Y>D)

]
,

respectively. Moreover, the gradient of h(W) can be formulated as

∇h(W) =∇ f (W)

(
3
2

Ip −
1
2

W>W
)
−WΦ(W>∇ f (W))− 1

2
∇2 f (W)[W(W>W − Ip)]

+ 2βWW>W(W>W − Ip) + βW(W>WW>W − Ip).

Proof. From the work in [17] we have ∇ f (W) = Y
[
|Y>W|◦(m−1) ◦ sign(Y>W)

]
.

Based on the expression for ∇ f (W), the Hessian of f can be expressed as ∇2 f (W)[D] =

(m − 1)Y
[
(Y>D) ◦ (Y>W)◦(m−2)

]
. As a result, ∇2 f (W)[W(W>W − Ip)] = (m −

1)Y(Y>W)◦(m−1)Y(W>W − Ip).
Therefore, based on ([21], Equation 2.8), the gradient of h(W) can be formulated as

∇h(W) =∇ f (W)

(
3
2

Ip −
1
2

W>W
)
−WΦ(W>∇ f (W))− 1

2
∇2 f (W)[W(W>W − Ip)]

+ 2βWW>W(W>W − Ip) + βW(W>WW>W − Ip)

With the expression for ∇h(W), we can establish the equivalence between (1) and our proposed
model, (6). The equivalence is illustrated in Theorem 4, and the main body of the proofs is presented
in Appendix A.

Theorem 2. (First-order equivalence) Suppose β ≥ (4m + 8) ‖Y‖m
F and W̃ is a first-order stationary

point of (6), then either W̃>W̃ = Ip holds, which further implies that W̃ is a first-order stationary point of

problem (1), or the inequality σmin(W̃>W̃) ≤ (2m+4)‖Y‖m
F

β holds.

Theorem 2 characterizes the relationship between the first-order stationary points of (1) and those
of (6). Namely, the penalty model only yields the first-order stationary points other than those of
the original model (1) far away from the Stiefel manifold. When p = 1, we can derive a stronger result
on those additional first-order stationary points produced by the penalty model in Corollary 3.

Corollary 3. (Stronger first-order equivalence for p = 1) Suppose p = 1 in (1), β ≥ (4m + 8) ‖Y‖m
F ,

and W̃ is a first-order stationary point of (6), then either W̃>W̃ = Ip holds, which further implies that W̃ is
a first-order stationary point of problem (1), or W̃ = 0.
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Theorem 2 characterizes the equivalence between (1) and (6) in the sense that all the infeasible
first-order stationary points of (6) is relatively far away from the constraint W>W = Ip. Besides,
Corollary 3 shows that when p = 1, the only infeasible first-order stationary point of (6) is 0. Therefore,
when we achieve a solution near the constraint W>W = Ip by solving (1), we can conclude that W
is a first-order stationary point of (1). Instead of directly solving (1), we can compute the first-order
stationary point of (6) and thus avoid intensive orthonormalization in the computation.

3. Algorithm

3.1. Global Convergence

In this section, we focus on developing an infeasible approach for solving (6). The calculation
of the gradient of h(W) is involved with the second-order derivative, which is typically even more
expensive than the iterations in MSP/GPM. Therefore, we consider to solve (6) by an approximated
gradient descent algorithm. Let D(W) := ∇ f (W) −WΦ(W>∇ f (W)) + βW(W>WW>W − Ip) be
the approximation for the gradient of h(W), we present the detailed algorithm as Algorithm 2.

Algorithm 2 First-Order Method for Solving (6). (PenNMF)

Require: f : Rn×p 7→ R, β > 0;
1: Randomly choose W0 satisfies W0>W0 = Ip, set k = 0;
2: while not terminate do
3: Compute inexact gradient

D(Wk) = ∇ f (Wk)−WkΦ(Wk>∇ f (Wk)) + βWk(Wk>WkWk>Wk − Ip);

4: Compute stepsize ηk;
5: Wk+1 = Wk − ηkD(Wk);
6: k ++;
7: end while
8: Return Wk

Next, we establish the convergence of PenNMFin Theorem 4, which illustrates the global
convergence and worst-case convergence rate of PenNMF under mild conditions. The main body of
the proof is presented in Appendix B.

Theorem 4. (Global convergence) Suppose δ ∈
(

0, 1
3

]
and β ≥ max

{
228m ‖Y‖m

F , 32
δ ‖Y‖

m
F
}

. Let {Wk}

be the iterate sequence generated by PenNMF, starting from any initial point W0 satisfying ||W0>W0− Ip||2F ≤
1
8 δ, and the stepsize ηk ∈

[
1
2 η̄, η̄

]
, where η̄ ≤ 1

2M1
. Then, Wk weakly converges to a first-order stationary point

of (1). Moreover, for any k = 1, 2, · · · , the convergence rate of PenNMF can be estimated by

min
0≤i≤k

∥∥∥D(Wi)
∥∥∥

F
≤

√
8m ‖Y‖m

F + 2βδ

η̄(k + 1)
. (9)

3.2. Some Practical Settings

As illustrated in Algorithm 2, the hyperparameters in PenNMF are the penalty parameter β and
stepsize ηk. In the theoretical analysis for PenNMF, the upper bound of ηk adopted in Theorem 4
is too restrictive in practice. There are many adaptive stepsize for first-order algorithms, and here
we consider the Barzilai–Borwein (BB) stepsize [36],

ηBB1,k =
〈Sk, Yk〉
〈Yk, Yk〉

, ηBB2,k =
〈Sk, Sk〉
〈Sk, Yk〉

, (10)
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and alternating Barzilai–Borwein (ABB) stepsize [37],

ηk
ABB =

{
ηk

BB1 mod(k, 2) = 1

ηk
BB2 mod(k, 2) = 0,

(11)

where and Sk = Wk −Wk−1, Yk = ∇h(Wk)−∇h(Wk−1). We suggest to choose the stepsize ηk as ABB
stepsize in PenNMF, and we test PenNMF with ABB stepsize in our numerical experiments.

Another parameter is β, which controls the smooth penalty term in h(W). Similarly,
the lower-bound for β in Theorem 4 is too large to be practical. In our numerical examples, we uses
the constant s :=

∥∥∇ f (W0)
∥∥

F, which is an approximation to
∥∥∇2 f (W0)

∥∥
F, as an upper-bound for β.

According to the work in [21], we suggest to choose the penalty parameter by β = 0.01
∥∥∇2 f (W0)

∥∥
F.

Additionally, to achieve high accuracy in feasibility, we perform the polar factorization to
the final solution generated by PenCF and PenNMF as the default postprocess. More precisely,
when we compute the final solution Wk by PenNMF, we can compute its rank-revealing

singular-value decomposition Wk = UkΣkVk> and return Ŵk := UkVk>. Using the same
proof techniques in [21], our postprocess leads to decrease in feasibility as well as the functional
value. Moreover, the numerical experiments in [19] show that the introduced orthonormalization
process results in little changes in ∇h(W). Therefore, we suggest to perform the described
postprocess for PenNMF.

4. Numerical Examples

In this section, we present our preliminary numerical examples. We compare our algorithm
with some state-of-the-art algorithms on SDL and DPCP problems, which are formulated as (1)
and (8), respectively. Then, we observe the performance of our algorithm under different selections
of parameters, and then choose the default setting. All the numerical experiments in this section are
tested on an Intel(R) Core(R) Silver 4110 CPU @ 2.1 GHz, with 32 cores and 394 GB of memory running
under Ubuntu 18.04 and MATLAB R2018a.

4.1. Numerical Results on Sparse Dictionary Earning

In this subsection, we mainly compare the numerical performance of PenNMF with some
state-of-the-art algorithms on SDL. As illustrated in Table 2 in [17], MSP is significantly faster
than the Riemannian subgradient [3] and Riemannian trust-region method [8]. Therefore, to have
a better illustration on the performance of PenNMF, we compare PenNMF with state-of-the-art
algorithms on solving (1), which is a smooth optimization problem with orthogonality constraints.
We first select two state-of-the-art algorithms on solving optimization problems with orthogonality
constraints. One is Manopt [38,39], a projection-based feasible method. In our numerical test, we choose
nonlinear conjugate gradient with inexact linear-search strategy to accelerate Manopt. Another one is
PenCF [21], which is an infeasible approach for optimization problems with orthogonality constraints.
In our algorithms we choose to apply Alternating Bzarzilar–Borwein stepsize to accelerate PenNMF,
and uses all parameters as default setting described in [21]. Besides, we test the MSP algorithm [17] and
GPM algorithm [18]. It is worth to mention that when m = 4, the MSP and GPM are actually the same.
According to the numerical examples in [18], m = 3 has better recovery quality than the case m = 4.
Therefore, in our numerical experiments, we test the mentioned algorithms on the case where m = 3.

The stopping criteria for Manopt , MSP/GPM is
∥∥∥∇ f (Wk)−WkΛ(Wk)

∥∥∥
F
≤ 10−2,

while the stopping criteria for PenCF and PenNMF is
∥∥∥∇h(Wk)

∥∥∥
F
≤ 10−2. Besides, the max iteration

for all compared algorithms is set as 200.
In all test examples, we randomly generate the sparse representation X by X∗ = randn(n, N).

∗ (randn(n, N) < 0.3) and the dictionary W∗ by randomly selecting a point on Stiefel manifold.
Then, the original data matrix Y is constructed by Yo = W∗>X∗. To test the performance of
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all compared algorithms, we add different types of noise to Yo. We first fix the level of noise
θ = 0.3 and choose n from 20 to 100. Then, we test the performance of compared algorithms
with different types of noisy while fix n = 50. In our numerical tests, the “Noise” denotes
the Gaussian Noise, where Y is constructed by Y = Yo + θ · randn(n, N). Besides, the term “Outliers”
denotes the Gaussian outliers, where outliers = randn(n, round(θm)); Y = cat(2, Yo, outliers);.
Additionally, the term “Corruption” refers to the Gaussian corruption to Yo, which is
achieved by rademacher = (rand(n, m) < 0.5) ∗ 2− 1; Y = Yo + (rand(n, m) < θ). ∗ rademacher.
Besides, the term ’CPU time’ denotes the averaged run-time, while the term ’Error’ denotes
the 1−

∥∥Ŵ>W∗
∥∥4

4, where Ŵ denotes the final output of all the compared algorithm.
The numerical results are listed in Figure 1. From Figure 1d–f, j–l we conclude that all these

compared algorithms achieve almost the same accuracy in all the cases. Besides, for Gaussian
noise, the performance of PenNMF is comparable to MSP/GPM algorithm and outperforms Manopt.
Moreover, with Gasuuain outliers and Gaussian corruption, the performance of PenNMF is better than
PenCF, MSP/GPM, and Manopt. One possible explanation is that for Manopt invokes computing
the Riemannian gradient, line-search in each iteration, resulting in higher computational complexity
than MSP/GPM. Besides, the infeasible approaches overcome the bottleneck in the orthonormalization
process in Manopt and MSP/GPM, and thus achieve comparable performance to MSP/GPM.
Additionally, PenCF solves a constrained model by taking approximated gradient descent steps,
while in PenNMF the model is an unconstrained one. The absence of constraint helps to improve
the performance of PenNMF.

Besides testing on synthetic datasets, we also perform extensive experiments to verify
the performance of PenNMF on real imagery data. A classic application of dictionary learning involves
learning sparse representations of image patches [40]. In this paper, we extend the experiments
in [17] to learn patches from grayscale and color images. Based on the 512× 512 grayscale image
“Barbara”, we construct the clean data matrix Yo by vectorizing each 16× 16 patches from it. Then,
we use the same approach to construct the clean data matrix Y from 512× 512 grayscale images “Boat”
and “Lena”, together with a 256× 256 grayscale image ”House”. In “Barbara”, “Boat”, and “Lena”,
the clean data matrix Y ∈ R256×247,009, and the data matrix from “House” satisfies Y ∈ R256×58,081.
Besides, we construct the matrix Y ∈ R192×62,001 by vectorizing the 8× 8× 3 patches from the 256× 256
RGB image “Duck”. In such setting, all the compared algorithms recover the dictionary for all three
channels simultaneously rather than learn them once for each channel in “Duck”. Such approach
is aslo applied to generate the data matrix in R192×146,633 from 338 × 450 RGB image “Chateau”.
We run MSP/GPM, PenNMF, PenCF, and Manopt with m = 3 to compute the dictionary from
Y = Yo + θ · randn(n, N) with different level of noise, where Yo is generated in the same manner as
our first numerical experiment and has the same size as these patched figures. The numerical results
are presented in Figure 2 and Figure A1. In all experiments, PenNMF takes less time than PenCF,
MSP/GPM, and Manopt, which further illustrate the high efficiency of PenNMF in tackling the real
imagery data, especially in the large-scale case.
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Figure 1. A detailed comparison among MSP, Manopt, PenCF, and PenNMF. (a)–(c) a comparison
with different level of noisy on CPU time; (d)–(f) a comparison with different level of noisy on errors;
(g)–(i) a comparison with different n on their CPU time; (j)–(l) a comparison with different n on

their errors. The errors are evaluated by 1 −
∥∥∥Ŵ>W∗

∥∥∥4

4
, where Ŵ denotes the final output of all

the compared algorithm.
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Figure 2. The CPU time of PenCF, PenNMF, MSP/GPM, and Manopt on computing the dictionary.
(a) Barbara, Y ∈ R256×247,009; (b) Boat, Y ∈ R256×247,009; (c) Duck, Y ∈ R192×62,001; (d) House,
Y ∈ R256×58,081; (e) Lena, Y ∈ R256×247,009; (f) Chateau, Y ∈ R192×146,633.

4.2. Dual Principal Component Pursuit

In this subsection, we first verify the recovery property of our proposed model (8), which is
a special case of (1) by fixing p = 1. We first compare the distance between global minimizer
of (8) and the ground-truth for DPCP problem. We first fix n = 30 and randomly select
W∗ ∈ Rn. Then, we randomly generate N1 inliers in the hyperplane whose normal vector
is W∗. Besides, we randomly generate N2 outliers in Rn following Gaussian distribution.
Additionally, the data is corrupted by Gaussian noise by adding θ√

n · randn(n, N) to Y. Then,
we normalize each sample in Y. The range of N1 is [10, 500], whereas the range of N2 is [10, 3000].
We run each test problem for 5 instances. Moreover, in each instance, we run DPCP-PSGM to
solve (4) and PenNMF to solve (8) with m = 3 and 4, and get the solution W̃ for each model. We plot
the principal angle between W̃ and W∗ in Figure 3. From Figure 3a and 3d we can conclude that
(4) can tolerate O(N2

1 ) outliers while achieve exact recovery, which coincides the theoretical results
presented in [32]. For model (8), numerical experiments do not show the exact recovery ability of
(8) for m = 3 and 4. However, with some tolerance on the principal angle, we also observe that (4)
can tolerate O(N2

1 ) outliers. Moreover, we conclude that with m = 3, (8) has better ability to recover
the normal vector than m = 4. As a result, in the rest of this subsection, we only test (8) with m = 3.

In addition, we analyze the number of successfully recovered instances, where the
√

1−
〈
W̃, W∗

〉2

is less than 0.1 or 0.2. The results are presented in Figure 4. From Figure 4, we can conclude that,
with tolerance on the errors, the `m-norm maximization model can successfully recover the normal
vector. Moreover, in model (8), m = 3 has better performance than m = 4, which coincides with
the numerical experiments in [18]. Therefore, when applying `m-norm maximization model to solving
the DPCP problems, we suggest to choose m = 3 in (8).
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Figure 3. A comparison between the models (8) and (4) on the average recovery error
√

1−
〈
W̃, W∗

〉2

of 5 random trials. (a)–(c) average recovery errors with θ = 0; (d)–(g) average recovery errors with
θ = 0.1.
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Figure 4. A comparison on the number of successfully recovered instances on the different level of

noise. (a)
√

1−
〈
W̃, W∗

〉2 is less than 0.1; (b)
√

1−
〈
W̃, W∗

〉2 is less than 0.2.

In the rest of this subsection, we test the numerical performance of PenNMF on solving DPCP
problem, which plays an important role in autonomous driving applications. DPCP is applied
to recover the road-plane, which can be regarded as inliers, from the 3d point clouds in KITTA
dataset [22], which is recorded from a moving platform while driving in and around Karlsruhe,
Germany. This dataset consists of image data together with corresponding 3D points collected by
a rotating 3D laser scanner [32]. Moreover, DPCP only uses the 3D point clouds with the objective
of determining the 3D points that lie on the road plane (inliers) and those off that plane (outliers):
Given a 3D point cloud of a road scene, the DPCP problem focuses on reconstructing an affine plane
{x ∈ R3|a>x − b = 0} as a representation for the road. Equivalently, this task can be converted to
a linear subspace learning problem by embedding the affine plane into the linear hyperplane H ⊆ R4

with normal vector b̃ = [a,−b], through the mapping x → [x, 1] [29]. We use the experimental set-up



Sensors 2020, 20, 3041 12 of 25

in [29,32] to further compare Equations (4) and (8), RANSAC, and other alternative methods in the task
of 3D road plane detection in KITTA dataset. Each point cloud contains over 105 samples with
approximately 50% outliers. Besides, the samples are homogenized and normalized to unit `2-norm.

We use 11 frames annotated in [29,32] from KITTA dataset. We compare DPCP-PSGM [29],
DPCP-IRLS, and DPCP-d [31], which focus on solving the `1-norm minimization model (4). Besides,
we test RANSAC and `2,1-RPCA [25]. Additionally, we test PenNMF and MSP/GPM on solving
our proposed model (8), which is a special case of (1). For DPCP-PSGM, DPCP-d, DPCP-IRLS,
and `2,1-RPCA, all parameters are set by following the suggestions in [32].

Figure 5 illustrates the numerical performance of all the compared algorithms. We present
the numerical results in Figure 5d–f. Moreover, we draw the performance profiles proposed by Dolan
and Moré [41] in Figure 5a–c to present an illustrative comparison on the performance of all compared
algorithms. The performance profiles can be regarded as distribution functions for a performance
metric for benchmarking and comparing optimization algorithms. Besides, we draw the recovery
results of frames 328 and 441 in KITTA-CITY-71, which is presented in Figure 6. Here the term “AUC”
denotes the area under the AUC curve, and “iterations” denotes the total iterations taken by these
compared algorithms. Besides, “Prob” in Figure 5d–f denotes the indexes of tested frames, which are
presented in Table 1.

Table 1. The testing instances and their corresponding frames in KITTA dataset.

Dataset KITTI-CITY-71 KITTI-CITY-5 KITTI-CITY-48
Frame id. 221 328 441 881 1 45 120 137 153 0 21

Test id. 1 2 3 4 5 6 7 8 9 10 11
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Figure 5. A comparison between PenNMF , MSP, DPCP-PSGM, DPCP-D, and Random Sampling
and Consensus (RANSAC). (a)–(c) performance profile [41] of AUC, iterations and CPU time;
(d)–(f) the numerical results of AUC, iterations and CPU time.

From Figure 5a, we can conclude that PenNMF and MSP/GPM successfully recover
the hyperplanes with comparable accuracy. Moreover, in problems 3, 7, and 9, PenNMF and MSP
produce better classification accuracy than other approaches. Besides, in the aspect of CPU time,
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PenNMF and MSP cost much less time than other compared algorithms in most cases. Moreover,
from Figure 5c, we can conclude that PenNMF takes less time than MSP as well as other compared
algorithms in almost all the cases. As a result, we can conclude that our proposed model (1) is easy to
be solved and PenNMF shows better efficiency than MSP in our test examples.

(a) Frame 328 of KITTI-CITY-71

(b) Frame 441 of KITTI-CITY-71

Figure 6. Illustrations to some results in our numerical tests, with inliers in blue and outliers in red.
(a) Frame 328 from KITTI-CITY-71, N = 121766; (b) Frame 441 from KITTI-CITY-71, N = 119428.
Inliers/outliers are detected by using a ground-truth thresholding on the distance to the hyperplane
recovered by each compared method. The results are represented by projecting 3D point clouds onto
the image.

5. Conclusions

Sparse dictionary learning (SDL) and dual principal pursuit (DPCP) are two powerful tools in data
science. In this paper, we formulate DPCP as a special case of the `m-norm maximization on the Stiefel
manifold proposed for SDL. Then, we propose a novel smooth unconstrained penalty model PenNM for
the original optimization problem with orthogonality constraints. We show PenNM is an exact
penalty function of (1) under mild assumptions. We develop an novel approximate gradient approach
PenNMF for solving PenNM. The global convergence of PenNMF as well as its sublinear convergence
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rate are established. Numerical experiments illustrate that our proposed approach enjoys better
performance than MSP/GPM [17,18] on various testing problems.
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Appendix A. Proof for Theorem 2 and Corollary 3

In this section, we present the proof for Theorem 2 and Corollary 3. As (6) is an unconstrained
optimization problem, the upper-bound for ‖∇h(W)‖F should be estimated. Before estimating
the upper bounds of ‖∇ f (W)‖F and

∥∥∇2 f (W)[W(W>W − Ip)]
∥∥

F, we first present two linear
algebraic inequalities:

Lemma A1. For any A, B ∈ Rn×N , ‖A ◦ B‖F ≤ ‖A‖F ‖B‖F.

Proof.

‖A ◦ B‖2
F =

∑
i

∑
j

A2
ijB

2
ij ≤

∑
i

∑
j

A2
ij

∑
i

∑
j

B2
ij

 = ‖A‖2
F ‖B‖

2
F .

Lemma A2. For any A ∈ Rn×N and any m ≥ 3, we have
∥∥∥A◦(m)

∥∥∥
F
≤ ‖A‖m

F .

Proof. This lemma directly follows the fact that

∥∥∥A◦(m)
∥∥∥2

F
=

n∑
i=1

N∑
j=1

A2m
i,j ≤

 n∑
i=1

N∑
j=1

A2
i,j

m

= ‖A‖2m
F .

Now, we present the upper bound estimation for ‖∇ f (W)‖F and
∥∥∇2 f (W)[W(W>W − Ip)]

∥∥
F.
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Lemma A3. For any W ∈ Rn×p, ‖∇ f (W)‖F ≤ ‖Y‖
m
F ‖W‖

m−1 .

Proof. Due to the fact that ∇ f (W) = Y
[
(Y>W)◦(m−1) ◦ sign(Y>W)

]
,

‖∇ f (W)‖F ≤ ‖Y‖F

∥∥∥(Y>W)◦(m−1) ◦ sign(Y>W)
∥∥∥

F

= ‖Y‖F

∥∥∥(Y>W)◦(m−1)
∥∥∥

F

≤ ‖Y‖F

∥∥∥Y>W
∥∥∥m−1

F

≤ ‖Y‖m
F ‖W‖

m−1 .

Here, the last inequality follows the fact that ‖AB‖F ≤ ‖A‖F ‖B‖ ≤ ‖A‖F ‖B‖F.

Lemma A4. For any W ∈ Rn×p,∥∥∥∇2 f (W)[W(W>W − Ip)]
∥∥∥

F
≤ (m− 1) ‖W‖m−2

∥∥∥W(W>W − Ip)
∥∥∥ ‖Y‖m

F .

Proof. From the expression of ∇2 f (W) in Proposition 1,∥∥∥∇2 f (W)[W(W>W)]
∥∥∥

F

= (m− 1)
∥∥∥Y
[
(Y>W)◦(m−2) ◦ (Y>W(W>W − Ip))

]∥∥∥
F

≤ (m− 1) ‖Y‖F

∥∥∥(Y>W)◦(m−2) ◦ (Y>W(W>W − Ip))
∥∥∥

F

≤ (m− 1) ‖Y‖F

∥∥∥(Y>W)◦(m−2)
∥∥∥

F

∥∥∥Y>W(W>W − Ip)
∥∥∥

F

≤ (m− 1) ‖W‖m−1
∥∥∥W(W>W − Ip)

∥∥∥ ‖Y‖m
F .

Here, the second inequality directly uses Lemma A1 and the last inequality follows Lemma A2.

In the rest of this section, we consider the equivalence between (1) and (6). We first establish
the relationships between the first-order stationary points of (6) and problem (1).

From the optimality condition of (6), we derive an important equality in Lemma A5.

Lemma A5. For any first-order stationary point W̃ of (6) and any symmetric matrix T ∈ Rp×p that satisfies
TW̃>W̃ = W̃>W̃T, we have

0 =tr
(

T(W̃>W̃ − Ip)

(
βW̃>W̃(W̃>W̃ + Ip)−

3
2

Λ(W̃)

))
− 1

2
tr
(

TW̃>∇2 f (W̃)[W̃(W̃>W̃ − Ip)]
)

.
(A1)

Proof. Suppose W̃ is a first-order stationary point of (6), by the first-order optimality condition,
∇h(W̃) = 0. Then, for any symmetric matrix T ∈ Rp×p that satisfies TW̃>W̃ = W̃>W̃T,〈
W̃T,∇h(W̃)

〉
= 0.

As described in Proposition 1, ∇ f (W) can be separated into three parts, we estimate their
inner-product with W̃T respectively.
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First, 〈
W̃T,∇ f (W̃)

(
3
2

Ip −
1
2

W̃>W̃
)
− W̃Φ(W̃>∇ f (W̃))

〉
= tr

(
TW̃>∇ f (W̃)

(
3
2

Ip −
1
2

W̃>W̃
)
− TW̃>W̃Λ(W̃)

)
= tr

(
T
(

3
2

Ip −
1
2

W̃>W̃
)

Λ(W̃)− TW̃>W̃Λ(W̃)

)
=

3
2

tr
(

T(Ip − W̃>W̃)Λ(W̃)
)

.

Here, the second equality follows the fact that that tr (BC) = tr (BCB) = 0 holds for any
symmetric B and skew-symmetric C. Besides, the last inequality follows that (W̃>W̃ − Ip)T =

T(W̃>W̃ − Ip). As a result, we achieve the following equality:〈
W̃T,∇ f (W̃)

(
3
2

Ip −
1
2

W̃>W̃
)
− W̃Φ(W̃>∇ f (W̃))

〉
− 1

2

〈
W̃T,∇2 f (W̃)[W̃(W̃>W̃ − Ip)]

〉
= − 3

2
tr
(

T(W̃>W̃ − Ip)Λ(W̃)
)
− 1

2

〈
TW̃,∇2 f (W̃)[W̃(W̃>W̃ − Ip)]

〉
.

Additionally, we estimate their inner-product of W̃T and βW̃(W̃>W̃W̃>W̃ − Ip) and achieve
the following equality 〈

W̃T, β(W̃>W̃W̃>W̃ − Ip)
〉

=
〈

W̃T, βW̃(W̃>W̃ + Ip)(W̃>W̃ − Ip)
〉

= βtr
(

TW̃>W̃(W̃>W̃ + Ip)(W̃>W̃ − Ip)
)

.

Based on the above two equations, multiplying (W̃>W̃ − Ip)W̃> on both sides of 0 = ∇h(W̃)

results in
0 =

〈
W̃T,∇h(W̃)

〉
= tr

(
T(W̃>W̃ − Ip)

(
βW̃>W̃(W̃>W̃ + Ip)−

3
2

Λ(W̃)

))
− 1

2
tr
(

TW̃>∇2 f (W̃)[W̃(W̃>W̃ − Ip)]
)

,

(A2)

and thus we complete the proof.

Then based on the equality in Lemma A5, the following proposition shows that all first-order
stationary point of (6) is uniformly bounded.

Proposition A6. For any first-order stationary point W̃ of (6), suppose β ≥ (4m + 8) ‖Y‖m
F , then

∥∥W̃
∥∥2 ≤

1 + (m+2)‖Y‖m
F

β .

Proof. Let u denotes the top eigenvector of W̃>W̃, i.e. W̃>W̃u =
∥∥W̃>W̃

∥∥ u.

Suppose W̃ is a first-order stationary point that satisfies
∥∥W̃
∥∥2

> 1 +
(m+2)‖Y‖m

F
β . By Lemma A5

we first have
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0 =
〈

uu>W̃,∇ f (W̃)
〉

= tr
(

βuu>(W̃>W̃ − Ip)W̃>W̃(W̃>W̃ + Ip)
)
− 3

2
tr
(

uu>(W̃>W̃ − Ip)Λ(W̃)
)

− 1
2

tr
(

uu>W̃>∇2 f (W̃)[W̃(W̃>W̃ − Ip)]
)

≥ β
(∥∥W̃

∥∥6 −
∥∥W̃
∥∥2
)
− 3

2

∥∥W̃
∥∥2 u>Λ(W̃)u− m− 1

2
‖Y‖m

F
∥∥W̃
∥∥m+2

≥ β
(∥∥W̃

∥∥6 −
∥∥W̃
∥∥2
)
−

(m + 2) ‖Y‖m
F
∥∥W̃
∥∥m+2

2

≥
(

β− (m + 2) ‖Y‖m
F

2

)∥∥W̃
∥∥6 − β

∥∥W̃
∥∥4

=
∥∥W̃
∥∥4
[(

β− (m + 2) ‖Y‖m
F

2

)∥∥W̃
∥∥2 − β

]
> 0,

(A3)

which leads to the contradictory and shows that
∥∥W̃
∥∥2 ≤ 1 +

(m+2)‖Y‖m
F

β . Here, the second equality

directly follows Lemma A5. The first inequality uses Lemma A4 and the fact that
∥∥W̃(W̃>W̃ − Ip)

∥∥ ≤∥∥W̃
∥∥3. Besides, the second inequality follows the fact that W̃>W̃ �

∥∥W̃
∥∥2 uu>. The second inequality

uses the fact that u>Λ(W̃)u ≤
∥∥Λ(W̃)

∥∥
F ≤

∥∥W̃>∇ f (W̃)
∥∥

F ≤
∥∥W̃
∥∥

2

∥∥∇ f (W̃)
∥∥

F. The fourth inequality

uses the fact that tr
(
W̃>W̃ − Ip

)
≤
∥∥W̃
∥∥2

F, and the last inequality follows the fact that
∥∥W̃
∥∥2 − 1 ≥

(m+2)‖Y‖m
F

β .

Combine Lemma A5 and Proposition A6, we restate Theorem 2 as Theorem A7 and achieve
the equivalence between (1) and (6).

Theorem A7. Suppose β ≥ (4m + 8) ‖Y‖m
F , and W̃ is a first-order stationary point of (6), then either

W̃>W̃ = Ip holds, which further implies that W̃ is a first-order stationary point of problem (1), or the inequality

σmin(W̃>W̃) ≤ (2m+4)‖Y‖m
F

β holds.

Proof. When β ≥ 4(m + 2) ‖Y‖m
F , any first-order stationary point W̃ of (6) satisfies that

∥∥W̃
∥∥2 ≤ 2.

Suppose W̃ satisfies W̃>W̃ � (2m+4)‖Y‖m
F

β Ip, then β
2 W̃>W̃(W̃>W̃ + Ip) � (m + 2)

∥∥W̃
∥∥m ‖Y‖m

F · Ip.
Then from Lemma A5, we have

0 = tr
(
(W̃>W̃ − Ip)

2
(

βW̃>W̃(W̃>W̃ + Ip)−
3
2

Λ(W̃)

))
− 1

2
tr
(
(W̃>W̃ − Ip)W̃>∇2 f (W̃)[W̃(W̃>W̃ − Ip)]

)
≥ tr

(
(W̃>W̃ − Ip)

2
(

βW̃>W̃(W̃>W̃ + Ip)−
m + 2

2
‖W‖m ‖Y‖m

F · Ip

))
≥ tr

(
β(W̃>W̃ − Ip)

2W̃>W̃(W̃>W̃ + Ip)
)

≥ 0,

showing that tr
(
β(W̃>W̃ − Ip)2W̃>W̃(W̃>W̃ + Ip)

)
= 0. Then by the positive-definiteness of W̃>W̃,

we can conclude that W̃>W̃ − Ip = 0.

As a result, we have that either W̃>W̃ − Ip = 0 or σmin(W̃>W̃) ≤ (2m+4)‖Y‖m
F

β , and completes
the proof.
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Corollary A8. Suppose p = 1 in (1), β ≥ (4m + 8) ‖Y‖m
F , and W̃ is a first-order stationary point of (6),

then either W̃>W̃ = Ip holds, which further implies that W̃ is a first-order stationary point of problem (1),
or W̃ = 0.

Proof. By the same routine of Theorem 2, when β ≥ 4(m + 2) ‖Y‖m
F , any first-order stationary point

W̃ of (6) satisfies that
∥∥W̃
∥∥2 ≤ 2. Then, following the same proof routine in Lemma A5 and Theorem 2,

we have

0 ≥ tr
(
(W̃>W̃ − Ip)

2
(

βW̃>W̃(W̃>W̃ + Ip)−
m + 2

2
‖W‖m ‖Y‖m

F · Ip

))
=
(∥∥W̃

∥∥2 − 1
)2
(

β
∥∥W̃
∥∥2

(
∥∥W̃
∥∥2

+ Ip)−
m + 2

2
‖W‖m ‖Y‖m

F

)
≥ 0.

When β ≥ 4m+8
2 ‖Y‖F, we have

β

2
‖W‖4

F +
β

2
‖W‖2

F >
m + 2

2
‖Y‖F

∥∥W̃
∥∥m

2 (A4)

holds for any W ∈ Rn \ 0.
Then, for any W̃ 6= 0, we can conclude that(

β
∥∥W̃
∥∥2

(
∥∥W̃
∥∥2

+ Ip)−
m + 2

2
‖W‖m ‖Y‖m

F

)
> 0,

and thus
∥∥W̃
∥∥2 − 1 = 0. As a result, from (A1), when W̃ is a first-order stationary point of (6), either

W̃ = 0 or W̃>W̃ − Ip = 0.

Appendix B. Proof for Theorem 4

In this section, we present the main body of the proof for Theorem 4. To show the convergence of
PenNMF, we first present some preliminary lemmas. Then, we show that the updating direction D(Wk)

is a descending direction and thus h(Wk+1) ≤ h(Wk), as illustrated in Lemma A12. Together with
Lemma A10, we show that the sequence is restricted in the neighborhood of the constraints,
and we achieve the global convergence property of PenNMF in Theorem 4. We first estimate
the upper-bound of the term

∣∣∣ f (W)− 1
2
〈
W>W − Ip, Λ(W)

〉∣∣∣ in h(W).

Lemma A9. For any W ∈ Rn×p,∣∣∣∣ f (W)− 1
2

〈
W>W − Ip, Λ(W)

〉∣∣∣∣ ≤ m
2
‖Y‖m

F max{‖W‖2 + 1, 2} ‖W‖m .

Proof. We first estimate the upper-bound for | f (W)|, which can be achieved by

| f (W)| = 1
m

∥∥∥W>Y
∥∥∥m

m
≤ 1

m

∥∥∥W>Y
∥∥∥m

F
≤ 1

m
‖Y‖m

F ‖W‖
m .

Besides, from Lemma A3, we have
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∣∣∣∣12 〈W>W − Ip, Λ(W)
〉∣∣∣∣ = 1

2

∣∣∣〈W(W>W − Ip),∇ f (W)
〉∣∣∣

≤ 1
2

∥∥∥W(W>W − Ip)
∥∥∥

F
‖∇ f (W)‖F

≤ m
2

∥∥∥W(W>W − Ip)
∥∥∥

2
‖Y‖m

F ‖W‖
m−1

≤ m
2
‖Y‖m

F max{1, ‖W‖2} ‖W‖m .

Combine the above two equations, we achieve

| f (W)− 1
2

〈
W>W − Ip, Λ(W)

〉
| ≤ m

2
‖Y‖m

F max{‖W‖2 + 1, 2} ‖W‖m ,

and complete the proof.

We then show that the penalty term ψ(W) := 1
6 ‖W‖

6
F − 1

2 ‖W‖
2
F builds a barrier around Sn,p, i.e.,

those points that are sufficiently far from Sn,p have higher functional value than those points that are
close to Sn,p.

Lemma A10. Suppose for any δ ∈
(

0, 1
3

]
and β ≥ max{228m ‖Y‖m

F , 32m
δ ‖Y‖

m
F }, we have

max
‖W>W−Ip‖2

F≤
δ
8

h(W) ≤ min
‖W>W−Ip‖2

F≥δ

h(W). (A5)

Proof. Let ψ(W) := 1
6

(
‖W‖6 − ‖W‖2

)
. For any W1 satisfies ψ(W1) ≤ δ and W2 satisfies ‖W2‖2 ≤ 2

and ψ(W2) ≥ 2δ, then

h(W2)− h(W1)

≥ βδ− |∇ f (W1)| −
1
2

〈
W>1 W1 − Ip, Λ(W1)

〉
| − |∇ f (W2)| −

1
2

〈
W>2 W2 − Ip, Λ(W2)

〉
|

≥ βδ−m ‖Y‖m
F (1 + δ)m+2 −m ‖Y‖m

F 2m+2

≥ βδ− 19m ‖Y‖m
F

≥ 0.

(A6)

Here, the second inequality uses the fact that ‖W1‖2
2 ≤ 1+

∥∥W>1 W1 − Ip
∥∥

F ≤ 1+ δ, and ‖W2‖2 ≤ 2.

Moreover, when ‖W2‖2
F ≥ 2, we have ψ(W2) ≥ β

6

∥∥W̃
∥∥6. Then, 1

2 ψ(W2) ≥ 1
3 β ≥ δβ ≥ ψ(W1).

h(W2)− h(W1) ≥ −m ‖Y‖m
F (1 + δ)m+2 + ψ(W2)− 16m ‖Y‖m

F ‖W‖
m+2 − δβ

≥ − 19m ‖Y‖m
F ‖W2‖m+2 +

β

12

∥∥W̃
∥∥6

≥ 0.

(A7)

Here, the second inequality follows the fact that (1 + δ)m ≤ (1 + δ)4 < 3.
Besides, as

∥∥W>W − Ip
∥∥2

F ≤ δ implies

1
6
‖W‖6

F −
1
2
‖W‖2

F +
p
3
=

1
6

tr
[
(W>W − Ip)

2(W>W + 2Ip)
]

. (A8)

As a result, ψ(W) ≤ 3δ implies
∥∥W>W − Ip

∥∥
F ≤ δ. Besides,

∥∥W>W − Ip
∥∥2

F ≤ δ implies
ψ(W) ≤ 2

3 δ. Therefore,
max

‖W>W−Ip‖2
F≤

δ
8

h(W) ≤ min
‖W>W−Ip‖2

F≥δ

h(W). (A9)
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Lemma A10 shows that the smooth penalty term builds a barrier around Sn,p. Moreover,
we characterize the relations between ‖D(W)‖F and

∥∥W>W − Ip
∥∥

F in the following lemma.

Lemma A11. Suppose δ ∈
(

0, 1
3

]
, set ||W>W − Ip||2F ≤

1
8 δ, and β ≥ (4m + 8) ‖Y‖m

F . Then,

‖D(W)‖F ≥
√

3β

6
·
∥∥∥W>W − Ip

∥∥∥
F

, (A10)

where D(W) := ∇ f (W)−WΦ(W>∇ f (W)) + βW(W>WW>W − Ip).

Proof. First, we present two linear algebra relationships: The first is the inequality ||A||F ≥
∥∥∥ A+A>

2

∥∥∥
F

holds for any square matrix A, which is quite obvious and the proof is omitted. The second is
the equality ||AB + BA||F = 2||AB||F holds for any symmetric matrices A and B, which results from
the fact ||AB + BA||2F = 2||AB||2F + 2tr(ABAB) = 2||AB||2F + 2tr(A

1
2 BA

1
2 A

1
2 BA

1
2 ) = 4||AB||2F.

It follows from the above facts that∥∥∥W>D(W)
∥∥∥

F
≥ 1

2

∥∥∥W>D(W) + D(W)>W
∥∥∥

F

=
1
2

∥∥∥(βW>W(W>W + Ip)−Λ(W)
)
(W>W − Ip) + (W>W − Ip)

(
βW>W(W>W + Ip)−Λ(W)

)∥∥∥
F

≥ β

3
· ||W>W − Ip||F,

where the last equality uses the fact that σmin(W>W(W>W + Ip)) ≥ σmin(W>W) ≥ 1− δ ≥ 2
3 .

Together with the facts that
∥∥W>D(W)

∥∥
F ≤ ‖W‖2 ‖D(W)‖F and σmax(W>W) ≤ 1 + δ ≤ 4

3 ,
we have

‖D(W)‖F ≥
1
‖W‖F

∥∥∥W>D(W)
∥∥∥

F
≥
√

3
2

∥∥∥W>D(W)
∥∥∥

F

≥
√

3β

6

∥∥∥W>W − Ip

∥∥∥
F

.

Let M1 := sup ‖∇h(W1)−∇h(W2)‖F
‖W1−W2‖F

, then we have that the following illustrating that
PenNMF generates a descending sequence {Wk}.

Lemma A12. Suppose δ ∈
(

0, 1
3

]
and β ≥ max

{
228m ‖Y‖m

F , 32
δ ‖Y‖

m
F
}

. Let {Wk} be the iterate sequence

generated by PenNMF, starting from any initial point W0 satisfying ||W0>W0 − Ip||2F ≤
1
8 δ, and the stepsize

ηk ∈
[

1
2 η̄, η̄

]
, where η̄ ≤ 1

2M1
. Then, it holds that

h(Wk+1) ≤ h(Wk)− η̄

4

∥∥∥D(Wk)
∥∥∥2

F
(A11)

for any k = 0, 1, · · · .
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Proof. By the explicit expression of ∇h(Wk), we first have∥∥∥∇h(Wk)− D(Wk)
∥∥∥

F

=

∥∥∥∥1
2
∇ f (Wk)(Wk>Wk − Ip) +

1
2
∇2 f (Wk)[Wk(Wk>Wk − Ip)]

∥∥∥∥
F

≤ 1
2

[∥∥∥∇ f (Wk)(Wk>Wk − Ip)
∥∥∥

F
+
∥∥∥∇2 f (Wk)[Wk(Wk>Wk − Ip)]

∥∥∥
F

]
≤ m

2
‖Y‖m

F

∥∥∥Wk
∥∥∥m−1 ∥∥∥Wk>Wk − Ip

∥∥∥
F

≤ 2m ‖Y‖m
F

∥∥∥Wk>Wk − Ip

∥∥∥
F

.

(A12)

Here, the first inequality follows Lemma A3 and Lemma A4.
Besides, by the definition of M1, we have

h(Wk+1) ≤ h(Wk) +
〈

Wk+1 −Wk,∇h(Wk)
〉
+

M1

2

∥∥∥Wk+1 −Wk
∥∥∥2

F
. (A13)

Suppose
∥∥∥Wk>Wk − Ip

∥∥∥2

F
≤ δ, then by Lemma A11 we can conclude that

∥∥∥∇h(Wk)− D(Wk)
∥∥∥

F
≤ 2m ‖Y‖m

F

∥∥∥Wk>Wk − Ip

∥∥∥
F
≤ 4
√

3m ‖Y‖m
F

β

∥∥∥D(Wk)
∥∥∥

F
. (A14)

Substitute Wk+1 −Wk = −ηD(Wk) and (A14) into (A13), we have

h(Wk+1)− h(Wk)

≤
〈

Wk+1 −Wk,∇h(Wk)
〉
+

M1

2

∥∥∥Wk+1 −Wk
∥∥∥2

F

≤ − ηk
〈

D(Wk), D(Wk)
〉
+

M1

2

∥∥∥ηkD(Wk)
∥∥∥2

F
+
∣∣∣〈∇h(Wk)− D(Wk), D(Wk)

〉∣∣∣
≤
(
−ηk +

4
√

3m ‖Y‖m
F

β
ηk +

M1

2

(
ηk
)2
)∥∥∥D(Wk)

∥∥∥2

F

≤ − ηk

2

∥∥∥D(Wk)
∥∥∥2

F
≤ − η̄

4

∥∥∥D(Wk)
∥∥∥2

F
.

(A15)

Then by Lemma A10, as h(Wk+1) ≤ h(Wk), we can conclude that
∥∥∥Wk+1>Wk+1 − Ip

∥∥∥2

F
≤ δ. Then,

by induction we can conclude that
∥∥∥Wk>Wk − Ip

∥∥∥2

F
≤ δ holds for k = 1, 2, 3, · · · . Then, by (A15) again

we conclude that

h(Wk+1) ≤ h(Wk)− η̄

4

∥∥∥D(Wk)
∥∥∥2

F
(A16)

holds for k = 1, 2, 3, · · · and completes our proof.

The following lemma shows that when our algorithm stops at W̃, then W̃ is a first-order stationary
point of (1).

Lemma A13. Suppose δ ∈
(

0, 1
3

]
and β ≥ max

{
228m ‖Y‖m

F , 32
δ ‖Y‖

m
F
}

. For any W̃ satisfying∥∥W̃>W̃ − Ip
∥∥2

F ≤ δ and D(W̃) = 0, we have that W̃ is a first-order stationary point of (1).
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Proof. Suppose D(W̃) = 0, then by the same proof routine in Theorem 2, we consider
the inner-product of D(W̃) and W̃(W̃>W̃ − Ip):

0 =
〈

D(W̃), W̃(W̃>W̃ − Ip)
〉

=
〈
∇ f (W̃)− W̃Λ(W̃) + βW̃(W̃>W̃W̃>W̃ − Ip), W̃(W̃>W̃ − Ip)

〉
= tr

(
(W̃>W̃ − Ip)W̃>∇ f (W̃)− (W̃>W̃ − Ip)W̃>W̃Λ(W̃) + βW̃>W̃(W̃>W̃ + Ip)(W̃>W̃ − Ip)

2
)

= tr
(
(W̃>W̃ − Ip)

2(βW̃>W̃(W̃>W̃ + Ip)−Λ(W̃)
)

≥ tr
(
(W̃>W̃ − Ip)

2(βW̃>W̃(W̃>W̃ + Ip)− (4m + 8) ‖Y‖m
F · Ip

)
≥ β

2
tr
(
(W̃>W̃ − Ip)

2
)
≥ 0.

Here, the fourth equation follows the definition of Λ(W̃) := Φ(W̃>∇ f (W̃)) and the first
inequality uses the fact that

∥∥W̃
∥∥ ≤ 2, then together with Lemma A3, we can conclude that∥∥Λ(W̃)

∥∥
2 � (4m + 8) ‖Y‖m

F · Ip. Besides, the last inequality uses the fact that β
2 W̃>W̃(W̃>W̃ + Ip) �

(4m + 8) ‖Y‖m
F · Ip.

Then we can conclude that that W̃>W̃ = Ip. By the definition of ∇h(W̃), we have

∇h(W̃)− D(W̃) = −1
2
∇ f (W̃)(W̃>W̃ − Ip)−

1
2
∇2 f (W̃)[W̃(W̃>W̃ − Ip)] = 0, (A17)

showing that ∇ f (W̃) = 0. Together with Theorem 2 we can conclude that W̃ is a first-order stationary
point of (1).

Based on the Lemmas A10–A13, we restate Theorem 4 as Theorem A14 and show the global
convergence property of PenNMF in the following theorem.

Theorem A14. Suppose δ ∈
(

0, 1
3

]
and β ≥ max

{
228m ‖Y‖m

F , 32
δ ‖Y‖

m
F
}

. Let {Wk} be the iterate sequence

generated by PenNMF, starting from any initial point W0 satisfying ||W0>W0 − Ip||2F ≤
1
8 δ, and the stepsize

ηk ∈
[

1
2 η̄, η̄

]
, where η̄ ≤ 1

2M1
. Then, Wk weakly converges to a first-order stationary point of (1). Moreover,

for any k = 1, 2, · · · , the convergence rate of PenNMF can be estimated by

min
0≤i≤k

∥∥∥D(Wi)
∥∥∥

F
≤

√
8m ‖Y‖m

F + 2βδ

η̄(k + 1)
. (A18)

Proof. By Lemma A12, it holds that

h(Wk+1) ≤ h(Wk)− η̄

4

∥∥∥D(Wk)
∥∥∥2

F
.

If W∗ is a cluster point of {Wk}, we have Wk+1 −Wk = 0. Together with W∗>W∗ = Ip implied
by Lemma A11, we can conclude that W∗ is a first-order stationary point of problem (1).

Calculating the summation of the above inequalities from k = 0 to N − 1, we have

k∑
i=0

η̄

4

∥∥∥D(Wi)
∥∥∥2

F
≤ h(W0)− h(Wk) < h(W0)− inf

||W>W−Ip ||2F≤δ
h(W)

< sup
||W>W−Ip ||2F≤δ

h̃(W)− inf
||W>W−Ip ||2F≤δ

h̃(W) +
β

4

(
||W0>W0 − Ip||2F − ||Wk>Wk − Ip||2F

)
≤2m ‖Y‖m

F +
βδ

2
,

(A19)
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showing that lim inf
k→+∞

∥∥∥D(Wk)
∥∥∥

F
= 0, which further implies that D(W∗) = 0. By Lemma A13,

D(W∗) = 0 implies that W∗ is a first-order stationary point of (1).
Moreover, by (A19), we have that

min
0≤i≤k

∥∥∥D(Wi)
∥∥∥2

F
≤ 1

k + 1

k∑
i=0

∥∥∥D(Wi)
∥∥∥2

F
≤ 8m ‖Y‖m

F + 2βδ

η̄(k + 1)
,

and complete the proof.

Appendix C. Additional Experimental Results

In this section, we propose some additional numerical experiments. Figure A1 shows the top
12 basis computed from the testing instances in Section 4.1 by PenNMF. As described in [17], the top
bases are those with the largest coefficients in terms of `1-norm.

(a) (b) (c)

(d) (e) (f)

Figure A1. The top 12 bases computed from all patches of the test images without noise by PenNMF .
(a) “Barbara“; (b) “Boat”; (c) “Duck“; (d) “House”; (e) “Lena“; (f) “Chateau”.
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