
sensors

Article

Gentle Versus Strong Touch Classification:
Preliminary Results, Challenges, and Potentials

Soheil Keshmiri 1,* , Masahiro Shiomi 1, Hidenobu Sumioka 1, Takashi Minato 1

and Hiroshi Ishiguro 1,2

1 Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0237, Japan;
m-shiomi@atr.jp (M.S.); sumioka@atr.jp (H.S.); minato@atr.jp (T.M.); ishiguro@sys.es.osaka-u.ac.jp (H.I.)

2 Graduate School of Engineering Science, Osaka University, Osaka 565-0871, Japan
* Correspondence: soheil@atr.jp

Received: 28 April 2020; Accepted: 25 May 2020; Published: 27 May 2020
����������
�������

Abstract: Touch plays a crucial role in humans’ nonverbal social and affective communication.
It then comes as no surprise to observe a considerable effort that has been placed on devising
methodologies for automated touch classification. For instance, such an ability allows for the use of
smart touch sensors in such real-life application domains as socially-assistive robots and embodied
telecommunication. In fact, touch classification literature represents an undeniably progressive result.
However, these results are limited in two important ways. First, they are mostly based on overall
(i.e., average) accuracy of different classifiers. As a result, they fall short in providing an insight on
performance of these approaches as per different types of touch. Second, they do not consider the
same type of touch with different level of strength (e.g., gentle versus strong touch). This is certainly
an important factor that deserves investigating since the intensity of a touch can utterly transform its
meaning (e.g., from an affectionate gesture to a sign of punishment). The current study provides a
preliminary investigation of these shortcomings by considering the accuracy of a number of classifiers
for both, within- (i.e., same type of touch with differing strengths) and between-touch (i.e., different
types of touch) classifications. Our results help verify the strength and shortcoming of different
machine learning algorithms for touch classification. They also highlight some of the challenges
whose solution concepts can pave the path for integration of touch sensors in such application
domains as human–robot interaction (HRI).

Keywords: physical interaction; touch classification; human–agent physical interaction

1. Introduction

Touch is one of the most basic and yet highly effective means of nonverbal communication for
transfer of affective feelings and the emotions [1]. Research provides ample evidence for its positive
therapeutic impact on individuals’ physical and mental stress [2]. Humans appear to be equipped
with an innate capacity for comprehending the meaning that are entailed in a touch [1]. However,
providing other agencies such as robots or other embodied communication media with this ability is
rather nontrivial [3–5]. It is apparent that such an ability finds application in a broad real-life domains
from socially-assistive robots [6] and robot therapy [7,8] to embodied telecommunication [9].

In this respect, a considerable effort has been placed on devising methodologies for automated
touch classification. Among these approaches, machine learning has played a pivotal role.
Jung et al. [10] applied Bayesian classifier and support vector machine (SVM) on a touch dataset
that comprised fourteen different types of touch (grab, hit, massage, pat, pinch, poke, press, rub,
scratch, slap, stroke, squeeze, tap, and tickle). They reported 54.0% and 53.0% overall accuracies
by these classifiers, respectively. Silvera-Tawil et al. [11] used LogitBoost algorithm to obtain an
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average classification accuracy of 71.0% on nine touch gestures (pat, push, scratch, slap, stroke, tap,
pull, squeeze, and no-touch). These touch gestures were performed on an artificial skin which was
worn on a mannequin’s arm. Naya et al. [12] combined linear discriminant analysis (LDA) with
K-nearest-neighbor (KNN) to achieve an overall classification accuracy of 87.0% on five touch gestures
(pat, scratch, slap, stroke, and tickle). They used a 44 × 44 sensor grid for collecting their touch
data. Nakajima et al. [9] utilized SVM in a scenario in which human subjects performed seven touch
gestures (grasp, hug, press, punch, rub, slap, and no-touch) on a balloon interface. Their classifier
was able to achieve an overall accuracy of 75.0% between multiple subjects. van Wingerden et al. [13]
applied a single-layer neural network with 46 nodes in its hidden layer on the same dataset that was
originally introduced by Jung et al. [10]. They reported a 54.0% classification accuracy on this dataset.
Murray-Smith et al. [14] achieved 75.0% accuracy for overall classification of four touch gestures
(stroke, scratch, rub, and tap). Their accuracy was based on an artificial neural network that was
trained on 26,880 examples. However, the authors did not provide information about the number of
users/participants that were included in their evaluation. Robinson et al. [15] devised a model (called
Tapback) that detected when the users tapped on the back of their smartphone (without having to
separate their phone from their ear). In their setting that included 36 individuals, the users tapped on
the back of their phone once (772 instances), twice (301 samples), or thrice (220 instances) for a total
number of 1293 instances. The authors claimed that their system achieved 93.0% (single tap), 78.0%
(tapping twice), and 56.0% (three consecutive taps) accuracies. However, the authors did not provide
any details on training procedure/setting of their system. Braun et al. [16] used two microphones
along with a support vector classifier for detecting four touch gestures on a surface (swipe, tap, knock,
and stomp). They used 1247 samples from 13 participants and achieved overall accuracies between
91.0–99.0% and 97.0–100.0% using a single and double microphones, respectively. However, they
utilized a large number of features (587 features) and their results appeared to be solely based on
the training set. Harrison et al. [17] introduced a system called TapSense that allowed for detection
of tip and tap with a pen, and nail and knuckle interactions with a finger. They used data from 18
participants that interacted with a multitouch Table (320 instances) and reported an overall accuracy
of 88.30%. Finally, Alonso-Martin et al. [18] used contact microphones for classification of four touch
gestures (stroke, tap, slap, and tickle) on a robot. Their study included 25 participants. The authors
reported that the logistic model tree (LMT) achieved the best performance, with an F-score of 0.81.
Although the authors did not explicitly report the accuracy of their model, their article included
the LMT’s confusion matrix. The authors also provided a comprehensive review of different sensor
technologies for touch interaction. Fleh et al. [19] present a comprehensive review on this topic.

Looking at the touch classification literature, one can undeniably appreciate substantial efforts
with progressive results. At the same time, it also pinpoints two primary limitations in these studies.
First, the reported results by these studies are mostly based on overall classification accuracies (but
also see [18,20]). As a result, they do not provide an insight about the performance of their classifiers
on each type of touch. For instance, by looking at these results, it is not possible to tell whether the
reported overall accuracies are based on classifiers’ ability to predict all different types of touch or just
a small subset of these types. The importance of such an ability becomes clearer once one considers
the substantially reduced accuracy of such classifiers when their performance are examined as per
different types of touch. For instance, Stiehl and Breazeal [7] used a three-hidden-layer neural network
(100 nodes per layer) for classification of nine different types of touch (contact, pat, pet, poke, rub,
scratch, slap, squeeze, and tickle) that were performed on a pet-robot’s arm. The authors noted that
their model was not able to classify such touch gestures as slap due to its short duration. Furthermore,
they reported that although their model generated a high true negative (e.g., rub and poke are not the
same) for the remaining eight touch gestures (94.0–98.0%), it produced a highly varying true positive
(i.e., predicting rub, pat, etc. with a high accuracy) results (23.0–84.0%).

Second, these results did not consider the same touch types that might only vary in their level of
strength. For instance, they did not examine how well their classifiers could differentiate between a
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gentle and a stronger stroke. This is certainly a desirable ability since a change in intensity of a touch
may utterly transform its meaning. For instance, whereas a gentle squeeze might signal an affectionate
treat, a stronger one could be construed as a sign of punishment by its recipient.

The current study attempts to address these shortcomings by considering the accuracy of a number
of classifiers for both, within- (i.e., same type of touch with differing strengths) and between-touch (i.e.,
different types of touch) classification. For this purpose, we wore a sensor-grid vest on a mannequin’s
upper body and asked human subjects to perform different types of touch on it. We also asked
these participants to perform these touch gestures in two different strengths: a gentle touch and a
stronger touch.

The contributions of the present study are threefold. First, it introduces a low dimensional feature
space whose computation relies on a very short time window of a touch trial. As a result, this feature
space bypasses such issues as inability for classifying a touch gesture due to its short duration [7] or
utilization of a large number of features [16]. Second, it provides a comparative analysis of six different
classifiers on three types of touch, each with two different strengths: a gentle and a stronger touch
(i.e., six different touch scenarios in total). This provides a preliminary results on the utility of these
algorithms for classification of the touch gestures that differed in both, their types (i.e., between-touch
setting) and their level of strength (i.e., within-touch setting). Such a comparative results also help
verify the strength and shortcoming of different machine learning algorithms for touch classification.
Third, it highlights some of the challenges whose solution concepts can pave the path for integration
of touch sensors in such application domains as human–robot interaction (HRI).

2. Materials and Methods

2.1. Participants

Twenty-two younger adults (eleven females, age: M = 32.95, SD = 6.41) participated in our study.
Data from four participants (three males and one female) were not recorded properly and therefore
they were excluded from our analysis.

2.2. The Sensor

In our experiment, participants touched a mannequin that wore a touch-sensor vest. This vest
consisted of two TactilusT M touch sensor mats manufactured by Sensor Products Inc. (Table 1). Each
sensor mat had 16 × 16 sensor cells (i.e., input channels). We put the sensor mats on the front and the
back of the mannequin’s upper body. The size of sensor mat (i.e., on each of the front and back sides)
was 17.9 inch2. The size of a single sensor cell on each mat was 1.12 inch2. The sampling rate of the
touch-sensor in this study was 50.0 Hz. At each recording step, the sensor vest generated, per front
and back sides, a 32 × 32 data matrix whose entries corresponded to pressure intensity.

2.3. Data Selection

Our experiment included five types of touch scenarios. Each touch type had two levels of strength:
gentle or strong. All participants followed the same order of touch type and strength. This resulted in
ten (five types × two strengths) touches. They were:

1. Hitting the mannequin’s chest gently/strongly
2. Hugging the mannequin gently/strongly
3. Hitting the mannequin’s shoulder gently/strongly
4. Rubbing the mannequin’s shoulder gently/strongly
5. Rubbing the mannequin’s chest gently/strongly

For all these touch scenarios, we first determined their duration in number of acquired frames.
We noted that individuals’ touch durations varied substantially in their acquired number of frames
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(mean (M) = 600.71 frames, standard deviation (SD) = 115.33 frames, minimum (Min) = 180.00 frames,
maximum (Max) = 950.00 frames). To use an equal number of frames and to also ensure retaining a
maximum amount of data, we opted for the shortest number of frames (i.e., min = 180.00 frames) in
our dataset. Given the touch sensor’s 50.0 Hz sampling rate, this translated to 3.60 s (i.e., from the
onset of a session) of touch data, per participant, per touch scenario.

Table 1. Specifications of the Sensor Products Inc. used in the present study.

Technology Piezoresistive
Pressure Range 0.1 to 200 PSI (0.007 to 14.1 kg/cm2)
Matrix Size Up to 64 × 256 lines
Thickness From 12 mils (0.3 mm)
Mat Sensor Size Customizable up to 150" (381 cm)
1Scan Speed Up to 1000 hertz
Min Sensing Point Size 0.188 in2 (1.21 cm2)
Stretchability Up to 158%
Accuracy ±10%
Repeatability ±2%
Hysteresis ±5%
Nonlinearity ±1.5%
Calibration NIST Traceable

Next, we visually inspected the participants’ acquired data. For this purpose, we used an
in-house Matlab 2016a script (Natick, MA, USA) that visualized the participants’ touch patterns on a
contour (i.e., contour f function in Matlab) whose content was updated at real-time frame-by-frame.
We further cross-validated these visualized touch patterns against the participants’ recorded videos
during their touch sessions. Our inspection revealed that almost all participants actually performed
“rubbing the mannequin’s shoulder strongly” as “hitting the mannequin’s shoulder strongly.”
Therefore, we discarded the pair “rubbing the mannequin’s shoulder gently/strongly” from our
study. During the inspection, we also realized that most participants’ data that was related to “hitting
the mannequin’s shoulder strongly” did not have enough contrast when compared to their “rubbing
the mannequin’s shoulder gently.” To acquire a higher resolution data, we computed the contrast
ratio between “rubbing the mannequin’s shoulder strongly” (which was performed as “hitting the
mannequin’s shoulder strongly” by most of the participants) and the actual “hitting the mannequin’s
shoulder strongly,” per participant. We found that the latter yielded a higher overall ratio (i.e.,
E[ rubbing the mannequin’s shoulder strongly

hitting the mannequin’s shoulder strongly ] > 1). Therefore, we replaced the participants’ “rubbing the
mannequin’s shoulder strongly” with their respective “hitting the mannequin’s shoulder strongly” in
the case of “hitting the mannequin’s shoulder gently/strongly” pair (i.e., scenario number 3 in the list
above).

Further inspection of the participants’ data also revealed that not all participants touched the
mannequin as intended (e.g., too soft to generate any tangible touch pattern on the touch sensor or
performing additional undesired/unexpected touching of the mannequin that resulted in noisy data
frames). In some cases, the mannequin also appeared not to be stable enough, thereby resulting in
an inadequate touch data acquisition. As a result, we discarded all participants whose data were
not well-defined (e.g., none or very few activated cells, mixed touch patterns, incorrectly performed
touch, etc.). It is also worth noting that all scenarios included an excessive activation around the neck
(i.e., irrespective of the touch scenario) as a result of the misalignment of the touch sensor on the
mannequin’s torso. However, we did not filter out this unwanted activity since its removal would
have caused loss of information and activation patterns in scenarios that included touching around
this area (e.g., Rubbing/Hitting the mannequin’s chest/shoulder gently/strongly).

At the end of inspection, we kept all those touch scenarios whose pairs remained intact. However,
the gentle/strong were not necessarily corresponded to the same participant in all cases. This resulted
in final inclusion of six touch scenarios that corresponded to nine participants, per scenario. They were:
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1. Hitting the mannequin’s chest gently (Touch1)
2. Hugging the mannequin gently (Touch2)
3. Hitting the mannequin’s shoulder gently (Touch3)
4. Hitting the mannequin’s chest strongly (Touch4)
5. Hugging the mannequin’s strongly (Touch5)
6. Hitting the mannequin’s shoulder strongly (Touch6)

Figure 1 shows examples of hitting the mannequin’s shoulder gently (i.e., Touch3, Figure 1A) and
hugging the mannequin strongly (i.e., Touch5, Figure 1B). The two heatmaps in the bottom-left corner
of each subplot show the pattern of sensor’s activation in response to their respective touch gestures.
Comparing these heatmaps verifies that whereas Touch3 (i.e., hitting the mannequin’s shoulder gently)
corresponded to weakly activated sensor’s cells, the values associated with the sensor’s cells activation
in the case of Touch5 (i.e., hugging the mannequin strongly) exhibited more variability.

Figure 1. (A) Hitting the mannequin’s shoulder gently (B) Hugging the mannequin strongly. In these
figures, the heatmaps visualize the sensor values with red and blue indicating strength and gentle
touches. These figures verify that whereas Touch3 (i.e., hitting the mannequin’s shoulder gently)
corresponded to weakly activated sensor’s cells, the values associated with the sensors’ cells activation
in the case of Touch5 (i.e., hugging the mannequin strongly) exhibited more variability.

2.4. Analysis

2.4.1. Touch Feature Computation

We utilized the 180 frames (i.e., 3.60 s), per participant, per touch scenario, and computed three
types of features (for both gentle and stronger touch scenarios):

1. Maximum Touch Activated Area (MTAA): We first found the frame with maximum number of
activated touch sensor’s cells (i.e., out of 180 frames, per touch scenario, per participant). MTAA
was then computed as m × 1.122 where m refers to the number of activated cells and 1.122 is the
area of a single cell.

2. Cumulative Sum of Touch Intensity (CSTI): This was calculated as the sum of activation (i.e.,
measured pressure, per cell) of all cells in the maximally touch activated frame that was used for
computing the Maximally Activated Touch Area above.

3. Relative Time of Maximally Activated Frame (RTMAF): This was computed as the index of the
frame (i.e., out of 180 frames, per touch scenario) that corresponded to the frame with Maximally
Activated Touch Area above.
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2.4.2. Touch Classification

We adapted six different classification methods to determine the utility of three extracted features
for predicting the type and strength of different touch scenarios. These classifiers were random forest
(RF), naive Bayes (NB), decision tree (DT), k-nearest-neighbor (KNN), support vector classifier (SVC),
and logistic regression (LR).

To compare the performance of these classifiers, we performed 100 simulation runs in which we
randomly split touch scenarios to 70.0% train and 30.0% test sets. We also ensured that a balanced
proportion of each of the six labels were split between these train and test sets. We used the train set
for training each of these classifiers and the test set to compute their prediction accuracy. We also
determined whether including polynomial features improved their performance. For this purpose, we
ran these algorithms while considering 0 (i.e., no polynomial feature) through 5 polynomial features.
We observed that all of them yielded their best accuracy when they used two-degree polynomial
features. Therefore, we reported the results based on two-degree polynomial features.

The participants’ calculated features formed inputs to these classifiers. We z-normalized these
features. Figure 2 shows the z-normalized feature matrices for nine participants that were included in
this study. The output from the classifiers was their respective predicted touch scenario (i.e., 1 through
6, one for each of the touch classes described in Section 2.3). Given the six different touch scenarios (i.e.,
three types × two strengths) that were balanced (i.e., all had equal number of samples = 9), the chance
level accuracy was ≈16.67%.

Figure 2. Touch Features for (A) Hitting the mannequin’s chest gently (left) and strongly (right) (B)
Hugging the mannequin gently (left) and strongly (right) (C) Hitting the mannequin’s shoulder gently
(left) and strongly (right). The calculated features are shown along the x-axis. They are Maximally
Touch Activated Area (MTAA), Cumulative Sum of Touch Intensity (CSTI), and Relative Time of
Maximally Activated Frame (RTMAF). The values depicted in these subplots are z-normalized (i.e.,
each column is mean-subtracted and divided by its standard deviation). The y-axis corresponds to the
participants in this study (i.e., p1 through p9).

We then used the 100 predictions by each of these algorithms and applied a Kruskal–Wallis
test that was followed by posthoc Wilcoxon signed rank to determine the classifier with the highest
accuracy. Our analyses indicated that RF significantly outperformed all the other classifiers. Therefore,
we reported the RF’s results in the main manuscript. For RF performance, we reported its overall
(i.e., averaged over 100 simulation runs) accuracy, precision, recall, and F1-score. We also provided its
confusion matrix that showed the percentage of misclassification of each touch scenario with respect
to the other touch scenarios.
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2.4.3. Improving the RF Accuracy

To determine whether RF high accuracy could be further improved, we applied two additional
steps in our data preprocessing pipeline. These steps included the reduction of undesired persistent
activity around the mannequin’s neck and the introduction of an additional feature using graph-based
connected components. In what follows, we elaborate on these two steps:

1. Reduction of Undesired Activity around a Mannequin’s Neck: In our data, we observed that
the activity around the mannequin’s neck was present in all participants’ data and regardless of
the touch gesture that they performed on this mannequin. Further investigation of these data
revealed that such an undesired activity was present even prior to the start of the participants’
session. The latter observation verified that the observed noisy activity was due to the inadequate
placement of the sensor vest on the mannequin’s upper body. To attenuate this effect, we extracted
the sensor’s data of all the participants that pertained to the one frame prior to the start of their
session, per touch scenario. Next, we located all the sensor’s cells that were commonly active in
all of these frames (i.e., one per participant, per touch gesture). We then computed the MTAA
and CSTI features (Section 2.4.2 and Figure 2) for this undesired activity around the mannequin’s
neck. Subsequently, we subtracted them from all participants’ corresponding MTAA and CSTI
features that were calculated during their sessions, per touch gesture.

2. Introduction of an Additional Feature: We computed a new feature; largest connected component
(LCC). In essence, LCC corresponded to the number of activated sensor’s cells in the largest
connected area of the sensor vest. In this respect, whereas MTAA quantified the maximum
number of activated sensor’s cells during a touch session, LCC represented the number of such
cells that formed a connected neighboring cells that formed the largest subset of such pattern of
activation. To compute LCC, we treated the sensor’s data in terms of a graph. Precisely, we first
converted this data to an adjacency matrix by assigning a “1” or a “0” to every cell “c” if it was
active or inactive:{

cij = 1 if the cell at row i and column j was active, ∀i, j = 1,. . . , 32

cij = 0 otherwise

where 32 represents a dimension of sensor’s frame (i.e., a 32 × 32 frame, Section 2.2) and cij refers
to the sensor’s cell at ith row and jth column location on this frame. Next, we computed all the
connected components [21] of this adjacency matrix. LCC was then the connected component that
comprised the largest number of active cells among all of these connected components. Figure 3
shows the modified feature vectors, per touch gesture, per participant that included LCC.

Figure 4 visualizes the pairwise cosine similarity distances between different touch gestures. This
figure verifies that the use of [MTAA, CSTI, and RTMAF, LCC] feature vectors for quantification
of these touch gestures quite effectively captured the similarity between participants’ data
for each of these gestures. This can be seen by inspecting the nearly zero-valued larger-area
squares, per touch pairs that lay along the diagonal. Looking at the larger-area squares along
the row entries, these features were also able to capture considerable dissimilarities between
touch gestures of different type. These observations indicated that [MTAA, CSTI, and RTMAF,
LCC] feature vectors extracted substantial motion-related spatial information that were inherent
characteristic/property of these touch gestures. This is due to the fact that the cosine similarity
quantifies the similarities among a given set of vectors in terms of their directions in space.
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Figure 3. Modified Touch Features. (A) Hitting the mannequin’s chest gently (left) and strongly (right);
(B) Hugging the mannequin gently (left) and strongly (right); and (C) Hitting the mannequin’s shoulder
gently (left) and strongly (right). MTAA, CSTI, RTMAF, and LCC features are shown along the x-axis.
In these subplots, MTAA, CSTI, and RTMAF are same as in Figure 2. The values in these subplots are
z-normalized (i.e., each column is mean-subtracted and divided by its standard deviation). The y-axis
corresponds to the participants in this study (i.e., p1 through p9).

Figure 4. Pairwise cosine similarity distance between all touch gestures’ feature vectors. This
figure verifies that MTAA, CSTI, RTMAF, and LCC quite effectively captured the similarity between
participants’ data that pertained to same touch gestures. This is evident in the nearly zero-valued
larger-area squares, per touch pairs that lay along the diagonal. Looking at the larger-area squares along
the row entries, per touch pairs, these features were also able to extract considerable dissimilarities
between gestures of different type. Each of these larger-area squares is a 9 × 9 matrix: i.e., one small
square (a cosine similarity) per participant and every other participant (i.e., self-similarities included).
As a result, each touch gesture is associated with a 9 × 54 (i.e., 9 participants × 6 touch gestures) cosine
similarity sub-matrix that is extended along the row of the overall cosine similarity matrix of all touch
gestures in this figure.
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2.4.4. Statistics

For the Kruskal–Wallis test, we reported the effect size r =
√

χ2

N [22] with N denoting the sample
size and χ2 is its test-statistics. In the case of Wilcoxon test, we used r = W√

N
[23] as effect size with W

denoting the Wilcoxon statistics and N being the sample size.
Data inspection, feature computation, and statistical tests were carried out in Matlab 2016a.

For classifications, we used Python machine learning library, scikit-learn [24].

2.5. Ethics Statement

This study was carried out in accordance with the recommendation of the ethical committee of the
Advanced Telecommunications Research Institute International (ATR) with written informed consent
from all subjects. Every participant signed a written informed consent. The protocol was approved by
the ATR ethical committee (approval code:17-601-4).

3. Results

3.1. Overall Accuracies

Table 2 summarizes the average (i.e., 100 simulation runs) overall (i.e., all touch gestures combined)
accuracy (mean (M), standard deviation (SD)), precision, recall, and F1-score for RF, NB, DT, KNN,
SVC, and LR. Considering these overall (i.e., all touch gestures combined) accuracies, we observed
that all classifiers were able to achieve an above chance (i.e., ≈16.67%) performance. On other hand,
we also observed a substantial variation among these classifiers’ performances. For instance, KNN
and LR were associated considerably lower overall accuracies than other classifiers. Furthermore, RF
and NB showed overall accuracies that were markedly higher than all other classifiers.

Table 2. Overall (i.e., all touch gestures combined) average (i.e., 100 simulation runs) accuracy,
precision, recall, and F1-score associated with random forest (RF), naive Bayes (NB), decision tree (DT),
k-nearest-neighbor (KNN), support vector classifier (SVC), and logistic regression (LR). M and SD
stand for the mean and the standard deviation of each model’s accuracies in 100 simulation runs.

Classifier Accuracy Precision Recall F1-Score

RandomForest M = 85.00%, SD = 8.60 0.89 0.87 0.86

Naive Bayes M = 77.62 %, SD = 10.65 0.86 0.83 0.82

DecisionTree M = 66.67%, SD = 9.66 0.68 0.64 0.66

KNN M = 47.45%, SD = 12.90% 0.57 0.54 0.53

Support Vector M = 60.74%, SD = 12.68% 0.60 0.62 0.61

Logistic Regression M = 58.28%, SD = 14.47 0.57 0.56 0.58

Kruskal–Wallis test indicated a significant difference between these accuracies with a large
effect size (p < 0.00001, H(5, 599) = 334.93, r = 0.75). Posthoc Wilcoxon rank sum tests (Figure 5)
further indicated significant differences in pairwise performance comparisons between these classifiers.
Specifically, we observed that (Table 3) RF significantly outperformed all other classifiers’ performance
and that such differences were associated with large effect sizes. The only exception to this observation
was the significant difference between RF and NB in which we observed a medium effect size. Similarly,
NB showed significantly higher accuracies than other classifiers. These significant differences were
also associated with large effect sizes. Although we observed significant differences between DT,
SVC, and KNN, these differences were more subtle than those observed in the case of RF and NB.
In addition, these latter cases were all associated with small and medium effect sizes.
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Figure 5. Models’ overall accuracies. Asterisks mark the significant differences between these classifiers’
performance as indicated by their pairwise Wilcoxon rank sum tests (*:p < 0.01, ***: p < 0.00001). In this
figure, significantly higher overall accuracy (chance level 16.67%) of RF compared to other classifiers
is evident.

Table 3. Paired posthoc Wilcoxon rank sum tests between average (i.e., 100 simulation runs) accuracy
of every pairs of models. The models are: random forest (RF), K-nearest-neighbor (KNN), support
vector classifier (SVC), logistic regression (LR), Naive Bayes (NB), and decision tree (DT). W and r refer
to the Wilcoxon test-statistics and effect size, respectively. Significantly superior performance of RF
compared to all other models is evident in this table.

Models p < W(198) r

RF vs. KNN 0.00001 12.12 0.86

RF vs. SVC 0.00001 10.86 0.77

RF vs. LR 0.00001 11.06 0.78

RF vs. NB 0.00001 4.54 0.32

RF vs. DT 0.00001 10.08 0.71

NB vs. KNN 0.00001 11.33 0.80

NB vs. LR 0.00001 9.04 0.64

NB vs. SVC 0.00001 8.42 0.60

NB vs. DT 0.00001 7.07 0.50

KNN vs. SVC 0.00001 −7.07 −0.50

KNN vs. LR 0.00001 −5.06 −0.36

KNN vs. DT 0.00001 −9.67 −0.68

SVC vs. LR 0.00001 7.07 0.50

SVC vs. DT 0.01 −3.02 −0.21
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3.2. Between-Gesture Accuracies

We observed that all the classifiers showed above chance (≈16.67%) accuracies when their overall
performance (i.e., all touch gestures combined) was considered. However, further analysis of these
classifiers’ performance revealed a substantial variability when different touch gestures were taken
into consideration (i.e., Touch1 through Touch6, Section 2.3).

Figure 6 shows the confusion matrix (left subplot) and the accuracy (right subplot) of RF, as per
touch gesture. This figure indicates that RF achieved a relatively high accuracy in distinguishing
between different touch gestures. This is in particular true in the case of Touch1 (i.e., Hitting the
mannequin’s chest gently) and Touch5 (i.e., Hugging the mannequin’s strongly). This figure also shows
that RF distinguished between the two strengths (i.e., gentle vs. strong) of each touch type relatively
well. However, further inspection of this figure indicates that RF was not very successful in detecting
differences among some of these settings. For instance, we observed that it misclassified Touch3 (i.e.,
Hitting the mannequin’s shoulder gently) and Touch6 (i.e., Hitting the mannequin’s shoulder strongly)
and vice versa. Similarly, it confused Touch4 (i.e., Hitting the mannequin’s chest strongly) with Touch6
and Touch1. Worthy of note is also its misclassification of Touch2 (i.e., Hugging the mannequin gently)
as Touch1.

In the case of NB (Figures 7), we also observed a relatively similar trend of high accuracy for
predicting different touch gestures. However, its rate of misclassification was notably higher than the
RF. This is in particular evident for Touch1, Touch3, Touch4, and Touch6.

On the other hand, such misclassifications were more substantial in the case of DT (Figure 8),
KNN (Figure 9), SVC (Figure 10), and LR (Figure 11). This is in particular evident in the case of DT
and KNN for Touch4 (Hitting the mannequin’s chest strongly) that showed close to (in the case of DT)
or below (in the case of LR) chance accuracy for this touch gesture.

Figure 6. Random forest (RF) classifier. The subplot on the right shows the accuracy of this classifier for
each touch scenario (i.e., Touch1 through Touch6). The subplot on the left presents the confusion matrix
for this classifier. The overall accuracy of random forest (red-line in the right subplot) was 85.00%
(chance level (black-line in the right subplot) ≈ 16.67, given six-class classification of balanced classes).
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Figure 7. Naive Bayes (NB) classifier. The subplot on the right shows the accuracy of this classifier
for each touch scenarios (i.e., Touch1 through Touch6). The subplot on the left presents the confusion
matrix for this classifier. The overall accuracy of Naive Bayes (red-line in the right subplot) was 77.62%
(chance level (black-line in the right subplot) ≈ 16.67, given six-class classification of balanced classes).

Figure 8. Decision tree (DT) classifier. The subplot on the right shows the accuracy of this classifier
for each touch scenarios (i.e., Touch1 through Touch6). The subplot on the left presents the confusion
matrix for this classifier. The overall accuracy of decision tree (red-line in the right subplot) was 66.67%
(chance level (black-line in the right subplot) ≈ 16.67, given six-class classification of balanced classes).
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Figure 9. K-nearest-neighbor (KNN) classifier. The subplot on the right shows the accuracy of this
classifier for each touch scenarios (i.e., Touch1 through Touch6). The subplot on the left presents the
confusion matrix for this classifier. The overall accuracy of K-nearest-neighbor (red-line in the right
subplot) was 47.45% (chance level (black-line in the right subplot) ≈ 16.67, given six-class classification
of balanced classes).

Figure 10. Support vector classifier (SVC) with radial basis kernel. The subplot on the right shows the
accuracy of this classifier for each touch scenarios (i.e., Touch1 through Touch6). The subplot on the
left presents the confusion matrix for this classifier. The overall accuracy of support vector classifier
(red-line in the right subplot) was 60.74% (chance level (black-line in the right subplot) ≈ 16.67, given
six-class classification of balanced classes).
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Figure 11. Logistic regression (LR) classifier. The subplot on the right shows the accuracy of this
classifier for each touch scenarios (i.e., Touch1 through Touch6). The subplot on the left presents the
confusion matrix for this classifier. The overall accuracy of logistic regression (red-line in the right
subplot) was 58.28% (chance level (black-line in the right subplot) ≈ 16.67, given six-class classification
of balanced classes).

3.2.1. Improving the RF Accuracy

Figure 12 shows the RF performance after we included LCC in participants’ feature vectors
(Section 2.4.3). This figure shows a substantial improvement in RF accuracy in the case of all touch
gestures and regardless of their strength (i.e., gentle versus stronger touch). Wilcoxon signed rank
test indicated a significant improvement in RF accuracy using (MTAA, CSTI, RTMAF, and LCC)
(i.e., “after”) compared to its previous accuracy (Figure 13) using (MTAA, CSTI, and RTMAF) only
(i.e., “before”) (p < 0.00001, W(198) = 9.06, r = 0.64, MA f ter = 96.67, SDA f ter = 3.37, MBe f ore = 85.00,
SDBe f ore = 8.60). Appendix B provides the results for RF performance on an extended dataset that
comprised nine touch gestures.

Figure 12. Random forest (RF) classifier. The subplot on the right shows the accuracy of this classifier
for each touch scenarios (i.e., Touch1 through Touch6). The subplot on the left presents the confusion
matrix for this classifier. The overall accuracy of random forest (red-line in the right subplot) was 85.00%
(chance level (black-line in the right subplot) ≈ 16.67, given six-class classification of balanced classes).
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Figure 13. RF overall accuracy “before” and “after” original feature vectors (i.e., (MTAA, CSTI, RTMAF,
LCC)) were extended by six additional features that were the Euclidean distances between the averaged
cosine similarities (Section 2.4.3). Asterisks mark the significant differences between these classifiers’
performance as indicated by their pairwise Wilcoxon rank sum tests (***: p < 0.00001).

4. Discussion

The present study sought to realize the utility of machine learning approaches for classification
of gentle vs. strong touch gestures. For this purpose, we used a mannequin and asked the human
subjects to perform three types of touch gestures on its upper body. These gestures included hitting
the mannequin’s chest, hugging it, and hitting its shoulder. We also asked our participants to perform
these touch gestures in two different strengths: a gentle and a strong touch. This resulted in total of six
different scenarios (i.e., three touch gestures × two strengths). The comparative analysis of machine
learning approaches for touch gesture classification is not new and has been reported previously (e.g.,
Alonso-Martin et al. [18]). The present study complemented these previous results by adding another
dimension to the problem of touch classification, namely, change in strength of the same touch gesture
(i.e., gentle versus stronger hug).

We observed that a time window of ≈3.5 s was sufficient for extracting three features that
quite reliably captured the essential information about the type and the strength of these touch
gestures. These features were Maximally Activated Touch Area, Cumulative Sum of Touch Intensity,
and Relative Time of Maximally Activated Frame. Our results implied that these features along
with their interactions (in the form of polynomial degrees) could enable the RF classifier to achieve
a relatively high accuracy on classification of touch types and their differing strengths (i.e., gentle
versus stronger). Our results also suggested that this feature space could potentially help address
issues concerning the touch interactions with shorter time duration [7] or the need for large number of
features [16].

We observed that the inclusion of LCC in participants’ feature vectors could further increase their
ability for quantification of the differences between touch gestures in terms of their spatial information.
Precisely, we observed that the use of these features resulted in a relatively high discrimination between
participants’ data for different touch gestures. This observation was evident in the cosine similarity
between these feature vectors in which they appeared to quantify the dis/similarities between these
touch gestures based on their implicit motion-based spatial information. This was due to the fact that
the cosine similarity quantifies the similarities among the given set of vectors in terms of their direction
in space. This, in turn, substantially improved the performance of RF classifier whose performance
was already significantly higher than other classifiers that we used in our study (see Appendix B
for RF performance on an extended dataset of nine touch gestures). Interestingly, the inclusion of
LCC for capturing the spatial dynamics of these touch gestures appeared to be highly adequate for
distinguishing between same touch gestures with different strengths (i.e., gentle versus stronger).
In this respect, we observed that LCC significantly improved the RF performance on distinguishing
between such different strengths compared to its performance when LCC was not included.

We also observed that almost all of the classifiers that were included in our analysis achieved
above chance overall (i.e., all touch types combined) accuracies. Furthermore, these overall accuracies
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were based on separate test sets that were collected from different individuals and were balanced on
their number of touch gestures, per touch type. In addition, these accuracies were obtained using
a number of random split of data (100 simulation runs) between train and test sets. This differed
from Braun et al. [16] whose results appeared to be solely based on the training set: a problem that is
more commonly known as “circular analysis” or “double dipping” in various applications of machine
learning algorithms [25]. The observation that almost all of these algorithms were able to achieve above
chance level overall accuracies further implied that perhaps the use of more complex models such as
artificial neural networks [7,14] might not be necessary if one solely relies on such overall accuracies.

On the other hand, these results more crucially underlined the danger of such interpretations as
overall accuracy for drawing conclusion on the reliability of machine learning models. Specifically,
although we observed that almost all of these classifiers achieved above chance overall (i.e., all touch
types combined) accuracies, they rather exhibited significant differences in their performance per touch
gesture. For instance, KNN and SVC mostly misclassified “Hitting the mannequin’s shoulder gently”
(i.e., Touch3) as “Hitting the mannequin’s chest gently” (i.e., Touch1). Similarly, LR considerably
misclassified Touch2 (i.e., “Hugging the mannequin gently”) as Touch1. This indicated that such
strategies as distance-based similarity measures were insufficient for predicting different touch gestures.
This observation held true whether such a similarity was measured based on distances between feature
vectors of these touch gestures (e.g., KNN) or when more sophisticated optimization criterion was
applied (e.g., maximization of their projection onto the decision boundary in the case of SVC). These
results further verified that overall accuracy is not a reliable measure for drawing conclusion on the
level of performance of different classifiers in such scenarios as touch interaction [9–14,17].

On the other hand, RF that relied on the shared information among features of these touch gestures
appeared to yield significantly higher accuracy on predicting different touch types. In this regard, it is
worth noting the remarks by Alonso-Martin et al. [18] who identified that the use of RF might result in
overfitting. Although a more informed conclusion on this matter certainly require future investigation,
we doubt that the observed RF performance in our study was due to overfitting. This is due to the
following observations. First, we calculated our accuracies based on multiple random splits of data
(i.e., 100 simulation runs). Second, the data in our dataset were collected from different individuals
(i.e., non-overlapping samples) and comprised balanced (i.e., equal proportion of touch gestures) in
each of these random test sets. Third, the RF’s confusion matrix (Figure 6) verified that its performance
was not due to a subset of touch gestures/strengths (see Appendix A for analytical results).

Our results further identified that the performance of these models were even more variable
once the strength of these touch gestures were taken into consideration. Precisely, we observed that,
although some of these classifiers achieved above chance accuracies, their performance was only based
on a subset of touch types. This was in particular evident in the case of KNN and DT. Interestingly,
these two classifiers were substantially inaccurate for detecting the level of strength between touch
gestures. Our results indicated that both DT and KNN mostly misclassified “Hitting the mannequin’s
chest strongly” (i.e., Touch4) as “Hitting the mannequin’s chest gently” (i.e., Touch1) and “Hitting
the mannequin’s shoulder strongly” (i.e., Touch6) as “Hitting the mannequin’s shoulder gently” (i.e.,
Touch3). Similarly, SVC misclassified Touch3 as Touch6 with the same rate and Touch4 as Touch1 with
almost the same rate. Although we also observed such misclassifications in the case of RF, they were
evidently lower in their occurrences. For instance, its misclassification of Touch4 as Touch1 accounted
for 5.00% only. However, both RF and NB showed considerably high misclassification of Touch3 as
Touch6 (30.0% and 20.0% in the case of NB and RF, respectively).

The higher specificity of RF in our results also signified the fact that a potentially appropriate
solution to touch classification may not necessarily depend on more complex approaches (e.g., neural
networks [7,14]) but the proper use of available methodologies. For instance, DT is the building block
of RF: the latter is nothing but a collection of the former. Whereas the application of a single DT in our
study resulted in a poor classification performance (particularly in the case of gentle versus stronger
touch gestures), RT that built upon the consensus among collection of DTs achieved an evidently
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higher accuracy. This observation was also in line with Alonso-Martin et al. [18] in which LMT in their
case outperformed such classifiers as convolutional neural network.

The above observations further highlighted the substantial impact of touch strength on its
classification. This is certainly a critical point whose effect must be taken into consideration while
using these classifiers in the context of automated touch recognition systems. The significance of this
matter becomes more apparent once one considers the fact that the strength of a touch can transform
its meaning. For instance, whereas a gentle squeeze might signal an affectionate treat, a stronger one
could be construed as a sign of punishment by its recipient.

Our results hint at the potentials for the use of smart touch sensors in such application domains
as socially assistive robotics (SAR) [6]. Such sensors can enable the robots to enhance the quality of
their social interactions with their users by recognizing the type of these individuals’ touching patterns
and behavior. They can also enrich their social services to these individuals by exhibiting reciprocal
behaviors that complement such humans’ physical interactions [26,27].

5. Limitations and Future Directions

Although our results verified the utility of RF for classification of type and strength of three touch
scenarios, it was the limitations and the shortcomings of our study that proved most informative.
First, our results highlighted the pitfall of cramming experimental sessions with too many trials.
Concretely, the preprocessing phase of our study showed that such settings can inadvertently become
a source of confusion. For instance, we observed that our participants treated the “rubbing the
mannequin’s shoulder strongly” as “hitting the mannequin’s shoulder strongly”. Even more striking
was the observation that the latter showed a higher ratio with respect to their “hitting the mannequin’s
shoulder gently”, thereby leading us to use it in place of the former.

Second, our study signified the challenge of the use of touch sensors in such naturalistic scenarios
as touch interaction. For instance, we observed that a slight misalignment of the sensor could lead
to such issues as undesired sensory information (e.g., unintended activity around the mannequin’s
neck). Such a noise, in turn, had a detrimental effect in the form of loss of experimental trials in which
participants’ actual touch trials were indistinguishable from this noise. Further implication of such
a shortcoming came in the form of trial loss where we needed to discard an entire touch type. It is
apparent that such a loss also meant further reduction of number of participants that were already
limited in their numbers.

Although our further analysis enabled us to partially address the effect of sensor’s misalignment
through identification of the noisy sensor area (i.e., the mannequin’s neck), we strongly believe that
such temporary solution could not be sustained for long-term interaction scenarios. For instance, this
noise was consistent in our case among all touch gestures and for all participants. We also had short
sensor recordings for all participants before the start of their sessions. These allowed us to localize
most sensor’s cells that were affected by its misalignment. On the other hand, such a fortunate case
may not always be available. Therefore, thorough inspection and other precautionary steps to ensure
the proper sensor’s alignment is a must. In the same vein, more research in the area of noise filtering
and sensory data smoothing is necessary to devise more sophisticated tools for real-life physical
interaction scenarios.

Another important issue that requires further investigation is the effect of adapted medium on
study and analysis of touch-related interaction. For instance, the present study and the results
that were presented by Silvera-Tawil et al. [11] both used mannequin as a medium. Whereas
Silvera-Tawil et al. [11] used a touch sensor on a mannequin’s arm, we acquired touch data through a
sensor vest that was worn on its upper body. This may suggest that the relatively flexible materials
used in such touch sensors make them potentially applicable for the settings in which the interaction
with more human-like media (e.g., humanoid robots) are envisioned. On the other hand, many robots
that are used in socially-assistive scenarios are either pet-like robots [27] or may have body shapes
that differ from that of humans [26]. In this regard, some of the previous results showed the potential
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utility of touch sensors in such application domains as pet-like robots [7] or media whose shapes
very much differed from humans and other animals [9]. However, these results on their own do not
necessarily promote their suitability to broader domains. Therefore, to further realize the utility of
these results in such areas as socially-assistive robotics [6], future research must reevaluate them by
considering robots of various forms. It is also crucial to validate the generalizability of these results
by including individuals from wider age groups (e.g., children, older adults), cultural backgrounds
(e.g., international studies), and differential neuropsychological capacities (neurotypical versus more
neurodiverse individuals such as autistic children).

These limitations and issues can become even more overwhelming when one considers their
potential impacts on determining the type and the strength of a touch during a real-life naturalistic
scenario. Specifically, real-life settings will involve interacting agents in which both parties may re/act
to the received touch. Furthermore, and unlike a mannequin, these agents will have their own body
movements, thereby deflecting the sensor’s surface which can, in turn, lead to patterns of activation
that have nothing to do with the actual interaction.

In this context, the use of other modalities and their potential fusion [18] to increase the accuracy
of classifiers is an exciting venue that deserves further investigation. Such systems can endow
socially-assistive agents with the capacity for building more realistic models of human physical
interactions that are highly complex and context/cultural-dependent [3–5].

Taken together, our results highlight the possibility of detecting humans’ touch with differing
type/strength. They also (perhaps more importantly) pinpoint the necessity for more focused
experimental paradigms that will include small but fundamental types of touch along with larger
number of participants, thereby allowing for more informed conclusions on this line of research.
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Appendix A. Verification of the Non-Overfitting Performance of Random Forest (RF)

Figure A1A visualizes the performance of RF during cross-validation as a function of sample size
used for training this model. This figure verifies that RF performance during its cross-validation (i.e.,
samples that were not included in training set) was consistently increased as this model was trained
with a larger number of training samples. Furthermore, it is evident in this figure that RF did not
exhibit a high variation between subsequent cross-validations. This indicated that RF’s significantly
higher performance in comparison with the other models was not due to the overfitting.

To further clarify that the observed significantly higher performance of RF was not due to some
outlier accuracies during our 100 simulation runs (see Section 2.4 for details), we performed two sets
of bootstrap (1000 simulation runs) tests of significance at 95.0% confidence interval (CI95.0%). This
enabled us to validate its significant accuracies at a p < 0.05 level.

First, we considered the overall (i.e., all touch gestures combined) RF accuracy. Next, we applied
this test on each of the touch gestures separately. Specifically, for each of these tests, we computed
the bootstrapped accuracy of RF and then subtracted the average performance of RF from these
bootstrapped estimations. In this context, the RF accuracy could have been due to the presence of
outliers if zero was not contained within the confidence interval of the difference between average RF
accuracy and its bootstrapped estimated accuracy.

Figure A1B shows the result of this bootstrap test of significance at CI95.0% (i.e., p < 0.05) with
respect to RF overall (i.e., all touch gestures combined) accuracy. This figure verifies that RF accuracy
(bootstrapped estimate of RF accuracy M = 89.50%, SD = 20.47%, CI = [82.92% 86.33%]) was not due to
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any potential overfitting and/or presence of outliers in a few of our simulation tests. This is due to the
observation that the zero fell within the confidence interval of this test.

Figure A1. Verification of the non-overfitting performance of Random Forest (RF). (A) Learning curve
of the RF during training (red) and cross-validation (green). The incremental pattern of cross-validated
results as a function of training size is apparent in this figure. This subplot also verifies that the RF
accuracy does not show a high variation between subsequent cross-validations. (B) Boot strap (1000
simulation runs) test of significance at CI95.0% (i.e., p < 0.05) on overall (i.e., all touch gestures combined)
accuracy of RF. (C) Boot strap (1000 simulation runs) test of significance at 95.0% confidence interval
CI95.0% (i.e., p < 0.05) on RF accuracy for each of touch gestures. In (B,C), the x-axis corresponds to the
difference between the bootstrapped RF accuracy and its average accuracy. The lines in red mark the
confidence interval of these differences at 95.0% confidence interval (i.e., p < 0.05). The lines in magenta
mark the average values associated with these differences. In these subplots, the average differences
were within the confidence interval of their respective subplot. This verifies that RF performance was
consistent across all trials and with respect to its overall as well as each of the touch gestures separately.

We also observed similar results in the case of RF accuracy for each of the touch gestures separately
(Figure A1 (C)). Table A1 summarizes the results of these bootstrap tests for overall as well as each
touch gesture separately.

Table A1. Bootstrap test of significance for RF overall accuracy (i.e., all touch gestures combined) and its
accuracy for each of touch gestures separately. In this table, M, SD, and CI95.0% refer to mean, standard
deviation, and 95.0% confidence interval (i.e., p < 0.05) of the bootstrapped estimate of RF accuracy.

Accuracy M SD CI95.0%

Overall 89.50 20.47 [83.08 86.42]

Touch 1 89.50 20.47 [84.50 93.00]

Touch 2 80.50 30.06 [73.50 85.50]

Touch 3 75.00 27.98 [69.28 80.50]

Touch 4 81.50 25.28 [76.00 86.00]

Touch 5 100.00 0.00 [100.00 100.00]

Touch 6 81.50 29.86 [75.00 86.50]

Appendix B. RF Performance Using a Larger Number of Touch Gestures

To further verify the performance of RF for classification of touch gestures based on the extended
features (Section 2.4.3), we evaluated its performance on a larger set of touch gestures. Specifically,
the steps that we took for attenuation of undesired sensor’s activity around the mannequin’s neck
(Section 2.3) enabled us to recover three out of four touch gestures that we initially eliminated from
our main analyses. They were:

1. Rubbing the mannequin’s shoulder gently (Touch7)
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2. Rubbing the mannequin’s chest strongly (Touch8)
3. Rubbing the mannequin’s chest gently (Touch9)

It is worth noting that we were not able to use the touch gesture “Rubbing the mannequin’s
shoulder strongly” (see Section 2.3 for details). These touch gestures were from the same nine
participants that were included in the main analyses. Figure A2 visualizes the extended features
(Section 2.4.3) that were calculated for Touch7 through Touch9 (see Figure 3 for Touch1 through Touch6
feature vectors). Given nine different touch gestures that were balanced (i.e., they all had equal number
of samples = 9), the chance level accuracy was ≈11.11%.

Our main analysis revealed that RF significantly outperformed all the other classifiers that we
used in the present study. We also observed that RF performance significantly improved after we
applied the steps for attenuation of the noise around the mannequin’s neck and subsequently included
LCC feature (Section 2.4.3). Therefore, we used RF for evaluation of our results on this set of nine
Touch gestures (i.e., Touch1 though Touch6 from the main analyses and Touch7 through Touch9 that
we included in Appendix).

Figure A3 shows the RF performance on this data. This figure verifies that the RF maintained its
high accuracy (chance level ≈ 11.11%) after the new touch gestures were included. Its lowest accuracy
was associated with Touch8 (i.e., Rubbing the mannequin’s chest strongly) with 75.0% accuracy.
RF misclassified this touch gesture for Touch3 (Hitting the mannequin’s shoulder gently), Touch5
(Hugging the mannequin’s strongly), and Touch6 (Hitting the mannequin’s shoulder strongly).

Figure A2. Feature vectors for three new touch gestures. From left: Rubbing the mannequin’s shoulder
gently (Touch 7), Rubbing the mannequin’s chest gently (Touch 9), and Rubbing the mannequin’s chest
strongly (Touch 8). MTAA, CSTI, RTMAF, LCC features are shown along the x-axis. In these subplots,
MTAA, CSTI, and RTMAF are same as in Figure 2. The values in these subplots are z-normalized (i.e.,
each column is mean-subtracted and divided by its standard deviation). The y-axis corresponds to the
participants included in this study (i.e., p1 through p9).

Figure A3. Random forest (RF) classifier’s performance using the extended feature space on nine
touch gestures. The subplot on the right shows the accuracy of this classifier for each touch scenario
(i.e., Touch1 through Touch6). The subplot on the left presents the confusion matrix for this classifier.
The overall accuracy of random forest (red-line in the right subplot) was 88.33% (chance level (black-line
in the right subplot) ≈ 11.11%, given nine-class classification of balanced classes).
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