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Abstract: In this paper, we propose a new approach to passively locate the 3D position of a signal
source. This novel technique, called the power gain difference (PGD), is based only on measuring
the received signal strength (RSS) with multiple sensors deployed in the area of interest, while the
target transmit power or the equivalent isotropic radiated power (EIRP) is assumed to be unknown.
Next, the signal source position is estimated using the knowledge of the ratios of RSS measured on
different sensors. First, this article presents the geometric representation and the analytical solution
of the model of the PGD technique. Second, the PGD dilution of precision was analyzed in order to
gauge the accuracy of measuring the RSS. Finally, a numerical simulation of the performance of the
proposed method was carried out and the results are discussed. It seems that the PGD technique has
the potential to be a simple and effective solution of the 3D localization problem.

Keywords: received signal strength; localization techniques; Cramer–Rao lower bound; object tracking

1. Introduction

The ability of performing an accurate emitter of a non-cooperative signal location is one of the
fundamental functions of many civilian and military reconnaissance systems [1–3]. For example,
knowing the location of emitters, or targets, is useful for perimeter protection or electronic warfare
systems. There are several techniques to estimate the target position based on different information
available from measurements performed on received radio frequency (RF) signals. This means that
RF based localization systems may use a multitude of different techniques, which include the angle
of arrival (AoA) [4,5], received signal strength (RSS), time of arrival (ToA), time difference of arrival
(TDoA) [6–8], Doppler difference (DD) [9,10], or hybrid location methods [11]. While some localization
techniques usually come at a low cost but a lower accuracy, others require complex synchronization
schemes, which usually make them more expensive [12–16].

The most popular localization methods are based on estimating the RSS. These techniques have
the benefit of low implementation cost and the ability to locate targets in both indoor and outdoor
environments, etc. On the other hand, the performance of RSS techniques is limited by the quality of
the measurement, or estimation, of target-effective radiated power (ERP). The targets’ transmit power
and path loss exponent are two parameters that have a significant effect on the performance of the RSS
localization techniques. The performance analyses of some RSS-based localization methods [17–19] have
assumed that the transmit power or path loss exponent is perfectly known. However, this assumption
is not suitable for a practical application where the targets do not cooperate with a localization system.
Generally, there are two main approaches for using RSS methods for the localization of such targets.
The first one consists of using a channel model to establish relations between the measured RSS and
the distance sensor–target [20]. The channel model-based methods are not very accurate, particularly
due to the fact that multipath propagation, fading, and shadowing affect the estimated received signal
strength. The RSS can also be employed in localization techniques based on a “power map” [21,22],
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which represents the second approach. These techniques consist of creating a “power map” with the
observed RSS from different receiving sensors at different positions. This map is later used during the
localization step to find the closest point (in the RSS space) to the unknown one.

In this paper, we focused on the first approach. In particular, we proposed only using the ratios
of the measured RSS, rather than their absolute values, on four receiving sensors to calculate the 3D
position of a signal source, for example, a down-link transmitter of unmanned aerial vehicle (UAV).
This approach is not conditioned upon knowing the signal source ERP, or an estimation of the path
loss exponent [23], which is the most significant benefit of the proposed localization technique in
comparison with the traditional positioning ones for RSS-based localization [24,25]. The proposed
technique also provides a closed-form solution of the target localization problem. The method was
tested through some numerical simulations.

2. The Geometric Representation and the Analytical Solution of the Power Gain Difference
(PGD) Technique Model

First, we describe a typical arrangement for the proposed localization method in this section. This
is followed by the mathematical model of the localization technique including an analytical solution.

Let us consider a network composed of a set of fixed receiving sensors. In this example, there are
four sensors, S1 . . . S4, and one target T. The arrangement of such a network is shown in Figure 1.
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The measured received power (in watts) by the sensor i is given by:

Pi =
1{

(x− xi)
2 + (y− yi)

2 + (z− zi)
2
} ·Q (1)

where xi, yi, zi are the sensor coordinates and Q includes the target-transmitted power, the gain of sensor
antennas, the gain of target antenna, the wavelength, and all losses of the target–sensor communication
channel. The measured powers on particular sensors are written according to Equation (1) as:

P1 =
1{

x2 + y2 + z2} ·Q (2)

P2 =
1{

(x− a)2 + y2 + z2
} ·Q (3)

P3 =
1{

(x− b)2 + (y− c)2 + z2
} ·Q (4)
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P4 =
1{

(x− d)2 + (y− e)2 + z2
} ·Q (5)

Then, the power ratios, related to the power received by the first sensor, are:

J1 =
P2

P1
=

x2 + y2 + z2

x2 − 2·a·x + a2 + y2 + z2 =
K

K − 2·a·x + a2 (6)

J2 =
P3

P1
=

x2 + y2 + z2

x2 − 2·b·x + b2 + y2 − 2·c·y + c2 + z2 =
K

K − 2·b·x + b2 − 2·c·y + c2 (7)

J3 =
P4

P1
=

x2 + y2 + z2

x2 − 2·d·x + d2 + y2 − 2·e·y + e2 + z2 =
K

K − 2·d·x + d2 − 2·e·y + e2 (8)

where
K = x2 + y2 + z2 (9)

By using Equation (6) and applying some algebra, the equation for the x target coordinate is
obtained:

x = A + B·K (10)

where A = a
2 and B = J1−1

2·a·J1
.

A similar approach can then be to applied to Equations (7) and (8) with the goal of solving the y
target coordinate. Then,

y = C + D·K (11)

y = E + F·K (12)

where C = −2·b·A·J2+b2
·J2+c2

·J2
2·c·J2

, D = J2−1−2·b·B·J2
2·c·J2

, E = −2·d·A·J3+d2
·J3+e2

·J3
2·e·J3

, and F = J3−1−2·d·B·J3
2·e·J3

.
By comparing Equations (11) and (12), the solution of K is given by

K =
E−C
D− F

(13)

Finally, the z target coordinate, using Equation (9), is expressed by

z = ±
√

K − x2 − y2 (14)

Equations (10), (11) or (12) and (14) represent the target 3D position. It is clear that the z coordinate
can take on two values. This means that the PGD technique is ambiguous in such an sensor arrangement.
From a practical point of view, the derived algorithm of the proposed method was applied in this way.
First, the received powers P1 to P4 were measured and the ratios J1 to J3 were determined. Next, all
variables A, B, C, D, E, F, and K were computed. Finally, the target coordinates x, y, z were found.

3. The PGD Technique Accuracy Analysis

3.1. The Theoretical Basis of the Accuracy Analysis

In many localization applications, the Cramér–Rao Lower Bound (CRLB) is used to assess their
localization accuracy. It is well known that CRLB sets a lower limit for the variance of any unbiased
estimate of any unknown parameter [26]. The same approach was chosen for analyzing the accuracy
of the proposed method. Generally, the CRLB is calculated from the inverse of the Fisher Information
Matrix (FIM) I. Thus:

var
(

ˆ
x
)
≥ CRLB(x) = I−1(x) (15)

where x is an unknown parameter and
ˆ
x is its unbiased estimate.
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In the proposed PGD method, the target location vector T = [x, y, z] is the unknown parameter,

or the parameter of interest, and
^
T is an estimate of it. The vector

^
T is obtained by using the vector

of measured powers
^
P =

[
P̂1, P̂2, P̂3, P̂4,

]
and knowledge of the sensor arrangement (expressed by

vectors of sensor coordinates S1 to S4). Generally, it can be written as:

^
T = f (

^
P, S1..4) (16)

It should be noted that the estimates of particular target coordinates are specifically described in

Equations (10), (11), (12), and (14) and that all elements of vector
^
P are Gaussian random variables

with dispersion σ2
Pi.

In accordance with [27,28] and by using Equation (16), it is possible to express the CRLB by:

CRLB(T) =

∂ f (
^
P, S1..4)

∂P

·Cp(
^
P)·

∂ f (
^
P, S1..4)

∂P


T

(17)

where Cp(
^
P) is the covariance matrix of the vector

^
P. If the received power measurements on particular

sensors are independent as well as in the PGD method, the matrix Cp(
^
P) becomes a diagonal matrix in

the following form:

Cp(
^
P) =


σ2

P1 0 0 0
0 σ2

P2 0 0
0 0 σ2

P3 0
0 0 0 σ2

P4

 (18)

Next, it is appropriate to introduce the Jacobian matrix J.

J(
^
P) =

∂ f (
^
P, S1..4)

∂P

 =


∂x
(

^
P, S1..4

)
∂P1

. . .
∂x

(
^
P, S1..4

)
∂P4

∂y
(

^
P, S1..4

)
∂P1

. . .
∂y

(
^
P, S1..4

)
∂P4

∂z
(

^
P, S1..4

)
∂P1

. . .
∂z

(
^
P, S1..4

)
∂P4


(19)

The J(
^
P) consists of real values of partial derivatives of the function f (P, S1..4) with respect to

variables P1 to P4 for the given measured value of the vector
^
P. In fact, the function f (P, S1..4) is

expressed by Equations (10), (11) or (12) and (14). Therefore, the partial derivatives of ones are used in
the practical calculation of the Jacobian matrix. An example of finding a partial derivative is given in
Appendix A.

Finally, the covariance matrix of the proposed localization technique is:

CRLB(T) = C(T) = J(
^
P)·Cp(

^
P)·J(

^
P)

T

(20)

The proof of Equation (20) is given in Appendix B.
Thus, the defined covariance matrix is positive-semidefinite and represents a confidence region

that includes the “true” value of the target position with a certain probability level [29]. In 3D
localization applications, the covariance matrix describes the error ellipsoid with a probability of target
occurrence of 0.213. According to [30], the center of the error ellipsoid is at the estimate of the target
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position. The lengths of the axes of the ellipsoid Ae, Be, Ce are proportional to the eigenvalues λ1, λ2,
λ3 of the covariance matrix and the directions of these axes are given by the eigenvectors of one.

3.2. The Results of the Error Analysis of the PGD Method

Before presenting some results of an error analysis of the PGD method, we would like to present a
calculation of the covariance matrix for a simple example of using the PGD method. Let us suppose a
network composed of four receiving sensors with coordinates S1[0, 0, 0], S2[200 m, 0, 0], S3[140 m,
−140 m, 0] and S4[−140 m, −140 m, 0]. The antenna gain of each sensor is Gs = 7 dB and its receiver is
able to measure power with a standard deviation equal to 0.1 dB. The target position is T [20 m, 70 m,
70 m] and it transmits a signal with a power of Pt = 0.5 W and a wavelength of 0.1 m. The gain of the
target antenna is Gt = 0 dB.

Then, after making N = 1000 measurements, the mean values of the received powers on the
particular sensor are P1 = −48.1 dBm, P2 = −54.2 dBm, P3 = −53.5 dBm and P4 = −56.7 dBm. This

corresponds to the estimated position of the target
^
T[20.1 m, 70.1 m, 69.5 m]. The covariance matrix is

CRLB(T) =


3.8271 2.4464 −3.2820
2.4464 8.7276 −9.2234
−3.2820 −9.2234 15.8069

 (21)

and the lengths of the axes of the error ellipsoid are Ae = 0.77 m, Be = 0.86 m, Ce = 2.40 m. The measured
target positions are shown in Figure 2.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 14 

 

in the practical calculation of the Jacobian matrix. An example of finding a partial derivative is given 
in Appendix A. 

Finally, the covariance matrix of the proposed localization technique is: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵(𝐓𝐓) = 𝐂𝐂(𝐓𝐓) = 𝐉𝐉�𝐏𝐏�� ∙ 𝐂𝐂𝑝𝑝�𝐏𝐏�� ∙ 𝐉𝐉�𝐏𝐏��
𝑇𝑇

 (20) 

The proof of Equation (20) is given in Appendix B. 
Thus, the defined covariance matrix is positive-semidefinite and represents a confidence region 

that includes the “true” value of the target position with a certain probability level [29]. In 3D 
localization applications, the covariance matrix describes the error ellipsoid with a probability of 
target occurrence of 0.213. According to [30], the center of the error ellipsoid is at the estimate of the 
target position. The lengths of the axes of the ellipsoid Ae, Be, Ce are proportional to the eigenvalues 
λ1, λ2, λ3 of the covariance matrix and the directions of these axes are given by the eigenvectors of 
one.  

3.2. The Results of the Error Analysis of the PGD Method 

Before presenting some results of an error analysis of the PGD method, we would like to present 
a calculation of the covariance matrix for a simple example of using the PGD method. Let us suppose 
a network composed of four receiving sensors with coordinates S1[0, 0, 0], S2[200 m, 0, 0], S3[140 m, 
−140 m, 0] and S4[−140 m, −140 m, 0]. The antenna gain of each sensor is Gs = 7 dB and its receiver is 
able to measure power with a standard deviation equal to 0.1 dB. The target position is T [20 m,  
70 m, 70 m] and it transmits a signal with a power of Pt = 0.5 W and a wavelength of 0.1 m. The gain 
of the target antenna is Gt = 0 dB.  

Then, after making N = 1000 measurements, the mean values of the received powers on the 
particular sensor are P1 = −48.1 dBm, P2 = −54.2 dBm, P3 = −53.5 dBm and P4 = −56.7 dBm. This 
corresponds to the estimated position of the target 𝐓𝐓�[20.1 m, 70.1 m, 69.5 m]. The covariance matrix 
is  

𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵(𝐓𝐓) = �
3.8271 2.4464 −3.2820
2.4464 8.7276 −9.2234
−3.2820 −9.2234 15.8069

� (21) 

and the lengths of the axes of the error ellipsoid are Ae = 0.77 m, Be = 0.86 m, Ce = 2.40 m. The measured 
target positions are shown in Figure 2. 

 

Figure 2. The measured target positions. 

10

20

30

55606570758085
50

55

60

65

70

75

80

85

90

x [m]

Target positions

y [m]

z 
[m

]

Figure 2. The measured target positions.

The lengths of the axes of the error ellipsoid indicate that the PGD localization method is able to
provide an estimation of the target position with an error to the order of meters. It is clear that the
above-mentioned example does not evaluate the overall performance of the proposed technique from
a localization accuracy perspective.

Therefore, we will try the same network of sensors and the same target as in the previous example.
Next, we can define an area by the coordinates x ∈ 〈−150 m, 210 m〉, y = 〈−150 m, 150 m〉, and z =

70 m. Finally, the CRLB is computed for all possible target locations within this area with a step of
5 m, thereby providing an “accuracy map” of the PGD method. The values of the axis length Ae of
the appropriate error ellipsoids are shown in Figure 3, providing one possible way to interpret the
accuracy map.
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Figure 3. The values of the Ae parameter.

From a practical point of view, it is often sufficient to determine the maximum and minimum
values of the error ellipsoid axes. In our example, they were:

• Aemin = 0.47 m, Aemax = 5.84 m,
• Bemin = 0.46 m, Bemax = 4.09 m,
• Cemin = 0.47 m, Cemax = 8.97 m.

This way of calculating the covariance matrix facilitates the detailed description of the accuracy of
the PGD method for both an arbitrary sensor network arrangement and an arbitrary target position
in an area of interest. Equally, the knowledge of the covariance matrix can be used to optimize the
sensor network arrangement by the criterion of the maximal allowed error. The accuracy can also be
evaluated according to the quality of the received power measurement.

4. The Simulation of the Method Performance

In order to validate our approach to the accuracy analysis of the PGD method, we carried out a
simulation that was almost the realistic operation of one. We utilized the same sensor infrastructure
that was described in Section 3. The target was moving and its trajectory was randomly placed into
the area of interest (it was identical to the area defined in Section 3). The z coordinate of the target
trajectory was set to the value 70 m. This situation is shown in Figure 4.
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Approximately 60 measurements of received powers on the particular sensors were made during
the target motion. The standard deviation of power measurement was set to 0.1 dB. Thus, there were
60 estimates of the target position on the output of the simulation algorithm. These estimates were
compared with the corresponding actual target locations. This means that the overall range deviation
of the target was calculated using

∆R = ‖
^
T−T‖ (22)

The graph of the ∆R is shown in Figure 5.
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The simulation also provided some numerical results. The most important were the mean value
of the range deviation, the standard deviation of one, and the maximum and minimum values of ∆R.
These were

• ∆Rmean = 7.6 m,
• ∆Rstd = 4.2 m,
• ∆Rmax = 18.2 m,
• ∆Rmin = 1.6 m.

Next, the same simulation was performed, but the z coordinate of the target trajectory was set to
the new value of 100 m and the standard deviation of the power measurement was set to 0.2 dB. Then,
the results of this simulation were as follows:

• ∆Rmean = 16.3 m,
• ∆Rstd = 9.5 m,
• ∆Rmax = 44.7 m,
• ∆Rmin = 2.9 m.

The graph of the ∆R is shown in Figure 6.
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Figure 6. The range deviation of the target (simulation 2).

The achieved simulation results indicate that the proposed PGD method is able to provide an
estimate of the target position with an acceptable error. It seems that the determination of the target z
coordinate was at least accurate, as seen in Figure 4. It is also clear that the overall range deviation ∆R
increased with the increase in the standard deviation of the power measurement and the target altitude.

5. Discussion

In terms of the practical use of the proposed method, the accuracy of measuring the received
power is a critical point of this method. In view of the example given in Section 3, it turns out that this
accuracy must be at the level of 1.10−9 W (this corresponds to measuring the received power with a
standard deviation equal to 0.1 dB). It is evident that such accuracy can only be achieved by measuring
the received power over a certain integration time [31]. Reducing the requirement for the accuracy of
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the received power measurement (i.e., an increase in the standard deviation of the power measurement)
leads to a linear increase in the axis lengths of the error ellipsoid. This situation is shown in Figure 7
for the same sensor network arrangement and target position as in the previous example.
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Figure 7. The lengths of axes of the error ellipsoid depending on the standard deviation of the
power measurement.

One of the most interesting effects of the presented method is its possibility of estimating the
target EIRP (using the calculated target position and Equations (2), (3), (4), or (5)). The knowledge
of the target EIRP can be used for the recognition of the adaptive power management of the target
transmitter or for cooperation with the standard 3D RSS method. Suppose that the target EIRP is
estimated by the PGD method. Then, the cooperation with the standard RSS method can be as follows:

• The target position can be estimated by the standard RSS method in the case that only three
receiver sensors are irradiated by the target (for example, due to the shadowing effect).

• The target position can be estimated by the fusion of the localization data that the PGD and the
RSS methods provide in the case that four or more sensors are irradiated.

Only the issue of cooperation between the PGD and standard RSS methods will be the content of
our future work.

6. Conclusions

The presented power gain difference method can be used for transmitter target location estimation.
The main advantage of the proposed method is the independency on a priori knowledge of transmitted
power or EIRP, making this method usable for a non-cooperating target. In this paper, the model
and computational algorithms were derived and the target coordination accuracy were analyzed for
selected scenarios. The main limitation of this method is that the accuracy of the measured RSS (in this
example 0.1 dB) has to be measured accurately. This measuring accuracy cannot be based on absolute
error, but on relative error (i.e., compared to all receivers). This is a very strict requirement not from the
measuring equipment perspective, but as the transmitter and receiving antenna difference from an ideal
omnidirectional antenna. These differences are critical mainly in low altitudes, or rather low elevation
angles, due to the ground effect of the antenna radiating diagram of the receiving antennas. A similar
effect will be in the transmitter and the effect of the fuselage of the target on the transmitting antenna
radiating pattern. Nevertheless, these effects are similar in the standard RSS location method, so these
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methods (RSS and PGD) can be used combined to increase the accuracy, robustness, and integrity in
order to locate targets with an unknown EIRP or the adaptive calibration of the RSS method itself.
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Appendix A

The Jacobian matrix J is defined as:

J(
^
P) =

∂ f (
^
P, S1..4)

∂P

 =


∂x
(

^
P, S1..4

)
∂P1

. . .
∂x

(
^
P, S1..4

)
∂P4

∂y
(

^
P, S1..4

)
∂P1

. . .
∂y

(
^
P, S1..4

)
∂P4

∂z
(

^
P, S1..4

)
∂P1

. . .
∂z

(
^
P, S1..4

)
∂P4


(A1)

The example of a calculation of partial derivatives is as follows.
For example, the x target coordinate is obtained by the equation

x = A + B·K (A2)

where A = a
2 , B = J1−1

2·a·J1
, and K = E−C

D−F are respective substitutes.
Then, the partial derivate of x with respect to P1 is

∂x(
^
P, S1..4)

∂P1
=
∂A
∂P1

+
∂B
∂P1
·K + B·

∂K
∂P1

, (A3)

where the partial derivatives of substitutes A, B, and K with respect to P1 are

∂A
∂P1

= 0, (A4)

∂B
∂P1

=

∂J1
∂P1

(2·a·J1) − 2·a·J1·
∂J1
∂P1

(J1 − 1)

(2·a·J1)
2 , (A5)

∂K
∂P1

=

(
∂E
∂P1
−

∂C
∂P1

)
·(D− F) − (E−C)·

(
∂D
∂P1
−

∂F
∂P1

)
(D− F)2 . (A6)

In view of the fact that variables (or substitutes) J1, C, D, E and F are also a function of P1, it is
necessary to calculate their partial derivatives. For example, if

J1 =
P2

P1
, (A7)
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then the corresponding partial derivate is

∂J1

∂P1
= −

P2

P2
1

. (A8)

The remaining partial derivatives of the Jacobian matrix can be derived in the same way.

Appendix B

An estimate
^
T = [x̂, ŷ,ẑ] of the vector of the true target position T = [x, y, z] can be written as:

^
T = f (

^
P, S1..4) = T + δT (A9)

where δT =
[
δx, δy, δz

]
is the vector of errors in the determination of the particular target coordinates.

The function f (
^
P, S1..4) is specifically described by the particular functions:

ˆ
x = f1(

^
P, S1..4) (A10)

ŷ = f2(
^
P, S1..4) (A11)

ẑ = f3(
^
P, S1..4) (A12)

which are equivalent to Equations (10), (11), and (12). The Taylor series expansions of f1, f2, and f3

around point
^
P, after deleting all terms higher than the linear ones, are expressed as:

f1(P, S1..4) = f1(
^
P, S1..4) +

∂ f1(
^
P, S1..4)

∂P
·δP (A13)

f2(P, S1..4) = f2(
^
P, S1..4) +

∂ f2(
^
P, S1..4)

∂P
·δP (A14)

f3(P, S1..4) = f3(
^
P, S1..4) +

∂ f3(
^
P, S1..4)

∂P
·δP (A15)

where δP = [δP1, δP2, δP3, δP4] is the vector of errors in the received power measurement.
If x = f1(P, S1..4), y = f2(P, S1..4) and z = f3(P, S1..4) are the true particular target coordinates,

then Equations (A13)–(A15) can be written as

δx =
∂ f1(

^
P, S1..4)

∂P1
·δP1 +

∂ f1(
^
P, S1..4)

∂P2
·δP2 +

∂ f1(
^
P, S1..4)

∂P3
·δP3 +

∂ f1(
^
P, S1..4)

∂P4
·δP4 (A16)

δy =
∂ f2(

^
P, S1..4)

∂P1
·δP1 +

∂ f2(
^
P, S1..4)

∂P2
·δP2 +

∂ f2(
^
P, S1..4)

∂P3
·δP3 +

∂ f2(
^
P, S1..4)

∂P4
·δP4 (A17)

δz =
∂ f3(

^
P, S1..4)

∂P1
·δP1 +

∂ f3(
^
P, S1..4)

∂P2
·δP2 +

∂ f3(
^
P, S1..4)

∂P3
·δP3 +

∂ f3(
^
P, S1..4)

∂P4
·δP4 (A18)
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To put this development into matrix form for easier manipulation, define

∂ f1

(
^
P, S1..4

)
∂P1

. . .
∂ f1

(
^
P, S1..4

)
∂P4

∂ f2

(
^
P, S1..4

)
∂P1

. . .
∂ f2

(
^
P, S1..4

)
∂P4

∂ f3

(
^
P, S1..4

)
∂P1

. . .
∂ f3

(
^
P, S1..4

)
∂P4


·


δP1

...
δP4

 =

δx

δy

δz

 (A19)

Then Equation (A19) can be written as

J(
^
P)·δP = δT (A20)

where J(
^
P) is the Jacobian matrix.

The goal is to find the error covariance matrix C(T) with entries ci, j = E
{
δiδ j

}
, where E{} denotes

the statistical expectation. Using Equations (A19) and (A20), the covariance matrix can be written as

C(T) = E



δx

δy

δz

·

δx

δy

δz


T = E

J(
^
P)·


δP1

...
δP4

·

δP1

...
δP4


T

·J(
^
P)

T

 = J(
^
P)·E



δP1

...
δP4

·

δP1

...
δP4


T·J(

^
P)

T

(A21)

The expression E



δP1

...
δP4

·

δP1

...
δP4


T represents the covariance matrix Cp(

^
P) of the vector

^
P.

If the received power measurements on particular sensors are independent and identically

distributed as well as in the PGD method, the matrix Cp(
^
P) becomes the diagonal matrix in the

following form:

Cp(
^
P) =


σ2

P1 0 0 0
0 σ2

P2 0 0
0 0 σ2

P3 0
0 0 0 σ2

P4

 (A22)

where σ2
Pi is the dispersion of particular elements of the vector

^
P.

Finally, the covariance matrix of the proposed localization technique is

CRLB(T) = C(T) = J(
^
P)·Cp(

^
P)·J(

^
P)

T

(A23)
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