
 

Sensors 2020, 20, 3008; doi:10.3390/s20113008 www.mdpi.com/journal/sensors 

Article 

Inline Inspection with an Industrial Robot (IIIR) for 

Mass-Customization Production Line † 

Zai-Gen Wu 1, Chao-Yi Lin 1, Hao-Wei Chang 1 and Po Ting Lin 1,2,* 

1 Department of Mechanical Engineering, National Taiwan University of Science and Technology; Taipei 

10607, Taiwan; geass0931927669@gmail.com (Z.-G.W.); joecool1024@gmail.com (C.-Y.L.); 

chw1994@gmail.com (H.-W.C.) 
2 Center for Cyber-Physical System Innovation, National Taiwan University of Science and Technology; 

Taipei 10607, Taiwan 

* Correspondence: potinglin@mail.ntust.edu.tw; Tel.: +886-983-033-147 

† Part of this paper was presented at “Wu, Z.-G.; Lin, C.-Y.; Lin, P.T. Stereovision-Based Inline Inspection 

with a 6R Robot. The 16th International Conference on Automation Technology (Automation 2019), Taipei, 

Taiwan, 2019; 1106”. 

Received: 21 April 2020; Accepted: 25 May 2020; Published: 26 May 2020 

Abstract: Robots are essential for the rapid development of Industry 4.0. In order to truly achieve 

autonomous robot control in customizable production lines, robots need to be accurate enough and 

capable of recognizing the geometry and orientation of an arbitrarily shaped object. This paper 

presents a method of inline inspection with an industrial robot (IIIR) for mass-customization 

production lines. A 3D scanner was used to capture the geometry and orientation of the object to be 

inspected. As the object entered the working range of the robot, the end effector moved along with 

the object and the camera installed at the end effector performed the requested optical inspections. 

The detailed information about the developed methodology was introduced in this paper. The 

experiments showed there was a relative movement between the moving object and the following 

camera and the speed was around 0.34 mm per second (worst case was around 0.94 mm per second). 

For a camera of 60 frames per second, the relative moving speed between the object and the camera 

was around 6 micron (around 16 micron for the worst case), which was stable enough for most 

industrial production inspections. 

Keywords: 3D scanner; 6R robot arm; automatic optical inspection; coordinate transformations 

 

1. Introduction 

With the rapidly developing trend of Industry 4.0, industrial robots have been widely used in 

various applications, such as automotive manufacturing lines [1], semiconductor production lines [2], etc. 

For the goal of autonomous control of industrial robots, various methodologies have been developed 

to achieve high-accuracy robot manipulation. It has been expected that an Industry 4.0 production 

line is massively customized. In a mass-customization production line, there exist various kinds of 

products with different geometrical shapes. There may not be a general solution for automation. Thus, 

sensing and manipulation with a high degree of freedom became essential for handling these mass-

customized products. 

In a traditional production line, additional workers or devices may be needed to align or position 

their products in the conveying system. Inline inspection, therefore, is required to be able to recognize 

the position and orientation of an inspected object without the need for additional human workers 

and positioning devices. Moreover, the conveying system usually needs to stop for a couple of 

seconds to perform stable optical inspections. Stoppage of the conveying system decreases the overall 



Sensors 2020, 20, 3008 2 of 14 

 

production yield. It is desirable to develop an inline system that is capable of performing inspection 

of a product in a moving conveyor. 

Recently, researchers have developed several robotics systems for picking or inspecting target 

objects in a moving conveyor or a production line. Han, et al. [3] determined the optimal path 

planning of a robot arm to pick randomly placed objects in a moving conveyor in terms of minimizing 

the pick-and-place time in the reachable range of the robot arm. They found that the effectiveness of 

object picking is related to how the objects are distributed in the conveyor. Anwar, et al. [4] developed 

some visual servo methodologies to move a camera at the end effector of a robot arm to face the 

inspection surface on an object. The end effector position was determined based on an image-based 

Jacobian approach. Abbood, et al. [5] used a camera and some image-processing techniques to 

identify the shape of an object in a moving conveyor. A low-cost system based on a simple robot arm 

with plastic gears and servo motors was built to demonstrate the concept of picking objects at a slow 

moving speed of less than 9 cm/s. 

One of the most important features in the inline inspection system for mass-customization 

production lines is high-accuracy manipulation. Juan and his colleagues [6,7] measured the absolute 

position errors of the end effector of a 6-revolute-joint (6R) robot arm in the working space by laser. 

Accordingly, the error field of the end effector in the working space was parametrically modeled by 

kriging and was utilized to compute the corrected coordinates of the end effector. With the high 

accuracy of the laser measurement (i.e., ~0.001 mm), the absolute accuracy of the end effector was 

improved from ~1 mm to ~0.05 mm. However, the experimental setup of laser measurement was very 

time consuming. 

To make the 3D position measurement of the end effector more efficient, Juan and his colleagues 

[8,9] measured the distances from the end effector to three different cable encoders. These three length 

measurements were then used to compute the 3D position of the end effector by trilateration. With a 

lower accuracy of the cable encoder (i.e., ~0.1 mm), the accuracy of the absolute positioning of the 

end effector reached the range of ~0.5 mm. Lin, et al. [10] also showed how multilateration could be 

used to estimate the end effector position when more than 3 cable encoders were used to measure 

their distances to the end effector. Shih and Lin [11] started to investigate how the end effector 

positioning under various levels of payloads could be improved using trilateration based on three 

cable encoder measurements and coordinate correction based on kriging models of error fields. 

Cable encoder measurements show good potential on 3D positioning of industrial robots but 

they are not suitable for in situ measurements. Shih, et al. [12] developed a vision-based correction of 

end effector positioning in planar motions. A 2D camera was used to compute the transformation 

between the camera coordinates and the end effector coordinates in a given plane. Any target position 

of the end effector in the plane could then be computed with its coordinate in the live image. This 

approach was good for in situ measurement and robot manipulation but it only worked for 

positioning in a given plane and not suitable for moving target positions. 

Wu, et al. [13] utilized a 3D scanner to capture the geometry and orientation of an object, which 

was randomly placed in a moving conveyer. Since the moving speed and direction of the conveyer 

was known, a 6R robot was able to move along with the moving object as it passed through the 

working range of the robot. The developed stereoscopic object tracking could be utilized for the 

application of inline inspection of randomly placed objects in a moving conveyer with known speed 

and direction. Wu, et al. [14] presented the development and implementation of inline inspection 

based on stereoscopic object scanning and object tracking by a 6R robot. 

In this paper, a method of inline inspection with an industrial robot (IIIR) and its applications in 

mass-customization production lines are presented. Section 2 introduces the experimental setup and 

the required methodologies for matching the coordinates of the industrial robot and the 3D scanner. 

Section 3 explains how the camera position could be estimated based on the computer-aided design 

(CAD) model of a given object and the 3D point cloud of the object captured under the 3D scanner. 

Section 4 shows the experimental process and the results. Finally, the conclusion is given in Section 

5. 
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2. Experimental Setup and Initialization of the Inline Inspection with a 6R Robot 

Figure 1 shows the experimental setup of the developed inline inspection system [13]. A 3D 

scanner (i.e., stereovision camera with two pixel sensors in a resolution of 2 micron) was installed at 

the top of the entrance of a conveyer. The moving speed of the conveyer was denoted as V  and 

was given as 33.8 mm/s. The moving direction of the conveyer was along the +X direction of robot 

coordinate, which could be seen in Figure 1. As an arbitrarily shaped object entered the conveyer, its 

3D geometry and orientation would be captured by the 3D scanner. The 3D point cloud acquired by 

the 3D scanner would be used to calculate the desired positions and orientations of the end effector 

of the industrial robot. Accordingly, the end effector was desired to move along with the object and 

perform optical inspections without stopping the conveyer. This paper will present the required 

methodologies to estimate the end effector coordinates for the proposed inline inspection. 

 

Figure 1. Experimental setup of the inline inspection (X-Y-Z is the origin of the robot coordinate). 

To match the 3D scanner coordinate, S , and the robot coordinate, R , the transformation from 

S  to R , denoted as RTS , should be computed. The end effector of the robot was moved to N  

different positions within the inspection range of the 3D scanner. In this paper, N = 100  and N  

points were uniformly distributed, as shown as the red circles in Figure 2. The ith  end effector 

position observed in R  was denoted as RPi . Accordingly, the 3D scanner was used to captured these 

end effector positions and ith  end effector position captured in S  was denoted as SQi
. The ith  

transformed 3D scanned position was denoted as  and should satisfy the following equation: 

RQi =
RTS ×

SQi
 (1) 

Since the end effector coordinate RPi  should be closed to the transformed 3D scanned 

coordinate , the transformation could then be estimated by least square approximation (LSA). 

The Equation (1) can be rewritten as the following matrix form: 
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where each vector was formulated in the homogeneous coordinate. To determine the unknown 

parameters, RTS,pq
 for p = 1,2,3  and q = 1,2,3,4 , the data from all N  experiments was put 

together producing the following equation: 

 (3) 

for p = 1,2,3. Equation (3) is rewritten as the following: 

 (4) 

where  is a N ´1 vector that contains the pth  coordinate of every ;  is a N ´ 4  matrix 

that contains all the coordinates of every SQi
;  is a 4 ´1 vector that contains the components 

of the pth  row of RTS . Based on LSA, the unknown parameters in  could be estimated by: 

 (5) 

The transformed coordinates of the 100 end effector positions measured by the 3D scanner are 

shown as the blue crosses in Figure 2. The errors (i.e., coordinates of the end effector positions minus 

the transformed ones of the 3D scanned positions) along the X, Y and Z directions are shown in 

Figures 3–5, respectively. The averages and standard deviations of the errors along the X, Y and Z 

directions are listed in Table 1. Since the 3D scanner is less accurate in the Z direction than the X and 

Y directions, the standard deviation of errors along the Z direction is greater than those along the X 

and Y directions. Figure 6 shows the Euclidean errors between the end effector positions and 

transformed ones of the 3D scanned positions. Based on the averaged value of Euclidean errors listed 

in Table 1, the error between RPi  and  was around 2 mm, which was mostly caused by the 

lower accuracy of the 3D scanner along the Z direction. 

 

Figure 2. The coordinates of the end effector positions and the transformed coordinates of the 3D 

scanned positions. 
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Figure 3. Histogram of errors along X direction between the end effector coordinates and transformed 

coordinates of the 3D scanned positions. 

 

Figure 4. Histogram of errors along Y direction between the end effector coordinates and transformed 

coordinates of the 3D scanned positions. 

 

Figure 5. Histogram of errors along Z direction between the end effector coordinates and transformed 

coordinates of the 3D scanned positions. 
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Figure 6. Histogram of Euclidean errors between the end effector coordinates and transformed 

coordinates of the 3D scanned positions. 

Table 1. Averages and standard deviations of the errors between the end effector coordinates and 

transformed coordinates of the 3D scanned positions. 

Errors Average (mm) Standard Deviation (mm) 

Errors along X direction −0.0012 0.9844 

Errors along Y direction 0.0002 0.8312 

Errors along Z direction −0.0002 1.9227 

Euclidean errors 2.0041 1.1577 

3. Estimation of the End Effector Coordinates for the Inline Inspection 

Figure 7 illustrates the position of the camera for the desired inspection. Suppose the CAD model 

of the investigated object was known, as shown in Figure 7a. The camera was expected to take a 

picture facing a target point, Pt , on the object along the direction of -nt , where nt  stands for the 

normal vector of object surface near Pt . The CAD model and the desired camera position were saved 

in the database as the cyber model for later object recognition and positioning of camera. The distance 

from Pt  to the center of the camera lens, Pc , was given as d . Therefore, Pc  could be determined 

by: 

Pc = Pt + d ×nt  (6)

The transformation from Pt  to Pc  could be extended to more complicated conditions. This 

paper only focuses on the translation along the direction of nt  with a distance of d . 

As the true object entered the conveyer as shown in Figure 1, the geometry and orientation of 

the object was captured by the 3D scanner, as shown as the blue points in Figure 7b. Iterative closest 

point (ICP) [15] determined the transformation, TICP , from the known CAD model to the point cloud 

obtained from 3D scanner. ICP, which was first introduced by Besl and McKay [15] in 1992, iteratively 

finds the minimal distance between two sets of points, lines, or surfaces. Later on, Fischler and Bolles 

[16] used random sample consensus (RANSEC) to improve the accuracy of 3D data sampling. Wahl, 

et al. [17] was able to capture the geometrical features from the sampled 3D data and analyze the 

histogram of the point features. Rusu, et al. [18] then introduced a fast point feature histogram (FPFH) 

to speed up the process of point feature analysis. This paper uses the FPFH to estimate the 

transformation between the known CAD model and the captured 3D point cloud. 

Based on the transformation of the model matching, the target point on the object, denoted as 

¢Pt , was then found near the point cloud captured from the 3D scanner and was given by: 

¢Pt = TICP ×Pt  (7)
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The normal vector of the surface near ¢Pt  was determined by LSA and was denoted as ¢nt . 

Therefore, the position of the camera to perform the desired inspection could be computed by: 

¢Pc = ¢Pt + d × ¢nt  (8) 

Consider the object entered the conveyer at time of t = 0 , the coordinate of ¢Pc(t = 0)  may not be 

inside the working range of the robot. It’s necessary to estimate at what time the object would move 

into the working range of the robot so that the desired inspection could be performed. In our 

implementation, the conveyer moved along the +X direction of the robot coordinate. Therefore, the 

Y- and Z-components of ¢Pc  did not change with time. Only the X-component of ¢Pc , denoted as 

¢Pc,x (t ) , varied with time t  and could be written as: 

¢Pc,x (t ) = ¢Pt ,x + d × ¢nt ,x +V × t  (9) 

where ¢Pt ,x  and ¢nt ,x  stand for the X-components of ¢Pt  and ¢nt , respectively. Suppose the 

¢Pc,x (t = t1) entered the working range of the robot and ¢Pc,x (t = t2 )  moved out of the working range. 

The inspection should be done within the time interval of [t1, t2 ]. From Equation (9), the limits of the 

inspection time could be determined by: 

t1 =
Px,min - ¢Pt ,x - d × ¢nt ,x

V
 (10) 

t2 =
Px,max - ¢Pt ,x - d × ¢nt ,x

V
 (11) 

where Px ,min
 and Px,max

 represent the minimal and maximal X-coordinates of the working range of 

the robot, respectively. Finally, the coordinates of the end effector for following the object and 

performing the desired inspection were determined, i.e., ¢Pc(t = t1) , ¢Pc(t = t1 + Dt) , …, ¢Pc (t = t2 ) . At 

each time t , the desired position and orientation of the end effector were computed based on the 

inverse kinematics in the motor control system. 

  

(a) (b) 

Figure 7. Position of the camera for the desired inspection: (a) relative to the CAD model of the 

investigated object; (b) relative to the point cloud of the object captured by 3D scanner. 

4. Experiment and Result of the Proposed Inline Inspection 

The experimental process of the presented methodology is shown in Figure 8. An object to be 

inspected entered the conveyer at the beginning of the experiment, as shown in Figure 8a. The 

geometry and the orientation of the object were then captured by the 3D scanner. Suppose the CAD 
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model of the object was known, the transformation between the captured point cloud and the CAD 

model in the database was estimated by ICP, as explained in Section 3. The target inspection point on 

the surface of the object, ¢Pt , was then calculated as well as the normal vector of the inspected surface, 

¢nt . Given the desired distance between the camera and the target point, d , the desired positions of 

the camera, ¢Pc , could then be calculated. 

  

(a) (b) 

 

(c) 

Figure 8. Demonstration of the experimental process: (a) An object was placed underneath the 3D 

scanner at a random position on the conveyer; (b) the industrial robot moved the camera to the 

desired position to face perpendicularly to the inspected surface on the object; (c) the camera moved 

with the movement of the object without stopping the conveyer. 

Considering the known moving speed of the conveyer and the working range of the industrial 

robot, the camera could reach the desired positions between time t1  and time t2 , as shown in 

Equations (10) and (11), respectively. Figure 8b shows the moment of time t1  where the camera 

moved to the desired position of ¢Pc(t1). The industrial robot started to follow with the movement of 

the object to create near-zero relative movement between the camera and the moving object, as shown 

in Figure 8c. The inline spection was then performed before the object moved out of the reachable 

range at time t2 . 

In the experiments of the inline inspection, a flat plate with a circular mark, as shown in Figure 9, 

was to be inspected. The center of the circular mark was the target point for inspection. The normal 

vector of the plate had a directional angle, q , from the X axis and a tilting angle, f , from the X-Y 

plane, as shown in Figure 10. The area of the circular mark was 301.69 mm2. The area of the circular 
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mark would be measured during the object following and inline inspection to show the accuracy of 

the optical inspection. The relative movement between the camera and the moving plate would be 

investigated to show the stability of the inline inspection system. 

 

Figure 9. The circular mark on the flat plate. 

 

Figure 10. The directional angle q  and the tilting angle f  of the normal vector ¢nt  of the object. 

In this experiment, the directional angle q  of the inspection surface was -45°  and the tilting 

angle f  was 28.7°. The exact position of the object was randomly placed on top of the conveyer. The 

scale factor of the inspected image was 0.1865 (mm/pixel). From the beginning to the end of the 

inspection process, one inspection image of the flat plate was taken for every 0.5 s. The relative 

movement of the center of the circular mark between each consecutive image was measured and 

shown in Figure 11. The average relative movement of center was 0.2460 mm and the maximum 

relative movement was 0.6521 mm. Taking derivative with time, the absolute relative speed of the 

center was shown in Figure 12. The average speed was 0.3358 mm/s and the maximum speed was 

0.9420 mm/s. For a camera of 60 frames per second (fps), the relative moving speed between the object 

and the camera was around 6 micron (around 16 micron for the worst case), which was stable enough 

for most industrial production inspections. During the inspection process, the area of the circular 

mark was measured and shown in Figure 13. Compared to the true circular area, 301.69 mm2, the 

error of the area measurement during the inspection process is shown in Figure 14. The average error 

was 3.6695 mm2 (1.21% of error) around and the maximum error was 5.2122 mm2 (1.73% of error). 

The results of the presented experiment are listed in Table 2. 

A comparison between the presented IIIR and some other existing methods that were developed 

in the past few years is given in Table 3. The investigated systems were developed for either pick-

and-place applications [5,12,19,20] or production inspections (i.e., [4] and this work). For planar 

manipulations [5,12], image-based object recognition would be enough; on the other hand, 3D 

scanning was utilized for recognizing the objects that were either randomly placed (i.e., [20] and this 

work) or had arbitrary shapes [19]. The challenges of the robot manipulations increased as the objects 
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were placed in a moving platform (i.e., [5] and this work). The comparison in Table 3 showed that 

the presented IIIR delivered a unique ability to recognize randomly placed objects in a moving 

platform with good accuracy (i.e., relative speed between camera and object = 0.3358 mm/s = 5.6 

micron/frame for a 60-fps camera), which is important for the inline inspection in a mass-

customization production line. 

  
(a) (b) 

Figure 11. The relative movement of the center of the circular mark between each consecutive 

inspection image: (a) analysis with respect to time, (b) histogram of analysis. 

  
(a) (b) 

Figure 12. The absolute relative speed of the center of the circular mark between each consecutive 

inspection image: (a) analysis with respect to time, (b) histogram of analysis. 

  
(a) (b) 

Figure 13. The measured area of the circular mark during the inspection process: (a) analysis with 

respect to time, (b) histogram of analysis. 



Sensors 2020, 20, 3008 11 of 14 

 

  
(a) (b) 

Figure 14. Error of the measured circular area during the inspection process: (a) analysis with respect 

to time, (b) histogram of analysis. 

Table 2. Experimental results of the presented process of inline inspection with an industrial robot 

(IIIR). 

Analyzed Data Average 
Standard 

Deviation 
Worst Case Unit 

Relative movement 0.2460 0.1532 0.6521 (max. value) mm 

Absolute relative speed 0.3358 0.2261 0.9420 (max. value) mm/s 

Area of circular mark 305.3595 0.7186 

306.9022  

(measure with max. error of 

5.2122 mm2) 

mm2 

Error of area of circular 

mark 
3.6695 0.7186 5.2122 (max. value) mm2 

Table 3. Comparison between the proposed IIIR and other existing methods/technologies. 

Methodologies/Technologies 
Manipulation 

Types 

Positioning 

Methods 

Object 

Conditions 
Accuracy/Performance 

Automated sorting of a 

robotic vision system [5] 

Pick and place 

using a 4 

degrees of 

freedom (DOF) 

robot arm 

Image-based 

shape 

recognition 

Randomly 

placed in a 

moving 

conveyor 

with a 

known and 

constant 

speed (<9 

cm/s) 

92% success rate of 

shape sorting 

Pick and place of deformable 

objects [19] 

Pick and place 

with a 6R 

robot arm 

3D scanning 

and 

parameter 

optimization 

Randomly 

placed in a 

container 

98% success rate of 

picking the pork loins 

Vision-based end effector 

positioning [12] 

Pick and place 

with a 6R 

robot arm 

Vision-based 

planar 

positioning 

Randomly 

placed in a 

planar 

surface 

Positioning error = 0.42 

mm 

Planar object picking based on 

a deep learning network [20] 

Pick and place 

with a 6R 

robot arm 

3D scanning 

and 

coordinate 

matching 

(based on 

Randomly 

placed in a 

container 

Positioning error = 3.6 

mm 
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deep 

learning) 

Quality inspection using 

depth-free image-based visual 

servo [4] 

Target tracking 

with a 6R 

robot arm and 

performing 

inspections 

Image-based 

visual servo 

Placed in a 

fixed 

platform 

Positioning error = 5.5 

micron 

Presented IIIR in this work 

Object 

following with 

a 6R robot arm 

and 

performing 

inspections 

3D scanning 

and 

coordinate 

matching 

Randomly 

placed in a 

moving 

conveyor 

with a 

known and 

constant 

speed (33.8 

mm/s) 

Relative speed between 

a 60-fps camera and 

object = 5.6 

micron/frame 

5. Conclusions 

This paper has presented a method of inline inspection with an industrial robot (IIIR) that carries 

a camera to move along with moving object and performs the desired optical inspections in mass-

customization production lines. The developed inline inspection system integrated multiple 

technologies, including a 3D scanning, embedded system, coordinate transformation, robot control 

and machine vision. In our implementation, the relative speed between the moving object and the 

camera and the speed was around 0.34 mm per second (worst case was around 0.94 mm per second). 

For a camera of 60 frames per second, the relative moving speed between the object and the camera 

was around 6 microns (around 16 microns for the worst case), which was stable enough for most 

industrial production inspections. Furthermore, the average error of the inspection measurement was 

round 1.21% (worst case was 1.73% of error). The developed system could be extended to various 

kind of inline operations for automation applications in Industry 4.0. 

The main contribution of this paper was the integrated system of a 3D scanner for recognizing 

the position and orientation of a moving object, an industrial robot for moving to the desired position 

to perform inline inspection without stopping the conveyor, and a series of numerical methods for 

matching the coordinates of the 3D scanner and the robot arm, and calculating the desired end 

effector positions for inline inspections. The developed system was able to perform accurate object 

tracking without using costly measurement devices such as a high-speed camera or laser tracker. 

Therefore, it could be widely applied to various kinds of automation production lines but also highly 

applicable for small- and medium-sized enterprises. 
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