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Abstract: Most existing augmented reality (AR) applications are suitable for cases in which only
a small number of real world entities are involved, such as superimposing a character on a single
surface. In this case, we only need to calculate pose of the camera relative to that surface. However,
when an AR health or environmental application involves a one-to-one relationship between an
entity in the real-world and the corresponding object in the computer model (geo-referenced object),
we need to estimate the pose of the camera in reference to a common coordinate system for better
geo-referenced object registration in the real-world. New innovations in developing cheap sensors,
computer vision techniques, machine learning, and computing power have helped to develop
applications with more precise matching between a real world and a virtual content. AR Tracking
techniques can be divided into two subcategories: marker-based and marker-less approaches. This
paper provides a comprehensive overview of marker-less registration and tracking techniques and
reviews their most important categories in the context of ubiquitous Geospatial Information Systems
(GIS) and AR focusing to health and environmental applications. Basic ideas, advantages, and
disadvantages, as well as challenges, are discussed for each subcategory of tracking and registration
techniques. We need precise enough virtual models of the environment for both calibrations of
tracking and visualization. Ubiquitous GISs can play an important role in developing AR in terms of
providing seamless and precise spatial data for outdoor (e.g., environmental applications) and indoor
(e.g., health applications) environments.

Keywords: camera pose estimation and registration; tracking; augmented reality; ubiquitous
geospatial information systems; health & environmental applications

1. Introduction

Pose estimation and tracking are the most important parts of ubiquitous GIS-based applications,
especially for augmented reality (AR) health & environmental applications. A ubiquitous application
supports servicing anytime, supported anywhere and enhanced through technological devices such
as AR. There are several techniques available to implement ubiquitous concepts among which AR
is one of the most popular ones. To have a precise service in AR, both camera pose and the desired
pointing object are required. Consider a simple case in which a 3D character is registered on a surface
in the physical environment. To get this, we first need to identify that surface in the physical world.
Then, we need to estimate the position of the camera in relation to the surface to be able to register the
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character on that. This process which is known as camera pose estimation should be done for each
frame of the video to track changes in position and update the scene by the 3D virtual model [1].

In the above example, we do not need any previous information about the physical environment.
Although we are registering the character to a part of the physical world geometrically, we do not have
any semantic link between the entity in the real world and the 3D virtual model. Now, consider a case
in which we are going to register the 3D model of a building to the exact location of the corresponding
physical entity in the real world. This case involves a one-to-one relation between location of the entity
in the physical world and the corresponding object in the computer model which means we need a
precise enough 3D model of the environment together with a precise pose estimation and registration
(the process of superimposing virtual model to the real world object on the AR display) to augment the
virtual model to the physical entity. In this paper, we are mostly focused on these applications where
the Geospatial/Geographic Information System (GIS) databases and Building Information Models
(BIM) are potentially useful to provide the required 3D model. Many similar purpose applications
have been developed by Global Navigation Satellite System (GNSS) receivers and orientation sensors
in outdoor environments (e.g., environmental application) but they are subject to several sources of
errors which mean they are not enough alone to be used for these applications [2].

The relationship between GIS and AR is not limited to 3D modeling in the tracking and registration
process in health & environmental applications. In recent years, GISs have taken advantage of
different GIS user interfaces, including line-driven commands, graphic user interfaces (GUIs), virtual
environments (VEs), and finally Tangible User Interfaces (TUIs) [3]. Although these interfaces have
enhanced the user’s perception of geospatial information, there remains a need for more tangible
interfaces to integrate greater public use and increase human interactions with environments and
geospatial objects [4]. Therefore, the AR technology can also be another development in the evolution
of GIS user interfaces.

In order to develop AR application, especially in the domain of health & environmental applications,
in this case, we have several challenges:

• We need a fast method to identify the entity in the real world and refer to the corresponding object
in the database.

• We need a precise 3D model of the environment in an offline step.
• We need a precise enough registration method to augment the virtual model to the physical entity.

Pose estimation and tracking benefit several topic domains, including computer vision, sensors,
image processing, and information systems. There are several techniques in these domains for tracking
and registration. One fast and reliable way to estimate the camera pose is to identify real-world objects
by using physical markers embedded in the environment [5]. However, because of some imperfections
in these approaches, such as the difficulty in preparing the environment with markers, they are not
feasible in large environments such as outdoor settings [6] for environmental applications. Therefore,
the more compatible approach which mainly discussed in the paper is to use marker-less techniques to
track the camera pose. These methods do not require any other object to be added to the environment.

When the camera pose is estimated, a 3D model of the environment is required to identify which
objects the camera is pointing at [2,7]. Then the registration process superimposes virtual information
on the target object. For this kind of applications in AR, all entities in the environment should be
defined in a common coordinate framework. That means if the environment is a building, then we
define all entities in the building in a common coordinate framework. The same is true when the
environment is a region or a city especially for environmental applications.

Because of this diversity in the environments for different AR applications, determining efficient
3D data structures, data storage approaches, formats, and rendering strategies become important [8].
For example, outdoor environments (e.g., environmental application) entail large viewsheds and huge
amounts of data, and therefore employing effective strategies to deal with these issues is necessary [9].
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Many different approaches have been developed in virtual 3D modeling: computer games, CAD,
and geospatial models. Most existing AR studies can be classified into computer games modeling,
namely appearance-based approaches encompassing no geographic reference or poor semantically
empowered standard formats [10]. The importance of GISs and some CAD formats in tracking and
registration derives from the opportunity to develop geo-referenced and semantic-based AR systems,
especially for large-scale applications.

In general, AR displays can be divided into two subcategories of see-through and monitor-based
displays. AR displays are not in the scope of this paper and we assume all AR applications in this
paper to have monitor-based displays in which virtual information is overlaid onto live video frames
of mobile devices. As a beginning point for anyone interested in studying display technologies in
AR, the survey by Milgram et al. [11] discusses AR displays in a general sense in the context of the
reality-virtuality continuum.

Accordingly, the main goal of this paper is to classify and compare all marker-less tracking
and registration techniques from the ubiquitous GIS point of view for AR based applications.
Existing categories are either general or focus on specific fields. References [12,13] classify
them into three subcategories: gravimetric, marker-based, and natural feature-tracking methods.
Reference [2] proposed some other categories, including textures, 3D features, and sensor-based
tracking. Reference [14] provides a review of marker-less techniques but focus only on vision-based
approaches. Schall et al. [15] reviewed sensor- and vision-based techniques simultaneously, but focused
only on general categories. Further, none of these studies investigate the role of GISs in AR. In this
regard, this paper presents a coherent classification of tracking and registration techniques for mobile
AR and provides a detailed review of the marker-less category. Advantages and disadvantages of
each subcategory have been discussed and referred to the suitable literature in tables. Also, we did
not discuss some other laser-light based distance measurement methods such as Light Detection and
Ranging (LIDAR) range finding techniques, which are usually combined with GPS/Inertial Navigation
Systems (INS), to provide estimation of camera poses estimation in this paper because the focus was
on methods that are cheap and more accessible to the public use. Depth imaging devices such as
Kinect were discussed in this paper because they are cheap and their IR technology is popular in many
mobile devices.

The rest of this paper is organized as follows: The rest of this section introduces the shift
in geospatial information toward a new user interface and discusses the problem of camera pose
estimation and tracking and classifies different approaches. Section 2 reviews marker-less technologies
including sensor-based and vision-based methods and discusses their advantages and disadvantages.
Section 3 discusses the 3D model in AR systems, and Section 4 concludes by addressing issues and
open areas for future research.

1.1. Evolution of GIS User Interfaces

Over time, geospatial information has evolved from paper maps to desktop GIS, then to web-based
GISs, and finally arriving at the current stage of mobile GISs and ubiquitous GIS [16]. The user
experience of paper maps occurs completely in the physical world and is restricted to visualizing
geospatial/geographic information. With the advent of computers, geospatial information is represented
in a virtual space where many difficult and impossible operations in the real world become possible [17].
The first generation of line-driven command GIS user interfaces through which users interact with the
computer program with successive lines of text has been replaced with graphic user interfaces (GUIs)
and then with 3D virtual environments (VEs) with virtual walking and a bird’s-eye view [3].

Although these new interfaces increase the user’s perception of geographic information, there
remains a need for more tangible interfaces to integrate greater public use and increase human
interactions with their environments and physical objects [4]. The advent of technologies such as
ubiquitous computing, especially AR, may facilitate a new era of spatial user interfaces in the near
future. The key feature of AR in comparison to GUIs and VEs is that the representation of geospatial
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information and analyses in previous user interfaces takes place completely in the virtual space.
However, AR systems integrate the real world with a virtual environment, providing a more tangible
experience for the user because of direct interactions with real objects (Figure 1).

Figure 1. Evolution of GIS user interfaces.

1.2. AR Tracking and Registration

In AR, the goal is to influence one or more of the human sensory systems such as hearing [18] and
vision [19] with virtual information. This paper focuses on influencing the human vision system with
virtual information and on enhancing an individual’s view of the real world with computer-generated
graphics [1]. Azuma [20] defines AR as follows:

“Augmented reality is a variation of virtual environments (VE), or virtual reality as it is more
commonly called. VE technologies completely immerse a user inside a synthetic environment. While
immersed, the user cannot see the real world around him. In contrast, AR allows the user to see the
real world, with virtual objects superimposed upon or composited with the real world. Therefore, AR
supplements reality, rather than completely replacing it”.

Azuma determines that superimposing virtual information on the real world must have three
characteristics in AR: (i) It must combine the real and virtual worlds, (ii) it must be interactive on a
real-time basis, and (iii) it must be registered in 3D. For this, the first step is to make the interconnection
between the real and virtual worlds. In other words, the location of the real objects must first be
identified for the camera in 3D and on a real-time basis to augment information on them. This process
is known as 3D tracking, which entails the estimation of camera poses of six degrees of freedom (6DOF):
three components for the position and three components for the orientation relative to the object [14],
6DOF refers to the object movement on the X, Y and Z axes in 3D space as well as the rotation on
pitch, yaw and roll axes. When the pose of the camera estimated in the environment, objects in the
camera view can be identified by matching the camera pose to a previously generated 3D model of the
environment. Then the graphic elements are registered to the real-world [21]. An accurate, real-time,
and robust registration process is one of the most important tasks in AR [22,23].

Many approaches have been proposed for tracking and registration in diverse disciplines such as
computer vision, image processing, and sensors. This survey organizes the solutions reported in the
literature based on whether they need to prepare the environment before use. Therefore, in the very
base layer, there are two possible approaches: marker-based and marker-less techniques (Figure 2)
which can be used for health and environmental applications. There are several issues needed to be
considered to distinguish between marker-based and marker-less based techniques. In marker-based
techniques, real-world objects are identified for mobile devices by using physical markers [5]. For this
identification process, an explicit image pattern in the AR environment is needed. After that, various
registration processes including the creating of a geometry for the positioning of the marker and
then superimposing the virtual object on top of it in the real-world scene. Each steps needs several
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considerations to successfully finish the augmenting process if the camera fails the positioning of
the marker then the virtual object cannot be anchored to the real world properly. The marker used
in marker-based technique should be anything including lots of corners and edges work especially
well, as long as it has adequate exclusive visual features. For the marker-less technique, the geometry
needed for superimposing the virtual object on the real-world created by some approaches is based on
some software that evokes the environment as virtual model, and placing and positioning to the related
scene without dependence to an “anchor” to the real world. In this condition, if the camera loses its
line of sight, the virtual model will still be established at the same location. It should be noted that
tracking and registration techniques mentioned in Figure 2 also uses for ubiquitous computing-based
applications, especially ubiquitous GIS-based applications.

Figure 2. Tracking and registration techniques for mobile augmented reality.

Two subcategories of marker-based techniques include hyperlink and vision-based methods.
Hyperlinking links physical objects to web-based content through graphic tags or automatic
identification technologies such as the radio frequency identification (RFID) system and contains two
subgroups, namely direct and indirect URL discovery methods [24]. Direct methods use active emitters
of identifiers, whereas indirect methods use passive devices to provide identifiers for consequent active
sensors. Direct methods sense URLs directly from beacons, whereas indirect methods sense identifiers
from the physical entity first and then return a URL that bound to that identifier. This URL can provide
access to the information related to the entity from the web [25].

1D barcodes, 2D barcodes, and RFID tags are subgroups of indirect methods. RFID tags represent
the most popular approach, and near-field communications (NFC) methods have improved their
use [24]. Computer vision is an approach with visual markers that define fiducial markers attached to
physical objects. In this way, positions of multiple objects are sensed on a real-time basis. A fiducial
marker has been used as a point of reference or a measure in imaging systems, which is printed into or
on an image while producing the image. Further, additional information such as the orientation, color,
size, and shape of objects can be calculated [26].

Marker-based techniques are fast as well as reliable and have potential to be integrated with
GIS because they can represent spatial attributes of their location, but they have some drawbacks.
There must be uniform lighting and a strong foreground-background contrast for visual markers. In
addition, the tracking range is limited by the distinguishability of fiducial markers or tags [14]. Further,
it is more difficult to prepare the environment with markers. If vision-based markers are occluded with
other objects in a given environment, virtual content cannot be augmented [6]. Markers also require
regular maintenance [27]. A comprehensive survey of these technologies has provided in the research
by Siltanen et al. [28].
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2. Marker-Less Techniques

To address the aforementioned limitations, marker-less techniques have been proposed (Figure 2.
Grey boxes). Most studies can be divided into two groups at this level: sensor- and vision-based
techniques. In both approaches, which can be used for any applications especially for health and
environmental applications, the camera pose is the key parameter in connecting real and virtual
worlds [29]. In sensor-based techniques, the location and orientation of the camera are determined
through positioning methods and sensors [30–32]. On the other hand, in vision-based approaches,
computer vision and image-processing techniques are employed to estimate the camera pose [14,33–35].
It is important to mention that this classification does not separate surveyed approaches into disjoint
groups because it is possible for an approach to use both techniques. Table 1 provides the distribution
of articles in marker-less techniques.

Table 1. Distribution of papers in different categories.

Classification Criteria References

1. Marker-Less
1.1. Sensor-Based

1.1.1. Inertial [2,15,36–49]
1.1.2. Acoustic [50–57]
1.1.3. Magnetic

1.2. Vision-Based [7,33,54,58–63]
1.2.1. Model-Based
1.2.1.1. Edge-Based [64–80]

1.2.1.2. Template matching [1,63,81–83]
1.2.1.3. Interest-Point- Based [84–101]

1.2.1.4. Optical flow
1.2.1.5. Depth imaging
1.2.2. No-Model-Based

2.1. Sensor-Based Techniques

This section discusses sensor-based techniques and their role in AR applications. In these
techniques, sensors and positioning technologies are used to estimate the location and orientation of the
camera. A number of popular commercial AR SDKs such as Wikitude (https://www.wikitude.com/) and
Layar (https://www.layar.com/) support sensor technologies for camera pose estimation and tracking.

2.1.1. Inertial Sensor Tracking

Inertial sensors reflect a self-contained technology that requires no separate source, which means
that they are not limited by other devices such as emitters and cameras [36] Inertial sensors like
gyroscopes and accelerometers are embedded in almost all mobile devices.

Gyroscopes use the Coriolis acceleration effect to measure the angular rotation in an inertial space
about the input axis and include a rapidly spinning wheel suspended in a housing that resists changes
in its orientation [102]. This can be converted into yaw, pitch, and role values and the pose with
3 degrees of freedom. Before any use, raw data must be rectified of any bias (the distance between
the data center at zero) and scale (the difference between the range of data from the sensor and real
meaningful data) [37].

Accelerometers measure linear acceleration from both the linear movement of the device and
the Earth’s gravity [103]. The rotation around the x- (roll) and y- (pitch) axes can be calculated from
the accelerometer’s raw data [37]. Because both gyros and accelerometers are affected by errors, they
usually fuse to compensate for the weaknesses of each other [104].

Inertial sensors are mostly integrated with positioning techniques such as the GPS in outdoors.
Inertial sensors are also suitable for indoor environments but must be integrated with indoor positioning
techniques to provide full-camera-pose AR applications.

https://www.wikitude.com/
https://www.layar.com/
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The integration of an inertial sensor with depth information provided by a depth camera (e.g.,
Kinect data) helps to improve the visual based pose estimation. This integration procedure overcomes
some drawbacks, such as the occlusion. A good example in this regard is the integration of a depth
camera with wrist-worn inertial measurement units (IMU) for arm tracking [38]. Reference [39]
presents a measurement movement analysis, especially for an indoor health application (arm tracking),
using an IMU sensor and its correlation with a depth vision system and an optical fiber sensor.

2.1.2. Acoustic Tracking

In acoustic tracking systems, ultrasound transmitters and acoustic sensors are used. Ultrasound
systems use the time of arrival (ToA) [44], the time difference of arrival (TDoA) [45], and the angle
of arrival (AoA) [105] and report localization accuracy in cm. In the ToA method, the user wears
ultrasound emitters, and sensors are fixed in the environment [106]. The position and orientation of the
device are calculated based on the ToA for sound to reach sensors. Because sound travels slowly, the
acoustic tracking system is slower than other sensor-based tracking systems. In addition, the speed of
sound in air can vary according to the temperature and humidity of the environment, which can affect
the efficiency of the tracking system [13]. Many AoA-based systems use multiple access points (APs)
for any target localization. If Aps has large errors, it will lead to a large error for the localization process.
To tackle this problem, [46] proposed Unequal AoA Tracking (UAT). This solution utilizes multiple
APs and then prioritizes the APs based on their confidence to rule out unreliable measurements. Also,
ultrasonic systems based on methods such as TDOA need accurate synchronization between the
ultrasound emitters and receivers. Using appropriate synchronization strategy helps to decrease cost
and complexity in this case. Reference [47] proposed a method based on using a formula that uses
sphere intersection instead of the hyperboloids’ intersection. This method uses TDOA data directly.

2.1.3. Magnetic Tracking

In a magnetic tracking system, magnetic transmitters and sensors are used. When an electric
current is passed through coils (in the source), a magnetic field is created. The position and orientation
of receivers are measured relative to the source [3]. Magnetic tracking systems are cheaper to implement
but less accurate than other systems [107]. The magnetic field is disturbed in the presence of magnetic
materials, such as metal [50]. In addition, magnetic tracking sensors are subject to some jitter and
accuracy loss with an increase in the distance and sensitive to electromagnetic noise [51]. Compasses
represent the most common magnetic sensor in mobile devices. Magnetic sensors are commonly used
in conjunction with inertial sensors to provide a more accurate and stable tracking orientation [2].

Magnetic tracking needs the use of an appropriate method to reduce tracking error for AR
markerless process. Using hybrid tracking applying (optical tracking based on optical marker) is a
good solution in this regard. Reference [52] proposed a method in which an optical tracking technique
is used to decrease magnetic tracking errors. This study also used a high-order polynomial fitting
method to correct global errors using continuous mapping and uses smoothing interpolation over the
whole measuring space for distal intramedullary nail interlocking for a surgery health application.
Reference [53] introduced an electromagnetic tracking solution to overlay 3D virtual images onto the
surgical field anatomy obtained by a video camera. For this, there are several challenges that need to be
overcome. For instance, tracking markers adapted with a choledochoscope using an electromagnetic
field across the patient and sensor coils.

2.1.4. Sensor-Based Tracking and Registration Challenges

There are several sources of errors for sensor-based techniques that can cause a low level of
tracking accuracy especially in health and environmental applications. Although these sensors are
calibrated before use, they still suffer from accuracy issues. Gyroscope data have inseparable white
noise that induces some drift in the rotational angle. This noise accumulates over time and produces
inaccurate results [37]. Drift is the most important weakness of gyros and may accumulate up to
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10 degrees per minute overtime [102]. Accelerometers measure the acceleration of device caused by the
linear movement of the device or the Earth’s gravity field. Separating these two components produces
noisy results [108]. To address these errors, data from gyros and accelerometers are usually combined.

Although the nominal accuracy of digital compasses is reported as 0.5 degrees by manufacturers,
it can degrade significantly (to six degrees in some cases) with vicinity to cars or other sources of the
electromagnetic field [2]. The fusion of the compass with inertial sensors can improve the accuracy of
yaw rotation by using its pitch and roll to map magnetometer data to the horizontal plane [37].

Localization with GPS measurements can also be affected by several sources of errors, including
atmosphere effects, satellite configurations, and scattering in urban areas [102]. However, some solutions
have been suggested to overcome GPS errors, such as the differential GPS network real-time kinematic
(NRTK) technique, which enables GPS receivers to localize with centimeter-level accuracy [109].
This accuracy is approximately two times lower for the geodetic height in comparison to horizontal
coordinates. The NRTK technique uses different wireless communications area networks to send
correction messages calculated in reference stations to the smartphone (rover) [110]. Even in the case
of accurate localization, another important issue restricting the registration approach in sensor-based
techniques is the accuracy of the GIS model [111].

Galileo, GLONASS, and BeiDou are three other famous Global Navigation Satellite Systems
(GNSS) they have many similar characteristics in space and ground segments but at the same time,
they use different reference systems and signal structures. Because the numbers of satellites that
are contributing in finding the position of a candidate point significantly impact the accuracy of the
coordinates, integrating results from these systems is real of interest. Currently, 70 satellites are in the
view and when these systems launch all of their satellites this number increase to 120. Integrating
observations from these systems need developing new models to exploit the full potential of them [112].

AR displays can enrich many location-based services, although it requires six DoF pose estimation
as well as the integration of real and virtual worlds [102]. Here the challenge for AR is the visibility
problem [32]. The problem concerns which objects are visible from the user’s point of view to represent
virtual information only for them. Visibility analyses are available in the GIS but entail heavy and
time-consuming computations [113].

Most position and orientation estimation techniques are theoretically usable in indoor (e.g.,
health application) or outdoor environments (e.g., environmental application), but some are more
compatible with one of the two [114]. Vision-based techniques are less compatible with outdoor
AR environments but are more accurate in tracking and registration in comparison to sensor-based
approaches. In addition, indoor spaces have received increasing attention because of the huge demand
for indoor services. That is, people spend considerable amounts of time in indoor spaces such as
shopping malls, metro stations, airports, and hotels, and therefore the use of geospatial information
services for indoor spaces is of great importance [58]. In this regard, it is worth reviewing vision-based
tracking techniques as one of the most accurate AR approaches with a high level of accuracy and
compatibility for indoor environments while considering the role of the GIS and its applications in
health and environment filed. Before that, Table 2 summarizes papers regarding different challenges in
sensor-based approaches.

Table 2. Challenges in sensor-based techniques.

Challenges. Inertial Acoustic Magnetic

Accuracy [40–42] [44,45,48] [51,54–57],
Drift [37,40,41] [44,48] [10,50,55],

Visibility [44] [32]
GIS model [2,15] [106] [19]

Indoor [41,42] [44,48,49] [50,56]
Outdoor [15,40,42], [48] [10,29]
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2.2. Vision-Based Tracking

In vision-based techniques, images or video sequences of built-in cameras of mobile devices
associated with computer vision and image-processing algorithms are used for pose estimation. Most
vision-based techniques require a 3D model of the environment for camera pose estimation and
tracking, which are called model-based tracking in computer vision [64], but there are also tracking
approaches that require no previous information on the environment [84]. We also discuss these
methods because they are of great interest in many current AR applications because of their robustness,
accuracy, and speed.

Detectors usually determine the type of model to be used in tracking. With point feature detectors,
a database of geo-localized images including 3D point locations and their visual descriptors acquired
in an off-line process is used, whereas edge-based systems typically use CAD [33] and GIS [59] models
to estimate the camera pose [54].

Vision-based techniques are accurate and reliable, although they are more complicated in
comparison to sensor-based approaches [102]. ARKit (https://developer.apple.com/arkit/), ARCore
(https://developers.google.com/ar/), and Vuforia (https://www.vuforia.com/) are important AR libraries
in vision-based technologies. Vision-based techniques are discussed in the following.

2.2.1. Edge-Based Tracking

Edge-based tracking encompasses projecting a 3D geometric model (GIS or CAD) onto an image
and matching it with corresponding edge features of that image. Then the 2D displacement of
corresponding features is used to compute the 3D camera motion between frames [60]. Different
approaches are used to match a 3D model with edges from images, such as the Marr-Hildreth edge
detector, which extracts edges, chains them together, and forms lines to match the 3D model [115],
and the Hough transform [116]. A common method is to first render the model and after that apply a
sparse 1D search to match the adjacent edges of the model [7,117].

Edge-based tracking is fast and efficient for texture-less scenes, but it is subject to errors caused by
background clutter from a large number of local minima. Reference [60] developed a method to address
this challenge by partitioning the search space into three levels (interior, contour, and exterior) and
local matching of a 3D model to a 2D scene edges. This way they limit their search to only the confident
directions that avoid searches across all candidates which decrease the impact of clutter background.

For outdoor urban environments, a common limitation of lines and edges is that single buildings
features can be represented. This reduces the robustness of these techniques for dense urban
environments. To overcome this problem, Jiao et al. proposed a camera pose estimation system using
both a skyline-matching and a GPS method for urban AR applications [61]. Skyline features can model
the general geometric characteristic of a street in a geo-tagged image and yield the yaw angle when
matched with the skyline extracted from the GIS. To calculate the pitch and role, the system uses a
vertical vanishing point technique [118]. The percentage of successful registrations with a rotation
error less than 2.0 degrees is 90%, and the average computation time is 671 ms (471 ms for vertical
vanishing point detection), which is not sufficient for real-time applications.

3D edge-based tracking is used for rigid objects. This method is categorized in two different
techniques: (1) method with explicit edges and (2) method without explicit edges. Within the first
method, resemblances between the 3D model edges and the extracted edges are created to retrieve
the pose parameters. In the second method, some candidate edges have been selected by searching
some strong gradients sampled along the 3D edges near the projections of control points. The first
method needs more computation time to detect higher level edge features. This limitation is a big
challenge in some devices such as mobile applications. This method is used in specific domain such as
tracking polyhedral object (e.g., vehicle and robot arm). One of the advantages of the second method
is requiring less computational processes [62].

https://developer.apple.com/arkit/
https://developers.google.com/ar/
https://www.vuforia.com/
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2.2.2. Interest-Point-Based Tracking

Interest-point-based or point feature methods represent one of the most popular techniques in
vision-based approaches. The basic idea of interest-point-based methods is to extract point features
from a database of images during an offline training stage and store their locations and visualizing
descriptors. Then those feature points extracted from a query image of the camera’s current view are
matched to features in the database to estimate the camera pose [70].

Scale-invariant feature transform (SIFT) is a common method for point of interest detection
and matching [71]. It is designed to be scale-invariant but is relatively robust across changes in
rotation, affine distortion, noise, and illumination, making it capable of matching images with different
viewpoints. SIFT can easily extract feature points but is computationally expensive, and therefore
many researchers have attempted to improve the performance of this descriptor. For example, the
Laplacian/Gaussian feature detector has been replaced with the FAST (Features from Accelerated
Segment Test) [119] corner detector, which is faster, but because FAST does not estimate different scales
of the feature, it has been reintroduced by storing feature descriptors from all scales [72]. However,
interactive frame rates up to 30 Hz are achieved for real-time natural feature tracking. Also, the
adapted version of SIFT such as an adaptive scale-invariant feature matching method based on data
clustering is proposed to solve the problem of poor robustness during feature matching process [73].

The speeded-up robust feature (SURF) is another interesting point detector/descriptor [74]. It uses
the basic Hessian matrix approximation method for detecting interest points and speed up the matching
process but does not provide enough speed for real-time applications. For motion tracking SURF,
BRISK and AKAZE are alternative for SIFT for motion correction. These detectors are fast and maintain
accuracy like SIFT [75].

Reference [76] developed an outdoor-environment method based on coarse GPS localization to
restrict the search space in image database features. Then a query to find and match features in the
buffer around the position is performed. Here FAST is used to detect key points from images, and
the Fast REtinA Keypoint (FREAK) algorithm, a novel keypoint descriptor motivated by the human
visual system and MORE which is a faster algorithm to process with lower memory load than SIFT and
SURF [120], is used to extract descriptors. Binary descriptors such as FREAK enable fast a run time
making for a good solution for real-time application. Binary descriptors have two main characteristics:
(1) each bit in the descriptor is independent and (2) uses Hamming distance to estimate similarity
measurement instead of Euclidean distance [77]. In addition, RANSAC [121] is used to remove outliers
and imperfect matches between features of the query and reference images. However, the proposed
system is not as fast as a real-time system and is limited in complex environments. RANSAC is a
common method to solve poor stability and multiple mismatching point during image registration. It
must be noted that randomness of this method has a negative impact on registration. To solve this
problem, an improved SIFT image registration optimization algorithm based on Progressive Sampling
Consensus (PROSAC) is a practical solution in this regard [78].

2.2.3. Template Matching

Template-matching techniques employ texture information in images to estimate the camera pose,
but unlike interest-point-based techniques, which use features, they take into account a limited area
of an image, namely a template, to match reference images usually stored in a database of images in
an off-line process and a query image in the current frame of the camera. The match with the best
correlation is selected for camera pose estimation [122].

Template-matching approaches are efficient for poorly textured views and applications tracking
specific objects in environments such as human body parts [65] and arm robots [66]. An online 3D
template-matching algorithm that can reduce the operating time and the amount of data storage has
been proposed by Moun et al. [64]. The algorithm uses point cloud data sets with a reduced number of
online-built templates and a matching function based on a correlation approach. The algorithm has been
evaluated in several different pose conditions for a 78% success rate for matching the computational
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time of about 7 s. Therefore, the greatest drawback of template-matching approaches is their heavy
computation time, which limits their real-time applications.

In fact, using this method needs some improvement steps since template matching gives improper
results in cases with limited training samples. Reference [67] proposed a method based on a fast
template matching algorithm, which is in turn based on the principal orientation difference feature, to
solve this problem. This method uses an extracting edge direction which is divide two parts: 1) the
template area based on the position of extracted different features, and 2) searching for the matching
position around template. Despite the template matching technique being used in various applications,
it suffers from certain drawbacks, such as occlusion. Reference [68] proposed occlusion aware template
matching by consensus set maximization to handle these shortcomings since the given results shows
good performance.

2.2.4. Optical Flow

Optical flow techniques track a physical point in a video sequence by measuring velocity at each
pixel location when projection intensity remains constant [14]. Because images taken at near time,
instants are usually closely related to one another. In projecting a 3D path of a moving object onto the
image plane, each point produces a 2D path. The instantaneous direction of the path in each point is
achieved from 2D velocity. A 2D motion field is provided through 2D velocity for all points visible
on the surface. Then the optical method approximates the motion field from time-varying image
intensity [81]. Optical based methods are classified in two categories: 1) sparse optical flow and 2) dense
optical flow. Sparse optical flow methods, such as Lucas-Kanade, Horn-Schunck, Buxton-Buxton,
select important subset of features of objects, and the dense optical flow method, such as the Frneback
method, computes optical flow for each pixel. The dense optical flow method weakness is high
complexity and execution time, and its advantage is high accuracy and greater depth in comparison to
sparse optical flow [82].

Reference [1] proposed a technique based on optical flow to annotate real-world objects with
virtual information. Yuan et al. [83] use a simple registration method consisting of two steps. In the
first step, four points are specified to build a global coordinate system to superimpose virtual objects
on it. Then the Kanade-Lucas-Tomasi (KLT) feature tracker is employed to track natural features in
the live video. The optical flow approach is not robust to changes in illumination and large camera
displacements, which can cause tracking failure. In addition, this method tends to produce errors
because of its sequential pose estimation [122].

2.2.5. Depth Imaging

One of the latest approaches for computing the camera pose is to use depth images containing the
distance of scene objects from the camera view as a pixel value. Integrating these depth images and
RGB images allow camera pose estimation for tracking [85]. 3D models are often created in offline
stages, but depth-sensing allows for model updates and adjustment in real time [86]. In addition,
depth information is available through specific hardware such as infra-red (IR) range finders [87] and
stereo view algorithms in some mobile devices [88].

Structured light (SL) and time-of-flight (ToF) techniques are two IR-based methods that have
recently attracted considerable attention in depth imaging. ToF depth sensors emit waves to target
objects and measure for each sensor or pixel the phase delay of reflected IR waves instead of directly
measuring the light ToF because of the high speed of light to calculate the distance [89]. It provides a
radial range measurement for each pixel and then a transformation between ToF and RGB cameras
used to convert Cartesian coordinates of ToF into color camera coordinates [90]. In a structured light
system, a 2D pattern is projected onto a target object from an IR projector. Then an IR sensor camera
captures the projected pattern distorted because of the object shape and calculates the shift between
them by triangulation [91].
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Kinect is mainly a gaming IR and RGB imaging device developed through both SL and ToF
approaches. The two devices have been compared by La Cascia et al. [92] and found to be more
compatible with indoor environments because of the narrow sensor range (3 m for SL and 4.5 m for ToF).
Both devices are subject to errors caused by ambient background light, depth inhomogeneity (light
reflected from different depths on a pixel for ToF and a lack of depth information because of occlusion
for SL Kinect), motion, multipath effects, temperature drift, and a scattering-traveling indirect path for
waves. Kinect fusion was the first system to enable camera localization and scene reconstruction in
real time. The global model of a scene is reconstructed with camera localization and fusion of dense
depth data. The global model is used as a good source to enable estimation of camera pose. This aim is
done with aligning the depth map data on to global model. Modified version of ICP is proposed to
improve this method. A fast point-to-plane ICP register dense 3D map with global model [93].

2.2.6. No-Model-Based Tracking

An important challenge in any AR and ubiquitous GIS application is when the environment is
unknown [94]. The basic idea behind non-model-based techniques is to track and register the camera
phone without having a model or database beforehand. Such systems track the motion of the camera
and construct a 3D structure of the image scene simultaneously [84,95]. A set of camera parameters
includes the focal length, the rotation matrix, and the translation vector, and the camera’s interior
parameters may be estimated using the structure from motion (SFM) algorithm in each image. Then
triangulation among corresponding points in each image provides an opportunity to compute camera
pose [79]. The SFM model does not support real time localization mapping necessary in some health
application such as surgical navigation in endoscopy. To solve this problem, the idea of using another
interesting approach in non-model-based techniques, which is based on a learning-based descriptor in
simultaneous localization and mapping (SLAM) is proposed. This descriptor can be trained using
bootstrapping training method [96]. SLAM is conceptualized in robotics based on the idea that it
is possible for a mobile robot to move in a completely unknown environment while mapping and
localizing simultaneously [97,123]. Consider a mobile robot in an environment with a sensor to take
relative observations of some unknown landmarks. If the sensor is a camera applying vision-based
observations, then it called visual-SLAM.

There are many methods for solving the SLAM problem, including probabilistic methods such as
the Kalman filter [98] and the extended Kalman filter [84], and geometric approaches such as bundle
adjustment [94]. Bundle adjustment is the problem of estimating jointly optimal 3D structure and
camera pose parameters through refining a visual reconstruction. To optimize parameters a cost
function that quantifies the model fitting error is minimized [124]. Bundle adjustment approaches are
more accurate but slower than probabilistic techniques.

Many attempts have been made to reduce the operating time for the bundle adjustment algorithm.
Reference [99] developed an algorithm for estimating the camera motion on a real-time basis and
constructing a 3D model of the environment. The authors reduced the operating time by optimizing
parameters by a least squares solution. This algorithm uses three images at the beginning to set the
global frame and system geometry. Then it uses a robust algorithm for feature detection and matching
to compute the camera pose for each frame of the video. A number of frames are selected through a
determined process by having key frames incorporated into 3D point triangulation. When a new key
frame and 3D points are added, local bundle adjustment is used to simultaneously solve localization
and mapping. The processing time for estimating the pose for each frame is about a tenth of a second,
but the 3D coordinate mean error is about 0.5 m in comparison to the ground truth.

The accuracy issue is more relevant in outdoor environments with long baselines because this
accumulates errors based on frame flow [97]. One way to address this issue is to introduce geo-referenced
information to the algorithm. Therefore, some researchers have proposed a post-processing algorithm
to add more geometric constraints to correct reconstruction and localization drift by fitting the estimated
model with a 3D city model [111]. However, the reconstructed model of the camera is related to the
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precision of the 3D model. Reference [100] proposed a two-step post-processing algorithm that takes
into account the uncertainty of these two models.

The AR application uses SLAM with another technique, such as Parallel Tracking and Mapping
(PTAM), in case that tracking and mapping occurs separately. Some marker-less tracking techniques
employ using natural Feature Tracking (NFT) Simultaneous Localization and Mapping (SLAM) [101].

2.2.7. Vision-Based Tracking and Registration Challenges

In addition to common problems associated with accuracy and the operating time, there are
some other challenges in vision-based approaches in tracking systems. One disadvantage of
some vision-based approaches is their initialization step. Many such algorithms require manual
initialization [33,63] or semiautomatic initialization [125]. Even when they initialize automatically,
they usually have to start from a well-known point [90]. In addition, when a tracking failure occurs
during a fast movement or by dynamic occlusion, their re-initialization is required.

Occlusion is another challenge in vision-based tracking. This occurs when an object is occluded by
some part of itself (self-occlusion) or another object (external occlusion). Self-occlusion can be solved
by computing a table of visible features [7] or depth buffering [126]. Using outlier detection algorithms
such as RANSAC can address external occlusion even in highly cluttered environments with a low
inlier information ratio [94]. Table 3 provides more references for handing occlusion in each category.

The ability to provide consistent registration between virtual objects and the real environment is
crucial. The phenomenon in which the augmented model is not stable in the scene and oscillates with
small amplitudes and high frequencies is called jittering [14]. This may be due to a small number of
points available for registration [127].

Major problems in outdoor applications include factors such as weather changes, sunlight, and
shadows, which can cause changes in illumination [80]. This weakens vision-based tracking approaches
based on intensity information in images (template matching, interest points, and template matching).

In sum, vision-based approaches are suitable for indoor for health applications and outdoor spaces
for environmental applications, but because of a high processing cost and huge amounts of required
data, they are more compatible with indoor environments. However, they can be used in combination
with sensor-based techniques to improve their pose estimation capability. Table 3 provides papers
regarding different challenges in sensor-based approaches. Also, a comparison of methods in terms of
advantages and disadvantages is summarized in Table 4.

Table 3. Challenges in vision-based techniques.

Challenges Edge-Based Template
Matching

Interest
Point

Optical
Flow

Depth
Imaging No-Model-Based

Automatic initialization [58] [64,65,69] [72] [1] [88,89] [84,99]
Manual initialization [33,54,59,63] [80] [63], [85] [95,100]
Occlusion handling [33,54,60,63] [65,66,69] [8,72] [1,63,81] [85,87–89] [84,94,95]

Jitter [33] [72,118], [83] [84]
Handling illumination changes [33,60,63] [69] [71,76,79,80], [63,81,83], [90,92] [94]

Compatible with GIS environments [58,59,61] [100,111]
Compatible with CAD environments [7,33,54] [64]

Indoor [7,33,60] [65,66] [128] [1,83] [89,92] [84,97]
Outdoor [54,58,59,61], [69] [60,64] [1,83] [85,90] [59,84,97,99,111]
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Table 4. Summary of advantages and disadvantages of pose estimation and methods.

Category Device/Algorithm/Method Advantage Disadvantage

Sensor-based

Inertial
Gyroscope, Self-contained, popular in mobile devices, fusion possible to

overcome errors, applicable to indoor/outdoor, real-time
Bias & rectification required, gyros have inseparable white
noise, accumulate errors, drift up to 10 degrees/min, need

positioning systemsAccelerometer

Acoustic ToA, TDoA, AoA 6 DoF pose estimation Sound travels slowly, sensitive to environment (humid,
temp, etc.), not popular in mobile devices

Magnetic Compass 3 DoF (orientations) & 6 DoF (not popular) pose estimation
possible, real-time

Less accurate than inertial methods, subject to magnetic field
distortion & jitter, need positioning systems in case of 3 DoF,

error up to 6 degrees

Vision-Based
Model based

Edge-Based
Mar-Hilldreth edge

detector,
Compatible with GIS/CAD models, excellent for texture-less

objects, applicable to indoor/outdoor, very reliable,
automatic initialization possible

Background clutter errors, not fast enough for real-time
applications, rotation error about 2 degrees, position error

10–15 cmHough transform

Interest Point Based SIFT, SURF, FAST,
RANSAC, FREAK

very reliable in feature extraction (scale, orientation, affine
transformation, and illumination invariant), very accurate

registration, applicable to indoor/outdoor

Mostly compatible with point clouds & image databases,
initialization to GIS models is challenging

Template Matching Efficient for poorly textured views, automatic initialization,
applicable to indoor/outdoor Heavy computation time, not applicable to vector based GIS,

Optical Flow KLT Useful for tracking movement, applicable to indoor/outdoor Not robust to illumination change & large camera
displacement, cumulative error

Depth imaging Structured Light (SL),
Time of Flight (ToF)

IR sensors are becoming popular in mobile devices,
applicable to indoor/outdoor

Narrow sensor range (SL, 3 m; ToA, 4 m), subject to errors
caused by ambient background light, depth inhomogeneity,

motion, multi-path effects, and temperature drift

No-Model Based SFM, Visual-SLAM,
bundle, KF, EKF

Very popular, useful for applications in unknown
environments, applicable to indoor/outdoor

Initialization and matching to a reference mode is not easy,
accumulate error,
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3. 3D Modeling

The environment is sometimes limited to only a few objects [129]. In this case, choosing an efficient
3D model is not hard, and almost all existing AR applications belong to this category. However, if the
environment is huge (e.g., outdoor environments), then choosing a suitable 3D model for rendering
issues becomes a serious challenge.

There are many approaches to virtual 3D modeling: computer games and simulations, CAD, and
geospatial/GIS models. In almost all existing AR applications, common 3D games and graphic data
formats such as COLLADA, VRML, X3D, and OBJ are used to represent virtual information. In these
formats, geometry, material, and appearance are modeled with quite limited topology and semantic
information [10]. In CAD approaches, geometry is strongly modeled with limited material modeling.
Semantic information and topology are modeled in some particular CAD formats such as IFC, which is
used in building information modeling (BIM) [130].

GIS data standards such as CityGML model hageometry, topology, and semantic information
strongly but with limited appearance [131]. The prominent attribute of GIS data formats that is of great
importance, particularly in outdoor AR based environmental applications, is that the GIS is always
geo-referenced in any 3D coordinate system [102]. Few studies have used GIS data formats for AR
applications. However, to provide a common reference frame for the camera, the use of the GIS is
suggested because it can provide not only geometry and semantic modeling but also a solid ground
truth to achieve a geo-referenced AR system [8].

Reference [9] extended the application of AR to outdoor scenes with large viewsheds by
implementing a client-server Augmented Scene Delivery System (ASDS) for a video webcam at
the top of a platform. When the camera rotates, the rendering engine rotates and scales a 3D model to
match the camera view. Then the user-selected location UTM coordinates are converted by server into
perspective screen coordinates a virtual icon registration onto the captured camera image. The paper
employs the TIN data model as the best 3D data structure for large viewsheds because the triangle is
the simplest rendering primitive for surface facets in popular rendering libraries such as OpenGL and
Direct3D. The results suggest that the linear-time resampling of dense TINs is one of a proper solution
for perspective surface rendering.

Reference [132] used a Globe3 Mobile (G3M) framework to render the 3D model of an urban area
together with a layer that modelled the solar energy radiation received by each building on images of
the physical world captured by the camera of the device. The 3D model was built at different Levels of
Detail (LOD) using CityGML standard.

4. Critical Discussion

To use the aforementioned comprehensive overview of registration and tracking techniques
related to the marker-less approach in above sections for health and environmental applications, we
need to consider various and critical challenges and points, especially when there is a smart and
ubiquitous environment based on a smart/ubiquitous city. All objects in a smart city are intelligently
connected together under an intelligent infrastructure, which was previously mentioned as ubiquitous
GIS. AR-based marker-less techniques and mix reality [133] are the most important parts of ubiquitous
GIS-based space. Via ubiquitous GIS space, there is a seamless space from both indoor and outdoor
spaces. All objects can measure their position from each other. If an Internet of Things (IoT) concept
has been implemented in this smart city, then all objected are integrated and can easily perform their
spatial analysis using the ubiquitous GIS architectures (e.g., IoT-based AR applications [134]). When
we mainly consider AR-based marker-less registration and tracking techniques and services for health
and environmental applications in the smart city, several critical discussions and issues will be opened.
Since for health and environmental applications, various spaces and disciplines are used, which are
intelligently and seamlessly integrated together. Each space has own characteristic, which needs to
be related the AR-based marker-less technique. Therefore, we need to use some hybrid techniques
to run successful health and environmental applications. In addition to the necessity of the hybrid
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solution for the critical discussion section, we need also to explain some improvement techniques
related to the above mentioned AR-based marker-less techniques since accuracy is a critical point in
health (e.g., surgery, etc.) as well as environment (e.g., pollution, etc.) topics, which both are directly
related to human welfare. Besides, using more updated approaches related to 3D objects attaching to
real objects during the AR augmentation process is the third critical topic to be covered in this critical
discussion section.

4.1. Hybrid Approach

Regarding the mentioned hybrid technique, it should be noted that many recent studies have
introduced various combination methods to deal with AR-based marker-less techniques. As noted
above, for complex smart city applications based on ubiquitous GIS space, especially for an AR health
& environmental application, the necessity of hybrid techniques are critical. The use of smart health
and environmental applications based on AR has an important role in increasing the quality of service
to citizens, which is the goal of a smart city. Most smart health and environmental applications are in
indoor and outdoor spaces, respectively. Although, the reverse situation is also the case, there are a
variety of cases indoors for health applications and environmental applications are usually outdoors
and in a wide field. In many of these applications, it is not possible to use a marker in the environment
(indoor and outdoor), and therefore the more attention come to marker-less tracking approaches.

During the hybrid process AR marker-less techniques, there are considerable challenges to be
addressed. To open those critical challenges in this section, we introduce some examples from recent
studies. For instance, Oskiper et al. proposed a hybrid method of both marker-less tracking techniques,
including vision based and sensor-based approaches [135]. This research offered an integrated solution
for a SLAM based tracking with fusion with an accelerometer and a gyroscope. The aforementioned
SLAM is a no-model based of the vision-based tracking, in which there are non-existing models and
environments during the tracking step. In a hybrid approach, the integration of sensor information
with SLAM will be very helpful. For some health and environmental mobile applications, the current
marker-less tracking techniques need a hybrid solution to deal with some resource management
limitations in the mobile environment. Using the SLAM method for large scale mobile application
encounters mobile resource limitations. A hybrid study is introduced for SLAM and other sensor-based
solutions in Correa et al. [136]. Also, Park presented a hybrid structure for mobile smart devices for a
marker-less tracking-based image registration using natural features and a third person perspective
augmented view [137]. This system employs augmented reality to enable designation of thermographic
targets in a façade inspection task.

There are some other types of a hybrid solution between a marker based and a marker-less tracking
techniques. Reference [138] discussed this sort of hybrid approach. One health-related application of
such a hybrid solution is used for rehabilitation training, including movement analysis. Reference [139]
proposed a novel hybrid tracking for the rehabilitation training employing a custom-made colored
marker-based tracking and a vision based marker-less tracking technique using Kinect. Reference [138]
discussed a hybrid solution using a marker-less method (using a CAD model) and a marker-based
method (using images) in the field of cultural heritage visualisation which has environmental constraints.
In this scenario, there are various limitations to using one marker-less tracking, such as the existence
of difficulty applying only an edge detection method using the CAD model for a damaged section
of a cultural heritage site. For this condition, due to a light contrast variation, marker identification
detection will be difficult in outdoor areas. An image-based marker solution will be used as hybrid
approach to tackle this shortcoming.

There is another possibility of a hybrid solution inside a specific marker-less or marker-based
tracking solution. For instance, Kim et al. explained hybrid techniques, including various algorithms
used for each step of a marker-less tracking solution including: Gaussian filter for better visualization
quality in a pre-processing stage, GrapCut algorithm for high accuracy for object segmentation during
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live video stream in a segmentation stage, Iterative Closest Point algorithm for straightforward object
identification in a feature extraction stage [140].

We can consider a hybrid solution simultaneously referring to the integration of multiuser tracking
techniques usage. This can be very popular in future trends of AR-based tracking solutions for many
applications, especially for health and environmental applications. Reference [128] tried to explain
a prominent idea to use multiuser head tracking using multi camera based on the voxelization of
dense point cloud data. This method defined elements to be tracked using segmentation and then uses
dedicated Particle Filter for user tracking. For such multiuser based hybrid methodology for outdoor
environmental applications, handling multiple users using multi-cameras tracking to make a secure
interface for increasing users’ interaction is critical issue. Reference [141] developed a prototype called
DataCube, which enables 3D data visualisation and manipulation with supporting multiuser in 3D
space. This prototype enables users’ gesture control interaction using appropriate filtering strategy to
manage data size. This mechanism uses a security method to enable user visibility during interaction
and shows their feedback to each other with facial reactions.

4.2. Improvement Approaches

Many other improvment approaches for marker-less techniques have been introduced in addition
to the hybrid strategy, which can be used for a smart environment, especially for smart-based health and
environmental applications. For smart health applications Hu et al. proposed a deep learning approach
using a fully convolutional neural network for tumor tracking in stereotactic lung radiotherapy to
improve the existing marker-less technique [142]. This method used personalized training data sets
obtained from patients to handle real-time tracking during surgery. Besides, Caron et al. improved
marker-less registration and tracking method based on depth imaging and deep neural network
for a bone surgery smart health application [143]. In this method, a depth camera obtains RGB,
and the depth image of bone and deep neural network are used for localizing and segmenting the
surgical target. For smart environmental applications, Dame et al. suggested an improving tracking
tool using a Python deep learning-based pose estimation for animal tracking, which is useful for
environmental studies such as monitoring species at risk of extinction [144]. This application uses
active-learning-based network refinement for pose estimation, which provided suitable results in the
case of limited training datasets.

Other studies have introduced some additional techniques for improving the current vision- based
marker-less tracking methods. Reference [145] presented a fast corner detection method, which used a
user defined target and extended tracking to improve the SLAM method result using ray cast to create
labelling of the objects in the scanned object for multi-various intensities applications.

Reference [146] improved the speed of the SURF marker-less tracking method using Binary Robust
Invariant Scalable Key-points (BRISK), which is the scale and rotation invariant binary descriptor.
Finally, there other issues which should be considered for the improvement of AR-based tracking and
registration processes. Some studies tried to introduce some solutions for the augmentation improving
process, especially for health and environmental applications. Reference [147] presented a smart health
application for when a patient moves during a sensitive surgery operation since such body movement
leads to considerable disruption during the tracking process for during tracking and registration for
the AR application.

4.3. 3D Object Modelling Approach

There are other AR-based tracking techniques with respect to augmenting 3D virtual objects to the
real world, considering several issues such as 3D virtual objects pose estimation and camera localization.
Reference [148] presented two different categories, including coplanar based techniques and available
3D model methods, for 3D pose estimation. The first category contains two subclasses, geometric and
the appearance-based method. The second one includes two subclasses, on-line estimated 3D model
(e.g., SLAM, V-SLAM, etc.) and available 3D model methods. Reference [149] proposed a 3D-AR
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marker-less image registration method using a stereo matching algorithm, applying the patient’s
CT-derived 3D model and an iterative closest point method for maxillofacial surgery in the field of
smart health application. This study solves misalignment challenge during registration with using
fiducial mark attaching on patient body and stereo camera space.

5. Conclusions and Future Trends

The literature review offers some important insights. The focus of this paper was on the
applications of marker-less AR, in which the ubiquitous GIS-based environment entities are defined in
a common coordinate framework. This includes both indoor (e.g., health) and outdoor (environmental)
applications for AR. Our goal was to review the literature on pose estimation for registration and
tracking to discover which approaches are potentially more suitable for this purpose. A one-to-one
relation between the real-world entities and the virtual model requires a 3D model of the ubiquitous
GIS environment.

Sensor-based and positioning techniques provide very coarse pose estimations for AR and
ubiquitous GIS. Although they are very simple, with widespread use, computationally inexpensive,
and provide a common reference system together with a 3D model, they are insufficient for applications
that need precise tracking and registration [150,151]. However, their potential to be used as an initial
coarse pose estimation method has been discussed in many papers.

On the other hand, vision-based methods are very diverse and can provide more reliable and
accurate pose estimation and be tracking although they are computationally expensive. One important
challenge in these methods for the specific purpose of this paper is that they are not easy to define in
a common coordinate system with the 3D model. Most of these methods work based on extracting
features from the image which then need to be matched with the previously built model to fulfill
the goal of transforming to the 3D model coordinate system. This transformation usually needs a
precise and reliable manual or semi-automatic initialization which is also restricted by 3D model
accuracy. Edge-based methods are potentially more applicable than interest point based and optical
flow methods to be matched with GIS to automatize the initialization because they can benefit from
similarity measure between a shape of the lines on an image and the 3D model. Template matching
methods are less applicable to AR applications discussed in this paper. Very popular No-model based
techniques usually use one of the previous approaches for pose estimation. Their strength is to provide
accurate, reliable, and fast pose estimation and mapping but they are also challenging to be used for
the purpose of this paper.

Calibrating methods with a 3D model is not limited to the initialization process but most of the
techniques need to be matched to the 3D model again especially in long baselines. The processing time
and computing resources of AR marker-less tracking needs more future studies since these are still
very challenging making it difficult to create online health and environmental applications especially in
this case that we have large environment and models. Further research is needed to evaluate the pose
estimation uncertainty as well as computing time and resources for large environments and models for
marker-less techniques.

As explained in our presentation of various new marker-less trends in the critical discussion section,
they required massive anticipated studies considering hybrid, improved and 3D augmented objects
for AR-based applications, especially for indoor health and outdoor environmental applications for
new emerging trends such as smart cities, ubiquitous spaces and IoT-based architecture. For instance,
emerging IoT-based AR applications needs more study to propose novel methods and interfaces to
handle the integration of the tracking mode using IoT sensors. Handling complex conditions such as a
complex objects, sudden motion during registration, and tracking is a considerable challenge requiring
further study. Using adaptive methods for resource management of mobile applications is a good
research area for future study. The development of new AR health and environmental applications
such as AR-drone-based application needs further study for a fast non-model-based method. These
applications provide remote control functionality, which is significant for emergency applications.
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With respect to hybrid approaches, combining marker-less tracking and new trends such as deep
learning and blockchain are suggested for further research. These approaches need to develop novel
deep and secure chain network structures to handle large amounts of data to support real-time health
and environmental applications.
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