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Abstract: Aimed at improving upon the disadvantages of the single centralized Kalman filter for
integrated navigation, including its fragile robustness and low solution accuracy, a nonlinear double
model based on the improved decentralized federated extended Kalman filter (EKF) for integrated
navigation is proposed. The multisensor error model is established and simplified in this paper
according to the near-ground short distance navigation applications of small unmanned aerial
vehicles (UAVs). In order to overcome the centralized Kalman filter that is used in the linear Gaussian
system, the improved federated EKF is designed for multisensor-integrated navigation. Subsequently,
because of the navigation requirements of UAVs, especially for the attitude solution accuracy,
this paper presents a nonlinear double model that consists of the nonlinear attitude heading reference
system (AHRS) model and nonlinear strapdown inertial navigation system (SINS)/GPS-integrated
navigation model. Moreover, the common state parameters of the nonlinear double model are
optimized by the federated filter to obtain a better attitude. The proposed algorithm is compared
with multisensor complementary filtering (MSCF) and multisensor EKF (MSEKF) using collected
flight sensors data. The simulation and experimental tests demonstrate that the proposed algorithm
has a good robustness and state estimation solution accuracy.

Keywords: nonlinear double model; federated EKF; multisensor model; small UAV; state estimation

1. Introduction

Unmanned aerial vehicles (UAV) have taken a prominent role in a variety of applications, mostly
military but also civilian. There are many significant advantages to using UAVs, such as for aerial
surveillance [1], three-dimensional mapping models [2], search and rescue [3], and inspection [4]
in complex environments. In recent years, there has been great interest in developing autonomous
unmanned flight systems (AUFS) with advanced onboard capabilities, which include three critical
types of technology: those of navigation, guidance, and control. The main focus of this paper is
the research of navigation algorithm technology [5]. Traditionally, navigation [6] is the process of
monitoring and controlling the UAV from one place to another place. In the broad sense, it can
be defined as the process of data acquisition, analysis, extraction, and the inference of information.
Moreover, it is a vital part of the UAV to interact with complex environments, and provide efficient
and reliable state estimation parameters, which include attitude, velocity, and position. The accurate
state estimation can help the UAV to perform trajectory control using certain advanced control system
methods, such as the P-PI cascade control system [7], and the artificial cognitive control system based
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on a reinforcement learning strategy [8]. In particular, the accuracy of the sensors is limited because
of the small UAV hardware performance and carrier space, but the multisensor Kalman filter fusion
algorithm [9] allows us to construct state estimation from the different sensors. Moreover, progress in
electronics miniaturization and microprocessors [10,11] has made it possible to house these sensors
in small and compact devices. In addition, with the rapid development of MEMS [12], the cost of
navigation devices has reduced, which brings the field of multisensor fusion algorithms into a period
of rapid growth.

In the research of UAV navigation technology, the inertial navigation system (INS) and global
satellite navigation system (GNSS) are indispensable. The INS [13,14], which depends on the inertial
measurement unit (IMU), can provide the attitude, velocity, and position. Although INS has functional
autonomy and a good reliability, and is not disturbed by the external environment, it has the
disadvantage that the accumulation of INS errors can increase during the dead reckoning process,
especially for low-cost IMUs. Thus, other navigation systems, e.g., global satellite navigation system
(GNSS) [14,15], vision navigation [16], lidar simultaneous localization and mapping (Lidar-SLAM) [17],
etc., can be employed to assist the INS with long-term precision. The GNSS can provide the velocity
and position through the GNSS receiver [18] without signal shadows. Almost all outdoor UAVs are
equipped with the GNSS receiver to provide their absolute location [19], and the position error of
GNSS is about 1–2 m in the open field. Therefore, for a single navigation system with low-cost devices,
the navigation data accuracy makes it difficult to meet the flight needs. A multisensor-integrated
navigation system approach, which utilizes the complementarity of different navigation systems, can
solve the issues of single navigation systems.

Nowadays, the Kalman filter [20,21], which is considered to be an optimal filter for the linear
system model and statistical properties of Gaussian white noise, is widely used in many fields.
In the multisensor-integrated navigation system, multiple navigation systems can be fused with the
Kalman filter to obtain state estimation parameters. As a result of the UAV in-flight maneuverability
and the complexity of the flight environment, the multisensor-integrated navigation model has the
characteristics of nonlinearity and uncertainty. However, the Kalman filter, which is only applicable to
linear Gaussian systems, is no longer optimal. Thus, a few improved nonlinear filter algorithms [22]
have been proposed by certain scholars, such as the extended Kalman filter (EKF) [23], the unscented
Kalman filter (UKF) [24,25], cubature Kalman filter (CKF) [26], particle filter (PF) [27], etc. In order
to solve the parameter divergence caused by the strapdown inertial navigation system (SINS)/GPS
model error, a quadratic EKF algorithm was proposed by Wang and Liu [28]. It can reduce the
calculation by retaining the second-order derivation information and two-stage cascade estimation.
In addition, for the low accuracy in filtering resulting from motion model errors, Hu and Wang [29]
proposed a method based on the establishment of INS/GPS-integrated navigation by the UKF, which
embeds the suboptimal fading factor (SFF) in the prediction covariance. Furthermore, a refined strong
tracking UKF (RSTUKF) was developed to increase the robustness of UKF-resistant motion model
errors. Liu and Qu [30] proposed a method combining the maximum correntropy criterion (MCC)
and square-root cubature Kalman filter (SCKF) to apply to the SINS/GPS-integrated system, which
not only retains the advantages of SRCF, but also exhibits a robust performance against heavy-tailed
non-Gaussian noise.

Everything described above refers to centralized nonlinear navigation filters, which have several
drawbacks. These include the heavy computational burden, the high state dimension, and the uncertain
filter divergence. Compared with centralized filters, decentralized filters [31] use the redundancy
information to detect and isolate the fault system, and construct the remaining subsystems, which
can continue to complete the required task. Carlson [32,33] proposed a decentralized filter approach
named the federated filter, which is being widely used because of its flexible design, small calculation
costs, and good fault tolerance. When one or several navigation subsystems fail, it is easy to detect and
separate the faults [34], and the remaining normal navigation subsystems can be quickly constructed
to give the required filter states. Furthermore, it is reliable for the fusion algorithm from the local filter



Sensors 2020, 20, 2974 3 of 23

to global filter. For the navigation error model, Liang and Jia [35] proposed a fusion framework based
on the federated filter, which is composed of EKF and differential decoupling KF (DDKF) for fault
tolerance. Meanwhile, the prediction covariance matrix is extended by using the fault factor. Finally,
the fault state and measurement are processed normally. Therefore, the federated filter [33] is very
suitable for multisensor-integrated navigation as a new decentralized filter approach. It is often used
for information distribution, as it is allocated among the different subsystems, and helps to improve
filter performance.

In this paper, with a focus on model nonlinearity and state solution accuracy, a nonlinear
double-model multisensor-integrated navigation method is proposed based on the federated extended
Kalman filter fusion framework. A nonlinear double-model system consists of the nonlinear attitude
heading reference system (AHRS) model and the nonlinear SINS/GPS model. The nonlinear attitude
heading reference system model was used to perform the first local EKF sensor fusion to estimate
the attitude error ϕϕϕn,1 and gyroscope bias εεεb,1

r in Equation (22). The nonlinear SINS/GPS-integrated
navigation model was used to perform the second local EKF sensor fusion to estimate the attitude
error δϕϕϕn,2, velocity error εεεb,2

r , position error δvvvn,2, gyroscope bias δpppn,2, and accelerometer bias5b,2
r in

Equation (23). Then, the common states (δϕϕϕn and εεεb
r in Equation (24)) of the nonlinear double model

were optimized by the main filter to obtain the best attitude estimation. The main contributions of this
study relative to other studies include the following:

1. The multisensor error mathematical model, which includes the gyroscope error model, the
accelerometer error model, and the SINS error model, are described in this paper. Furthermore, these
error models are reasonably simplified to apply to small-UAV near-ground short distance navigation;

2. A federated EKF approach is proposed combined with the federated filter and EKF, which not
only solves the model nonlinearity, but also retains excellent filter precision;

3. During UAV flight, the requirement of attitude solution accuracy is of great importance.
Thus, a nonlinear double model is proposed, including the nonlinear AHRS model and the nonlinear
SINS/GPS model. The common attitude solutions of the nonlinear double model are fused in the main
filter of the federated filter.

The rest of this paper is organized as follows. In Section 2, the multisensor error mathematical
model is introduced and simplified. The double-model EKF algorithm for the federated filter is
proposed in Section 3. Then, the simulation and experimental test in Section 4 demonstrate the
performance of the proposed algorithm. Finally, the conclusions are given in Section 5.

2. Multisensor Error Mathematical Model

2.1. Gyroscope Error Model

The zero offset bias is the main influence factor of the gyroscope output precision when the UAV
is in a static situation. Therefore, eliminating the zero offset error can improve the angular velocity
accuracy of the gyroscope measurement. However, the random drift error of the gyroscope will change
when the UAV is in flight, so the gyroscope error needs to be modeled [36] and estimated.

εεεg = εεε0 + εεεr +ωωωg, (1)

where εεε0 is the gyroscope constant error, εεεr is the gyroscope random drift error, and ωωωg is the gyroscope
error white noise. The first-order Markov model of the gyroscope random drift error εεεr is Equation (2).

ε̇εεr = −
1
τg

εεεr +ωωωgr, (2)

where τg is the first-order Markov time constant, and ωωωgr is the first-order Markov random white noise.
Actually, εεε0 is the constant when the gyroscope is running, and it can be derived by Equation (3).
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{
ε̇εε0 = 0

ε̇εε0 + ε̇εεr = ε̇εεr
(3)

Therefore, the constant error can be taken into account in the random drift error. The gyroscope
error model [37] can be derived from Equations (1)–(3).

εεεg = εεεr +ωωωg (4)

2.2. Accelerometer Error Model

Typically, the error of the accelerometer includes the constant error and random drift error.
Constant error can be eliminated using sensor calibration [38]. However, random drift error is
time-varying and can be estimated using the filter algorithm to compensate. The accelerometer error
model [35] can be represented by Equation (5).

5a = 50 +5r +ωωωa, (5)

where 50 is the constant error, 5r is the random drift error, and ωωωa is the white noise of the
accelerometer. The random drift error can be assumed to be the first-order Markov time constant in
this paper, and can be derived from Equation (6).

5̇r = −
1
τa
555 r +ωωωar, (6)

where τa is the first-order Markov time constant, and ωωωar is the white noise. The constant error can
be taken into account in the random drift error, the accelerometer error model can be derived from
Equations (5) and (6).

5a = 5r +ωωωa (7)

2.3. SINS Error Model

The attitude of the SINS error model [13] can be written as Equation (8).

δϕ̇ϕϕ = δϕϕϕ×ωωωn
in + δωωωn

in − εεεn
g , (8)

where δϕϕϕ is the attitude error of the UAV, εεεn
g is gyroscope bias in the navigation system, ωωωn

in is the
angular rate in the navigation system relative to the inertial system, and εεεn

g is the gyroscope error in
the navigation system.

The velocity of the SINS error model [13] can be represented by Equation (9).

δv̇vvn = −δϕϕϕ× fff n + δvvvn × (2ωωωn
ie +ωωωn

en) + vvvn × (2δωωωn
ie + δωωωn

en) +5n
a , (9)

where vvvn is the velocity of the UAV, δvvvn is the velocity error in the navigation system, ϕϕϕ is the attitude
of the UAV, fff n is the special force of the accelerometer, ωωωn

ie is the angular rate in the earth system
relative to the inertial system, ωωωn

en is angular rate in the navigation system relative to the earth system,
and555n

a is the accelerometer error in the navigation system.
The position of the SINS error model [13] can be described using Equation (10).

δL̇ =
δvn

x
Re + h

− δh
vn

x
(Re + h)2

δλ̇ =
δvn

y

Re + h
sec L + δL

vn
y

Re + h
tan L sec L− δh

vn
y sec L

(Re + h)2

δḣ = −δvn
z ,

(10)
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where [L λ h]T is the longitude, latitude, and height in the navigation system, respectively; [vn
x vn

y vn
z ]

T

is the velocity in the navigation system; and Re is the radius of earth.
In this paper, MEMS IMU sensors are used, which have a large noise compared to high-precision

inertial devices. At the same time, the error state of the system only changes slightly under filter
conditions, when the state of the SINS error equation selects the error quantity. Moreover, the SINS
error model is quite complex in terms of computational complexity for the study of the embedded
MEMS sensor fusion algorithm. Thus, there are some reasonable simplifications for the SINS error
model in order to decrease the computational complexity and improve the update frequency of the
navigation algorithm.

There is the pretty low height and relatively slow flight speed when a small UAV is in flight, and
the update frequency of the proposed algorithm is high when the airborne CPU is running. Therefore,
the rotation of navigation system caused by the change in the position of the UAV can be ignored
during the algorithm running period. In addition, the measurement accuracy of the earth rotation
angular rate is small relative to the gyroscope, and so the earth rotation angular rate is considered to
be 0.

The UAV coordinate system is shown in Figure 1. In order to more intuitively observe the velocity
and position change of the UAV, the navigation system is the north-east-down (N-E-D), and the body
system is the front-right-down (X-Y-Z).

Figure 1. Unmanned aerial vehicle (UAV) coordinate system.

The nonlinear error model of Equations (8)–(10) is simplified, and the [L λ h]T is replaced by the
pn = [pN pE pD]T regarding the UAV position in the navigation system.

δϕ̇ϕϕn = −CCCn
bεεεb

r −CCCn
bωωωb

g

δv̇vvn = CCCn
b fff b × δϕϕϕn +CCCn

b5
b
r +CCCn

bωωωb
a

δṗppn = δvvvn

ε̇εεb
r = − 1

τg
εεεb

r +ωωωb
gr

5̇b
r = − 1

τa
555 b

r +ωωωb
ar

(11)

where b is the body system, n is the navigation system, and CCCn
b is the direction cosine matrix from the

body system to the navigation system.

3. The Double-Model EKF Algorithm of Federated Filter

3.1. Extended Kalman Filter

The Kalman filter problem generally is assumed to be linear in the mathematical model. However,
the model in practical applications is a nonlinear system. In this paper, the designed method relies on
the extended Kalman filter [23] for the nonlinear model system.
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Xk/k−1 = f (Xk−1)

Pk/k−1 = Φk/k−1Pk−1ΦT
k/k−1 + Qk−1

Kk = Pk/k−1HT
k (HkPk/k−1HT

k + Rk)
−1

Xk = Xk/k−1 + Kk[Zk − h(Xk/k−1)]

Pk = (I − Kk Hk)Pk/k−1

(12)

In Equation (12), the jacobian matrix of Φk/k−1 and Hk are obtained by the partial derivatives of
f (Xk−1) and h(Xk/k−1), respectively. {

Φk/k−1 = J( f (Xk−1))

Hk = J(h(Xk/k−1))
(13)

3.2. Federated Filter

There are generally two optimal combining methods for a multisensor-integrated navigation
system: centralized KF and decentralized KF, respectively. Theoretically, centralized KF, which uses
single KF to centrally process all the subsystem information of navigation, can give an optimal
estimation of the state. As a result of the high state estimation dimension in practice, the computation
is too large to run in real time for the algorithm. In addition, the centralized KF has a poor fault
tolerance and is not conductive to fault diagnoses. However, the decentralized KF can use multiple
filters to make estimations for the different subsystems of navigation so as to reduce error coupling.
There are many decentralized KF algorithms currently. For example, an approach of decentralized
algorithms named the federated filter was proposed by Carlson [32,33]. The federated filter is a special
form of decentralized Kalman filtering method; it consists of several subsystem filters and a main filter.
It is a decentralized filtering method with block estimation and a two-step cascade.

The federated filter is often seen as a two-stage filter structure, as is shown in Figure 2. In this
paper, the reference system in Figure 2 is the SINS; the output of which is given to the main filter on
the one hand, and is also given to the local filter as the measurement value on the other. Then, the
local state estimation and covariance are fed together with the main filter to obtain the global optimal
estimation. βi(i = 1, 2, ..., n) is the information distribution coefficient, and according to the principle of
information distribution, different βi can be used to obtain the different structures and characteristics
of the federated filter.

Figure 2. The block diagram of the federated filter.
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If there exists n local state estimations X1, X2, ..., Xn and the corresponding covariances P1, P2, ..., Pn,
(Pij = 0(i 6= j)), the global optimal estimation [39] can be expressed as Equation (14).


Xg = Pg

n

∑
i=1

P−1
i Xi

Pg = (
n

∑
i=1

P−1
i )−1,

(14)

where the Xg and Pg are the global estimation and covariance, respectively; and the Xi and Pi are the
ith state estimation and covariance of the local filter, respectively.

Xi =

[
Xci
Xbi

]
, (15)

where the Xci is the common state estimation of the local filter, and Xbi is the unique state estimation
of the local filter. In this paper, we only fuse the common state estimation to get the global
optimal estimation.

3.3. The Improved Federated EKF

The EKF has a good processing ability for nonlinear problems, and it is also easier to implement in
practical applications. In addition, the federated filter has good fault tolerance compared to centralized
KF. Moreover, the fault can be easily detected and isolated when the subsystem fails, then rest of
the systems can be reconstructed. Thus, the proposed algorithm for filter precision is large and the
computation of the fusion algorithm from the local filter to global filter is small, which is beneficial to
execute in real time.

Aimed at the application of multisensor fusion, the improved federated EKF algorithm is proposed
in this paper, which uses EKF to optimize the nonlinear model of the local filter, and then globally
optimizes for the common state of the local EKF in order to meet the requirements of autonomous
position navigation. Additionally, it can improve flight stability and reliability. Equation (16) is the
improved federated EKF recursion formula.

Xi
k/k−1 = f (Xi

k−1)

Pi
k/k−1 = Φi

k/k−1Pi
k−1(Φ

i
k/k−1)

T + Qi
k−1

Ki
k = Pi

k/k−1(Hi
k)

T(HkPi
k/k−1(Hi

k)
T + Ri

k)
−1

Xi
k = Xi

k/k−1 + Ki
k[Z

i
k − h(Xi

k/k−1)]

Pi
k = (I − Ki

k Hi
k)Pi

k/k−1

Xg = Pg

n

∑
i=1

(Pi
k)
−1Xi

k

Pg = (
n

∑
i=1

(Pi
k)
−1)−1

(16)

where i is the ith local EKF, Xg and Pg are the results that are globally optimized for the common state
estimation. The improved federated EKF fusion diagram is shown in Figure 3. Two local EKFs are
used in this paper: one is to fuse the nonlinear AHRS model problem, and the other is to fuse the
nonlinear SINS/GPS-integrated navigation problem, which will be introduced detail later.
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Figure 3. The improved federated EKF fusion diagram.

3.4. The Nonlinear Double Model

Typically, this should be mathematically modeled when the actual system with nonlinear
characteristics is described. Therefore, a unified nonlinear Gaussian state space model system is
established for the multimodel of the federated filter based on the nonlinear theory [22].{

Xi
k = f (Xi

k−1) + ωi
k−1

Zi
k = h(Xi

k) + νi
k

(17)

where i is the ith nonlinear model, Xi
k is the state parameter, f (Xi

k−1) is the nonlinear state function,
ωi

k−1 is the process noise, Zi
k is the measurement quantity, h(Xi

k) is the nonlinear measurement
parameter, and νi

k is the measurement noise. Moreover, ωi
k−1 and νi

k are the Gaussian white noise.

3.4.1. The Nonlinear AHRS Model

The AHRS can affect UAV flight stability, which is regulated by fusing the gyroscope,
accelerometer, and magnetometer. According to the multisensor error mathematical model in Section 2,
the nonlinear error model of AHRS in Equation (18) is established.

δϕ̇ϕϕn,1 = −CCCn
bεεεb,1

r −CCCn
bωωωb,1

g

ε̇εεb,1
r = − 1

τg
εεεb,1

r +ωωωb,1
gr

(18)

where δϕϕϕn,1 is the attitude error in the navigation system, ωωωb,1
g is the Gaussian white noise of the

gyroscope in the body system, and εεεb,1
r is the bias of the gyroscope in the body system.

The measurement function of the AHRS can be written by Equation (19).

ZZZ1
k =


[

φa
k − φ̂k

θa
k − θ̂k

]
+ νa

k

(ψm
k − ψ̂k) + νb

k

(19)

where φa
k and θa

k are the roll and pitch calculated by the accelerometer, respectively; ψm
k is the yaw

calculated by the magnetometer; φ̂k, θ̂k and ψ̂k are the attitude update value form the gyroscope; νa
k is

the Gaussian white noise of the measurement from the accelerometer, and νb
k is the Gaussian white

noise of the measurement from magnetometer.

3.4.2. The Nonlinear SINS/GPS-Integrated Navigation Model

This paper uses the low-cost IMU that causes the state estimation to diverge over long running
times. Thus, the GPS is selected as another subsystem of the multisensor-integrated navigation system
of the UAV. The GPS, which has a good long-term stability, calculates the velocity and position of the
carrier by utilizing the received satellite navigation signals. It can be seen that the SINS/GPS is the
current mainstream choice because of the complementary performance of SINS and GPS. However,
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it is necessary to establish a nonlinear mathematical model that accurately reflects the system in order
to better analyze the actual SINS/GPS system.

δϕ̇ϕϕn,2 = −CCCn
bεεεb,2

r −CCCn
bωωωb,2

g

ε̇εεb,2
r = − 1

τg
εεεb,2

r +ωωωb,2
gr

δv̇vvn,2 = CCCn
b fff b,2 × δϕϕϕn,2 +CCCn

b5
b,2
r +CCCn

bωωωb,2
a

δṗppn,2 = δvvvn,2

5̇b,2
r = − 1

τa
555 b,2

r +ωωωb,2
ar

(20)

where δϕϕϕn,2, δvvvn,2, and δpppn,2 are the errors for attitude, velocity, and position, respectively; εεεb,2
r and

5b,2
r are the bias of the gyroscope and accelerometer, respectively; and ωωωb,2

gr and ωωωb,2
ar are the Gaussian

white noise of the gyroscope and accelerometer, respectively.
The measurement function of the SINS/GPS can be established by Equation (21).

ZZZ2
k =

[
pppa

k − p̂ppk
vvva

k − v̂vvk

]
+ νc

k (21)

where pppa
k and vvva

k are the velocity and position of the GPS, respectively; p̂ppk and v̂vvk are the velocity and
position of SINS, respectively; νc

k is the Gaussian white noise of the GPS.

3.5. Common State Fusion

The common state parameters of the nonlinear double model, which are the error of attitude δϕϕϕn

and gyroscope bias εεεb
r , are fused by Equations (22) and (23) under the federated filter framework. In

addition, the gyroscope bias and the accelerometer bias of the main filter are fed back into the SINS so
as to reduce sensor errors.

XA =
[
δϕϕϕn,1 εεεb,1

r

]
(22)

XB =
[
δϕϕϕn,2 εεεb,2

r δvvvn,2 δpppn,2 5b,2
r

]
(23)

XC =

[
δϕϕϕn

εεεb
r

]
(24)

The error of attitude and the gyroscope bias of Equations (22) and (23) are taken as the common
state estimation. On the one hand, the attitude is of a high accuracy because the UAV is a flexible,
maneuverable aircraft; on the other hand, the accurate attitude can make the velocity and position of
the UAV more reliable in the navigation system. The common state fusion algorithm of the federated
filter is obtained from Equation (25).XC = PC((PA)−1 + (PB

[1:6,1:6])
−1XB

[1:6]))

PC = ((PA)−1 + (PB
[1:6,1:6])

−1)−1
(25)

where XC and PC are the common state estimation and covariance, respectively; XA and PA are the
state estimation and covariance of the nonlinear AHRS model, respectively; XB and PB are the state
estimation and covariance of the nonlinear SINS/GPS-integrated navigation model, respectively; XB

[1:6]

is the error of attitude and gyroscope bias; and PB
[1:6,1:6] is the corresponding covariance.
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The unique state parameter of the nonlinear SINS/GPS-integrated navigation model is used as
part of the main filter state output in the federated filter framework.

X =

[
XC

XB
[7:15]

]
(26)

where XB
[7:15] is the unique state quantity which includes the velocity error, position error, and

accelerometer bias.

3.6. The Federated Double-Model EKF Algorithm

The local EKF and federated filter were introduced in Section 2, and a federated EKF approach
was proposed. After that, a nonlinear double model was designed in order to increase the solution
accuracy and fault tolerance of the filter system. Finally, the federated double-model EKF multisensor
fusion algorithm was investigated. The body system is “front-right-down”, and the navigation system
is “north-east-down”.

The establishment of the federated double-model EKF algorithm can make state estimation more
accurate, because the UAV requires higher accuracy for attitude calculations compared to ground robots.
This problem is effectively solved by the nonlinear double model in this paper. The decentralized
multimodel can globally optimize the common state (error of attitude and gyroscope bias) of the
two nonlinear models, which is suitable for the rapid maneuvering of the UAV. The traditional
SINS/GPS-integrated navigation diverges when the GPS signal is interfered with or invalid; however,
the algorithm in this paper reconstructs the rest of the sensor information in the case of GPS failure,
which can guarantee that the normal attitude is provided to the UAV. The federated double-model
EKF fusion diagram is shown in Figure 4.

Figure 4. The federated DMEKF (Double Model EKF) fusion diagram.

The nonlinear AHRS local EKF system includes three kinds of sensors: gyroscope, accelerometer,
and magnetometer. As shown in Figure 5, the measurement of attitude by the three-axis accelerometer
and magnetometer is calculated by FastEuler solution, and subtracted from the attitude that is obtained
by the gyroscope attitude update. Then, the local EKF AHRS fusion is used to optimize in order to
obtain the error of attitude and gyroscope bias. The FastEuler solution is derived from Equations (27)
and (28).

Figure 5. The nonlinear attitude heading reference system (AHRS) local extended Kalman filter
(EKF) diagram.
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{
φa = atan2(− f b

y ,− f b
z )

θa = atan2( f b
x ,− f b

z )
(27)


hx = mx cos θa + my sin θa + mz sin θa cos φa

hy = my cos φa −mz sin φa

ψm = atan2(−hy, hx)

(28)

The nonlinear SINS/GPS model system includes three kinds of sensors: the gyroscope,
accelerometer, and GPS. As shown in Figure 6, the three-axis gyroscope angular velocity is calculated
by the quaternion attitude update formula to obtain the direction cosine matrix CCCn

b , and converting the
three-axis accelerometer measurement from the body system to the navigation system in order to use
the dead reckoning to calculate the velocity v̂vv and position p̂pp. The longitude, latitude, and height of GPS
data is calculated using Equation (29) to obtain the position ppp in the navigation system. The ground
speed (Gndspd) and course degree (coursDeg) of the GPS data are solved using Equation (30) to obtain
the velocity vvv in the navigation system. Then, the error measurement of the velocity and position are
calculated using the (v̂vv− vvv) and (p̂pp− ppp). Finally, the local EKF is used to calculate the error of the
attitude, velocity, and position, respectively.

pppN = Re∆λ \ 100

pppE = Recos(L0
π

180
)∆λ \ 100

pppD = ∆h

(29)


vvvN = Gndspd ∗ cos(coureDed ∗ π

180
)

vvvE = Gndspd ∗ sin(coureDed ∗ π

180
),

vvvD = vz

(30)

where Re is the Earth’s radius (about 6,378,145 m), ∆λ and ∆h are the differences in latitude and height
in the adjacent time interval, L0 is the longitude at the initial time, the Gndspd and coursDed are the
ground rate and course degree at the current time, respectively.

Figure 6. The nonlinear strapdown inertial navigation system (SINS)/GPS local EKF diagram.

4. Simulation and Experimental Test

4.1. Data Acquisition and Flight Platform

This paper used the experimental platform shown in Figure 7 to obtain the raw flight sensors
data. It includes the three-axis angular velocity, three-axis acceleration, three-axis magnetic values,
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velocity of GPS, and position of GPS. The flight sensors data condition with GPS and without GPS
were collected by the vertical take-off and landing (VTOL ) UAV.

Figure 7. The experimental platform of the vertical take-off and landing (VTOL) UAV.

4.2. Flight Sensors Data with GPS

The flight sensors data were collected with the GPS of the UAV using the experimental platform
shown in Figure 7 whilst performing some maneuvers. The proposed federated double-model
EKF (FDMEKF) was compared with multisensor complementary filtering (MSCF) (the MSCF takes
advantage of the complementary nature of sensor frequencies to estimate the state parameters of the
UAV) and the multisensor EKF (MSEKF) (the MSEKF is only used to process the nonlinear SINS/GPS
model to estimate the state parameters of the UAV).

As can be seen in the previous figures, the attitude error of MSCF is the largest compared with
the other two algorithms in Figure 8. The sensor noise is an important factor affecting the solution
accuracy of the low-cost sensors. However, the MSCF cannot suppress the noise of the low-cost
sensors very well. This is because the MSCF model does not consider the sensor noise, it just uses
the complementary characteristics of the sensor frequency. The MSEKF model introduces the sensor
noise in Equation (17) (i = 1), and can handle the nonlinear SINS/GPS model. However, the state
solution accuracy of the single nonlinear model is not as good as the FDMEKF. The FDMEKF not only
considers the sensor noise in Equation (17) (i = 2), but also describes the two local EKF methods to the
nonlinear AHRS model and the nonlinear SINS/GPS model. Then, it fuses the common state of the
two models to improve the attitude solution accuracy compared with the MSCF and the MSEKF.

It can be seen that the attitude of MSCF is influenced by the sensor noise from the diagram of
the UAV attitude in Figure 9, so that the roll of MSCF demonstrates an occasional abnormal burr
phenomenon. The attitude of MSEKF has a certain deviation compared to the truth, and the roll of
MSEKF does not track the roll of the truth after 540 s. Compared with the two previous kinds of filters,
the attitude of the FDMEKF can track the truth very well. Firstly, since the FDMEKF can eliminate
the sensor noise compared to the MSCF. Secondly, as a result of the nonlinear double model based
on the decentralized filter, the filter accuracy is higher than the single model centralized filter, and
is more suitable for the UAV. In order to more intuitively compare the attitude accuracy of the three
filters, Table 1 provides the mean absolute errors (MAE), standard deviation (STD), and root mean
square errors (RMSE) of the attitude obtained by MSCF, MSEKF, and FDMEKF. It can be seen that the
MAE, STD, and RMSE of the FDMEKF are also much smaller than those of the other two filters. This is
because the FDMEKF improves the attitude solution accuracy through fusing the common states of
the two nonlinear models using Equation (14).
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Figure 8. The attitude error of the UAV in flight. (a) the roll error of the UAV; (b) the pitch error of the
UAV; (c) the yaw error of the UAV.

Table 1. Mean absolute errors (MAE), standard deviations (STD), and root mean square errors (RMSE)
of the attitude achieved by multisensor complementary filtering (MSCF), multisensor EKF (MSEKF),
and the federated double-model EKF (FDMEKF) for the experimental case.

Methods
Attitude (deg)

Roll Pitch Yaw

MSCF MAE 1.702 1.985 8.065
STD 2.183 1.706 8.560

RMSE 1.822 1.434 3.984

MSEKF MAE 1.651 1.824 8.008
STD 2.032 1.673 8.260

RMSE 1.437 1.265 3.460

FDMEKF MAE 1.564 1.528 7.897
STD 1.921 1.504 8.417

RMSE 1.336 1.022 2.817
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Figure 9. The attitude of the UAV in flight. (a) the roll of the UAV; (b) the pitch of the UAV; (c) the yaw
of the UAV.

Figure 10 depicts the velocity error of the UAV. It is evident that the velocity error of the FDMEKF
is smallest because it considers the GPS velocity noise. Moreover, the improvement in the FDMEKF
attitude accuracy reduces the cumulative error caused by the dead reckoning from acceleration.

It can be seen that the FDMEKF can better track the velocity of the truth compared with the
velocity of MSCF and the MSEKF in Figure 11, respectively. In the velocity of the MSCF, a large
magnitude of oscillations appear in the filtering curve when the UAV performs the maneuver. This is
because the MSCF does not eliminate the large GPS velocity noise from the low-cost sensors. Table 2
provides the mean absolute errors (MAE), standard deviations (STD), and root mean square errors
(RMSE) of the velocity obtained by MSCF, MSEKF, and FDMEKF. It can be clearly seen that the
FDMEKF has a good performance in terms of the UAV velocity solution accuracy.
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Figure 10. The velocity error the UAV in flight. (a) the north velocity error of the UAV; (b) the east
velocity error of the UAV; (c) the down velocity error of the UAV.

Table 2. MAE, STD, and RMSE of the velocity achieved by MSCF, MSEKF, and FDMEKF for the
experimental case.

Methods
Velocity (m/s)

VN VE VD

MSCF MAE 0.633 0.786 0.398
STD 0.879 1.093 0.535

RMSE 0.641 0.907 0.695

MSEKF MAE 0.534 0.465 0.325
STD 0.859 0.829 0.495

RMSE 0.576 0.716 0.585

FDMEKF MAE 0.492 0.435 0.309
STD 0.572 0.529 0.246

RMSE 0.314 0.476 0.447

Figure 12 shows the position error of the UAV. It is evident that the position error of MSCF is large
because it ignores the GPS position noise when calculating the position solution. Meanwhile, it was
already shown that the velocity error of the FDMEKF is the smallest. When the velocity is integrated
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to get the position, the velocity error is transferred to the position error. Thus, the velocity error also
affects the position error. Therefore, the position error of the FDMEKF is also better than the other
two filters.

Figure 11. The velocity of the UAV in flight. (a) the north velocity of the UAV; (b) the east velocity of
the UAV; (c) the down velocity of the UAV.

Figure 12. Cont.
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Figure 12. The position error of the UAV in flight. (a) the north position error of the UAV; (b) the east
position error of the UAV; (c) the down position error of the UAV.

It can be found that the FDMEKF can better track the position of truth compared with the position
of MSCF and the MSEKF in Figure 13, respectively. Moreover, the position curves of the FDMEKF are
smoother than those of the MSCF and the MSEKF. Table 3 provides the mean absolute errors (MAE),
standard deviations (STD), and root mean square errors (RMSE) of the position obtained by MSCF,
MSEKF, and FDMEKF. It illustrates that the position solution accuracy of the FDMEKF is better than
the MSCF and the MSEKF.

Table 3. MAE, STD, and RMSE of the position achieved by MSCF, MSEKF, and FDMEKF for the
experimental case.

Methods
Position (m)

PN PE PD

MSCF MAE 0.940 0.836 1.209
STD 1.879 1.103 1.535

RMSE 0.566 0.873 0.672

MSEKF MAE 0.724 0.617 0.876
STD 0.959 0.729 0.995

RMSE 0.361 0.702 0.581

FDMEKF MAE 0.692 0.531 0.601
STD 0.658 0.503 0.691

RMSE 0.223 0.523 0.512
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Figure 13. The position of the UAV in flight. (a) the north position of the UAV; (b) the east position of
the UAV; (c) the down position of the UAV.

4.3. Flight Sensors Data without GPS

The flight sensors data without GPS of the UAV were collected by the flight platform as shown in
Figure 7. This is to verify that when the GPS fails, the proposed algorithm can still provide a reliable
attitude for the UAV.

The velocity and position of the state estimation parameters are inaccurate when GPS signal is
disturbed in city buildings and jungle environment. At this time, the reliable attitude solution is very
important when the UAV is in flight. Figure 14 shows that the attitude error curves of the MSCF and
the MSEKF have large fluctuations. The attitude error of the FDMEKF can converge to 2 degrees.
The nonlinear SINS/GPS of the double model fails when the GPS signal is disturbed, but the FDMEKF
can still provide the reliable attitude depending on the nonlinear AHRS of the double model.
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Figure 14. The attitude error of the UAV in flight. (a) the roll error of the UAV; (b) the pitch error of the
UAV; (c) the yaw error of the UAV.

It can be seen that the attitude curves of the FDMEKF are closest to the truth compared with the
MSCF and MSEKF, as shown in Figure 15. The attitude solution of the MSCF is inaccurate due to the
lack of the low frequency characteristics of the GPS signal. Meanwhile, the attitude solution of the
MSCF has a divergent trend due to the failure of the nonlinear SINS/GPS model. Table 4 provides the
mean absolute errors (MAE), standard deviations (STD), and root mean square errors (RMSE) of the
attitude obtained by the MSCF and MSEKF. It clearly illustrates that the FDMEKF can still provide a
good attitude solution accuracy when the GPS signal fails.
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Figure 15. The attitude the UAV in flight. (a) the roll of the UAV; (b) the pitch of the UAV; (c) the yaw
of the UAV.

Table 4. MAE, STD, and RMSE of the attitude achieved by MSCF, MSEKF, and FDMEKF for the
experimental case.

Methods Attitude (deg)

Roll Pitch Yaw

MSCF MAE 3.698 2.739 11.135
STD 4.733 3.449 14.197

RMSE 4.097 2.557 7.340

MSEKF MAE 4.133 3.300 11.148
STD 5.265 4.235 13.761

RMSE 0.885 2.549 7.982

FDMEKF MAE 0.970 0.452 1.565
STD 2.249 1.508 2.495

RMSE 0.543 0.689 1.231
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5. Conclusions

A nonlinear double model approach based on the decentralized federated extended Kalman filter
(EKF) is proposed in this paper for the multisensor fusion algorithm of small UAVs. The contributions
of this paper include the following: (1) The multisensor error mathematical model is established and
simplified to a reasonable extent; (2) the federated EKF is further developed to enhance the filter
accuracy and robustness; (3) a novel nonlinear double model is designed to obtain a more accurate
attitude solution for cases in which there is GPS and there is not. Simulations and experimental test
results demonstrate that the proposed filter algorithm can effectively provide the state estimation in
order to meet the flight requirements of a UAV, as well as having a much higher solution accuracy.
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