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Abstract: The visualization of medical images with advanced techniques, such as augmented reality
and virtual reality, represent a breakthrough for medical professionals. In contrast to more traditional
visualization tools lacking 3D capabilities, these systems use the three available dimensions. To visualize
medical images in 3D, the anatomical areas of interest must be segmented. Currently, manual
segmentation, which is the most commonly used technique, and semi-automatic approaches can be
time consuming because a doctor is required, making segmentation for each individual case unfeasible.
Using new technologies, such as computer vision and artificial intelligence for segmentation algorithms
and augmented and virtual reality for visualization techniques implementation, we designed a complete
platform to solve this problem and allow medical professionals to work more frequently with anatomical
3D models obtained from medical imaging. As a result, the Nextmed project, due to the different
implemented software applications, permits the importation of digital imaging and communication
on medicine (dicom) images on a secure cloud platform and the automatic segmentation of certain
anatomical structures with new algorithms that improve upon the current research results. A 3D mesh
of the segmented structure is then automatically generated that can be printed in 3D or visualized
using both augmented and virtual reality, with the designed software systems. The Nextmed project
is unique, as it covers the whole process from uploading dicom images to automatic segmentation,
3D reconstruction, 3D visualization, and manipulation using augmented and virtual reality. There
are many researches about application of augmented and virtual reality for medical image 3D
visualization; however, they are not automated platforms. Although some other anatomical structures
can be studied, we focused on one case: a lung study. Analyzing the application of the platform to
more than 1000 dicom images and studying the results with medical specialists, we concluded that
the installation of this system in hospitals would provide a considerable improvement as a tool for
medical image visualization.
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1. Introduction

Although medical imaging technology has continued to evolve over the last decades, the technology
used for visualization and analytical purposes has remained constant since the appearance of
workstations. However, several tools (OsiriX, 3DSlicer) are capable of semi-automatically producing high
resolution 3D pictures from these medical images in a few seconds [1,2]. This manual or semiautomatic
segmentation is, in many cases, complicated and requires the intervention of a specialist [3,4]. Thus,
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the automatic segmentation of anatomical structures is of considerable interest to medical practitioners,
as it allows them to immediately start working, using 3D models that can facilitate clinical diagnoses.
Although much research has been conducted on automatic segmentation [5–12], the use of a complete
system capable of automatic segmentation on a large scale in hospitals, using traditional computers and
unspecialized workstations and allowing augmented reality (AR) and virtual reality (VR) visualization,
has not yet been achieved. Addressing this situation and providing an innovative visualization tool
were the main objectives of this work and the result led to the Nextmed project [13,14].

In comparison with the standard technology used for 3D visualization of medical images, AR and
VR provide us with a 3D visualization system that is more realistic, allowing doctors to effectively
interact with the generated 3D model and facilitating pre-surgical study [15,16].

The aim of artificial intelligence research is to train algorithms that allow segmenting without
incurring possible errors that contain manually programmed artificial vision algorithms [17–19]. One of
the most widely used techniques for attempting automatic segmentation using artificial intelligence
involves convolutional neural networks (CNNs) [11]. The significant advances in recent years have
resulted in neural networks [20] that can be trained to not only recognize parts of an image, but also
to generate a tagged binary mask, such as (regions with convolutional neural network) [17,21],
U-Net [22,23], V-Net [18,24], SegAN [25], and others for specific regions, such as for pancreas
segmentation [26]. All these neural networks can be included in the Nextmed platform to increase the
number of anatomical regions that can be automatically segmented.

The problem is obtaining enough tagged data that allow the artificial intelligence (AI) algorithms
to be trained. For this reason, we implemented artificial vision algorithms.

Regarding visualization technologies, augmented and virtual reality have quickly improved during
the recent years, allowing the implementation of powerful visualization tools at a low cost. They are
starting to be widely used in medicine [27–32]. Here, we describe the process for implementing these
tools and evaluated the results with medical specialists considering the advantages and disadvantages
of augmented and virtual reality technologies.

Our main objectives for the designed software system are: easy upload of digital imaging
and communication on medicine (dicom) images to the cloud platform, artificial vision module to
automatically segment certain anatomical structures, 3D model construction module based on the
results of automatic segmentation, and an augmented and virtual reality platform for the visualization
and manipulation of 3D models, allowing non-invasive pre-surgical studies. This paper demonstrates
the complete system that we developed (named Nextmed) and details one of the algorithms that we
designed for the artificial vision module that allows automatic segmentation, in this case, of lungs,
showing the results obtained by our lung segmentation algorithm.

The main novelty of this project is the implementation of a complete and modular platform to
allow the visualization of medical images with AR and VR, with no customization of the product for
each patient, as the whole process is automated. The project has been tested with medical professionals
to validate the first version of the platform and to get feedback to improve it.

We first explain how we obtained enough data to start the research, and then we describe the
process for developing artificial vision algorithms for automatic segmentation. The different tools
used for the implementation of the cloud platform and the visualization tools with AR and VR are
analyzed. Then, we describe all the results starting from the dicom processing, showing the results of
each stage of the computer vision algorithm for automatic lung segmentation and, finally, we analyze
the visualization tools that we designed to allow medical specialists to manipulate the 3D models
that were created in the previous steps. We provide an analysis of our results, comparing them with
other studies and looking to the future to see how computer vision, artificial intelligence, augmented
reality, and virtual reality will be used to improve medical practice. Our conclusions are provided in
the final section.
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2. Materials and Methods

Environment configuration was necessary to start programming (Section 2.1). Then, a web
platform to upload dicom files was designed (Section 2.2) and computer vision algorithms were
implemented for automatic segmentation (Section 2.3). Once we get a 3D model for segmented area
and different files have been saved (Section 2.4), a professional can visualize the result with an AR
platform and VR platform (Section 2.5).

2.1. Development Environment for Segmentation Module

Python 3.7 was used for applying the algorithm using mainly the Insight Segmentation and
Registration Toolkit (ITK) library [33,34]. Jupyter Lab [35] was employed for the graphical interface,
with the Itk-widget, which allows the visualization of 3D models using Visualization Toolkit (VTK)
in a browser, in Jupyter’s own environment. The distributions available in both the Python Pip and
Conda dependency managers do not present some of the wrappers necessary for the realization of our
algorithms. Therefore, to use specific modules, such as ITKVtkGlue, we compiled the ITK source code
using CMake and we implemented some wrappers to facilitate algorithm implementation.

For the ITK algorithms, encapsulations of the functions used were designed similar to those of
SimpleItk (library that encapsulates the ITK functions to facilitate their use). As some functions were
not available in SimpleItk, we compiled ITK instead of using this wrapper. Therefore, an environment
was configured, using the ITK and VTK libraries, for generating a set of artificial vision algorithms to
perform automatic segmentation of different anatomical structures, as represented in Figure 1.
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2.2. Acquisition of Medical Images

To prove that the artificial vision algorithms designed are reliable regardless of the radiological
result employed as input, we used a large number of computed tomography (CT) studies during
the implementation of our algorithms. Specifically, we used the Lung Image Database Consortium
and Image Database Resource Initiative (LIDC-IDRI) dataset so that the algorithms automatically
segmented and created a 3D model of each of the results. Seven medical imaging centers and eight
companies collaborated to create the LIDC-IDRI dataset, which contains 1018 cases (helical thoracic CT
scans) from 1010 patients [36,37].

Figure 2 depicts the images generated from one particular study, which, in this case, are merged
with a 3D representation in the form of the voxels of these images.

Using the Jupyter widgets and matplotlib tools, a layered visualization system was developed
with a slider so that the layers of the different segmentation steps could be interactively navigated in
the notebook. This allows the documentation of the segmentation steps and the detailed visualization
of the results of each layer to allow for rapid analysis. This interface is useful for checking the steps of
the segmentation and is partially shown in Figures 3 and 4. This development can help researchers in
the source code implementation process.
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2.3. Computer Vision Algorithms

Both ITK and VTK libraries were used to treat the medical images and for their visualization.
Our algorithms were designed using the different methods that these libraries provide. Note, these
methods do not segment by themselves; they are just computer vision algorithms that must be correctly
used to obtain a complete segmentation algorithm.

Some of the methods that have been used for filtering are: BinaryThresholdImage
Filter, ThresholdImage Filter, BinaryDilateImage Filter, BinaryErodeImage Filter,
BinaryMorphologicalClosingImage Filter, BinaryMorphologicalOpeningImage Filter, and
VotingBinaryIterativeHoleFillingImage Filter. Some methods used for noise reduction in medical images
are: GradientAnisotropicDiffusionImageFilter and MeanImageFilter. To perform operations with
binary images, some of the functions that we use are: AndImageFilter, OrImageFilter, XorImageFilter,
and SubtractImageFilter; these methods provide a code to perform the common operations: and, or,
xor and subtract. For working with regions, we use: RegionOfInterestImageFilter, ExtractImageFilter,
PasteImageFilter, and GetLargestPossibleRegion. We also work with labelmaps to determine the
details of groups inside a volume. For example, a group or labelmap could be a lung, stretcher,
or a group of voxels that represent some noise in the volume. We use the following methods
to work with labelmaps: BinaryImageToShapeLabelMapFilter, ShapeOpeningLabelMapFilter,
LabelMapToLabelImageFilter, LabelMapToBinaryImageFilter, GetNthLabelObject, GetNumberOfPixels,
GetNumberOfLabelObjects, GetBoundingBox, and RemoveLabelObject (the last five are methods inside
the LabelMap class). To apply a mask to a volume to segment a certain area, we use MaskImageFilter
and MaskNegatedImageFilter.

Researchers use ITK as an artificial vision library specialized in medical images to build our
segmentation algorithms, while VTK allows us to visualize images and volumes [38–41]. Both libraries
have been developed by Kitware (Clifton Park, NY, USA) and are used by many medical imaging
programs, such as 3DSlicer or Osirix.

As shown in the diagram in Figure 5, the designed process begins by reading a set of dicom files
from a computed tomography performed on a patient. The process ends with the segmentation results
being stored in .nrrd (Nearly Raw Raster Data), .obj, and .webm video formats. A set of alternative
data is generated, such as a histogram with the intensities in terms of Hounsfield unit (HU) values that
appear in the images.
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At this moment, the Nextmed platform segmentation module includes a CNN called Niftynet [17]
for the segmentation of spleen, kidney, gallbladder, esophagus, liver, stomach, pancreas, and duodenum.
The aim of this project is to include current research for automatic segmentation in the Nextmed
segmentation module so that we can use our own algorithms or existing ones.
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For the development of vision algorithms, we used different techniques, which can be summarized
in the following categories:

• Processed by thresholding: based on keeping the voxels whose intensities are within a fixed range,
and setting the rest to a fixed value that is interpreted as the background of the image. This process
is useful for separating structures when no different regions with similar intensities exist.

• Morphological processing: based on form, such as erosion and dilation.
• Geometric/positional processing: based on the relative or absolute position of elements.

2.4. 3D Reconstruction and Storage

Once the segmentation of an anatomical region is obtained, its binary mask is used to generate a 3D
mesh using VTK. To obtain this, we first created an isosurface from the volume using vtkFlyingEdges3D
as the main method. After that, we attempted to reduce the polygon size of the mesh using
vtkDecimatePro. Then, the number of polygons was reduced and a Laplace smoothing was applied
using vtkSmoothPolyDataFilter [42]. This smoothing moves each vertex to the middle position of the
adjacent vertices following Equation (1). Thus, a lighter mesh is generated that can be rendered in
devices of lesser power and occupies less space on the hard disk.

U(P) =
1
n

n∑
i=0

(Qi− P) (1)

where n is the number of adjacent vertices to node P, and Qi is each of those vertices. More explanations
of this algorithm are provided in a previous report [42].

In the next step of the process, this mesh is converted into an .obj file that can be printed using a
3D printer, which can be useful, for example, in cases where the creation of prosthesis for a patient is
being studied. Next, we generated a video with the segmentation overlapping each layer of the image
and going through the layers to quickly check for correct segmentation and for reproducing errors.
The video shows the result of the automatic segmentation, which is useful for detecting any possible
errors during the developmental phases of the algorithms.

Subsequently, a HU histogram is stored to be used as a guide in the case of any possible problems
or for future improvements to the algorithm. This histogram shows the Hounsfield values that were
detected in the image.

The next step is saving the segmentation produced in an .nrrd format, which allows storing all
layers in the same file, occupying less space than dicom, and being easier to handle due to its reduced
number of fields. We maintained the spatial position to show several anatomical regions (from the
execution of different segmentation algorithms) in their corresponding spatial positions simultaneously.

2.5. 3D Visualization Platforms

Unity3D was used as the graphical engine to develop the different versions of the Nextmed
visualization applications. This was achieved using C# language to program all the program logic,
as well as development patterns, such as the Model View Controller (MVC), which allow scripts that
do not change regardless of the version of the application in question (AR, VR, or personal computer)
to be kept together. For the AR version, we used the library provided by Vuforia that allows integration
with Unity3D. For the VR version, we used Oculus SDK. In addition, shaders were used, such as
multi-slice, for some of the functionalities implemented. Shaders consist of a source code associated
with a surface that specifies how the surface should be rendered; in this case, we used it to indicate
that one or more parts of a 3D model are not rendered. Web services running on Apache Tomcat and
a MySQL database for storing the necessary information were designed to create a cloud platform.
However, the cloud platform is being re-developed from scratch to create a highly scalable cloud,
using Angular [43] for web development, and Django [44] as the web framework, with OAuth 2.0
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authentication [45]. Some of these technologies are used by important organizations such as National
Aeronautics and Space Administration (NASA), as they allow the implementation of secure cloud
environments. We need this kind of security as we are storing medical data and we want to install this
project in hospitals next year.

3. Results

3.1. From dicom to 3D Models with Automatic Segmentation

The main result of this work is the ability to automatically segment different anatomical regions
and to provide tools for visualizing these results in three dimensions, using augmented and virtual
reality technologies.

We now focus on the automatic lung segmentation algorithm and examine the results obtained by
each of the phases of that algorithm. Whereas other algorithms [46,47] were developed to segment
lung nodules, we wanted to obtain the complete mesh of the lungs, thus we focused on obtaining the
complete structure without identifying other structures, such as the nodules.

We use the medical images resulting from LIDC-IDRI-0121 to explain the process. Slice number
100 will be shown, unless otherwise indicated, because the contour of the lung is perfectly appreciated
in this slice.

First, we have the original dicom image without any type of processing, as shown in Figure 6.
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Figure 6. (a) Original slice number 100 and (b) thresholded slice number 100 of LIDC-IDRI-0121.

In the next step, we applied a series of filters to remove the edges. We used the Hounsfield units
to select only those voxels from the regions in which we were interested, which was between the values
of −4000 and −400. The result of this threshold filtering is the mask that is shown in Figure 6b. We then
applied morphological filtering algorithms, such as erosion, whose formula is shown in Equations (2)
and (3). This consisted of eliminating voxels, by applying an erasure strategy based on the matching of
each voxel and its neighbors with a comparison matrix that we call kernel. Those voxels that, together
with their neighbors, form a matrix like the kernel, are eliminated. The developed algorithm uses a
matrix for the kernel with a spherical shape of radio equal to 10. The result is a three-dimensional
mask that we call MASK_01.

A ӨB = {z ∈ E|Bz ⊆ A} (2)

Bz = {b + z|b ∈ B}, ∀z ∈ E (3)

where we define the erosion of the binary image A by the structuring element B, where E is the
Euclidean space or an integer grid, A is a binary image in E, and Bz is the translation of B by vector z.

We removed the stretcher (group 3 in Figure 7a) only in the first slice by removing fine
contours as those that define the stretcher. To do so, we applied a hole filling algorithm using
VotingBinaryIterativeHoleFillingImageFilter (ITK). We had to obtain the best values for the parameters
of this filter to only remove the stretcher: 700 iterations and a radius of 2 pixels. Although it seems that
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three groups appear in the mask (Figure 7a), there are only two, as groups 1 and 3 are connected by the
first slice (where the stretcher was removed).
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Once the small groups that could appear due to the presence of noise, for instance, are eliminated,
the next step is eliminating groups whose dimension in the x- or y-axis coincides with the maximum
dimension of the image in the x- and y-axes, respectively. That is, group (1 + 3) is eliminated with only
the lungs remaining, obtaining a new 3D mask that we call MASK_02, as shown in Figure 8.
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Then, MASK_02 was applied to the original image, obtaining the volumetric image RES_01
(Figure 8). However, due to the morphological filtering algorithms applied in the previous steps,
such as erosion and dilation, the mask covers an area slightly larger than that of the lung. Thus,
we again needed to apply a threshold filter to improve the detail of the edges of the mask, producing
the new mask MASK_03. Figure 9 shows how, in the purple pixels, the mask covers a slightly larger
area than what is obtained after applying the threshold filtering.

Once we obtained the definitive mask MASK_03, we used this mask to generate the 3D mesh,
which can be exported to .obj or .stl format for printing and visualization in the augmented and virtual
reality platform. Finally, by applying MASK_03 to the original volume, we obtained a volume with the
lung completely segmented.

The images in Figures 10–12 show the segmentations obtained for the pulmonary lungs with and
without veins and arteries, as well as for the veins and arteries in isolation.
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Figure 11. Complete lung segmentation. (a): Binary mask; (b): DICOM with binary mask applied;
(c): DICOM with binary mask overlapped and highlighted.

For the evaluation of the results, we followed different phases. First, the development team
reviewed each result to improve the algorithm. Once the algorithms were adjusted and the segmentation
had more than 95% success, then all the results were studied by medical professionals of University
Hospital of Salamanca (Salamanca, Spain), who evaluated the segmentation process by examining 3D
models and the videos generated by the algorithms, studying the Hounsfield histogram to see if the
values coincide with those expected for a certain anatomical region. As a result, for the lung algorithm,
98% of the segmentation was correct, which is an excellent result in comparison to other successful
algorithms that produce 96% correct segmentations [46]. The only failures were due to scans with
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a very high level of noise, which caused the resulting 3D model to have some holes on the surface.
One lung segmentation algorithm result can be seen in Video S1. We have to highlight that the results
derived from other researches were obtained on more consistent numbers of images. For the next
phases, we will evaluate results with more images.
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Figure 13 shows images obtained using the Exposure Render program [48], with several filterings
of the segmented region of the lung with veins and arteries. The images correspond to a .mha file
obtained as a result of an automatic lung segmentation. The color map that transforms the intensities
of the Hounsfield scale into color was manually adjusted, so that veins and arteries can be observed
from a larger to a smaller scale.
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Upper left: complete lung with veins and arteries. Upper right: an enlargement of an area with a
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This filtering can be performed in real time in devices with less processing and rendering capacity
than a personal computer (PC), such as virtual reality glasses or smartphones, using augmented reality
techniques. This is important, as no specialized workstation is needed and anyone can perform filtering
using only a smartphone.

We created a Github repository for this project, where researchers can find the files indicated
above, at: https://github.com/arsoft-company/nextmed.

The processing time of the algorithm (lung) per result was an average of two minutes (Table 1
provides some examples). The processor used was an Intel i5 9600K (Inter Corporation, Santa Clara,
CA, USA) containing six nuclei that works at a maximum frequency of 4.6 GHz and with an L3 cache

https://github.com/arsoft-company/nextmed
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memory of 9 MB, accompanied by a RAM memory of 16 GB to 2400 MHz. All the values shown in Table 1
represent the time required to execute the full process: load dicom, segmentation, 3D reconstruction,
and saving all the results, including a video with all the images segmented, Hounsfield histogram,
.mha file, .nrrd file, and .obj file.

Table 1. Execution times for different anatomical structures, including segmentation, reconstruction,
and results storage.

CT Scan Region Segmented Execution Time Image Resolution Number of Slices

LIDC-IDRI-0001

lungs 6.94 s

512 × 512 133
lung vessels 1 min 23 s

trachea 11.4 s
spine 1 min 42 s
heart 2 min 18 s

LIDC-IDRI-0002

lungs 13.3 s

512 × 512 261
lung vessels 1 min 56 s

trachea 31 s
spine 3 min 25 s
heart 4 min 40 s

LIDC-IDRI-1004

lungs 25.3 s

512 × 512 529
lung vessels 3 min 16 s

trachea 1 min 28 s
spine 6 min 54 s
heart 10 min 2 s

The heart segmentation algorithm has to locate the spine first, which takes about seven minutes.
We had to locate the spine to improve the first versions of our algorithm, as the spine also appeared
near the heart. So, we segmented the spine and the heart, and then we subtracted to the second from
the first result, obtaining only the spine. This is the reason why our heart segmentation algorithm is
slow. We have to take into account that approximately 25% of the time is used for 3D reconstruction
and 5% is used for data storage. These times also depend on the hardware used.

Since artificial vision algorithms were implemented in this phase for lung segmentation and not
artificial intelligence and compute unified device architecture (CUDA) programming was used, it is
possible to improve the processing time [49]. CUDA programming is an architecture oriented toward
parallel computing, so that large amounts of code can run simultaneously to generate results in parallel.

3.2. Results Visualization

Once automatically segmenting an anatomical region was possible and the result of that
segmentation was converted into a smooth 3D mesh, the next step was to offer doctors the most
appropriate tools for visualizing the 3D model. For this purpose, Nextmed offers three different tools:
an augmented reality platform (Figure 14), one based on virtual reality (Figure 15), and a PC version
(Figure 16). The first two provide an innovative method for studying radiological results and allow the
full potential of the three dimensions to be exploited.

To view a 3D model, the doctor has to upload the dicom images to our cloud platform (Figures 17
and 18). A web application has been developed for this, allowing the doctor to select a patient,
a radiological study, and a set of segmentations. Once the dicom images are uploaded, a program will
segment them as soon as the CPU is available; as many segmentations can be performed simultaneously,
this program must decide what algorithms to run to avoid system errors due to CPU overhead. As soon
as the algorithms finish their execution, the generated 3D models will be available for the medical
professional to be visualized with augmented and virtual reality.
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Figure 18. Loading new dicom images to web platform selecting what anatomical regions should be
segmented and modeled.

In addition, the system offers the medical professional different functionalities to facilitate diagnosis
and to complete a pre-surgical study that can later be visualized during the surgery. An example
of these features is the multiple cut tool, which allows sections to be created only in certain regions,
while keeping the others intact. This is depicted in Figure 19, where different anatomical regions
automatically segmented from the same medical image are visualized simultaneously. As it is also
possible to capture screenshots and write notes for each screenshot, the medical professional can create
resources that can be visualized later during surgery. Even an augmented reality glass can be used
during surgery to see the 3D model of the patient and the notes, which is useful, as screen touching is
not required to interact with the visualization system due to hands recognition.



Sensors 2020, 20, 2962 14 of 19

Sensors 2020, 20, x FOR PEER REVIEW 14 of 20 

 

 
Figure 18. Loading new dicom images to web platform selecting what anatomical regions should be 
segmented and modeled. 

In addition, the system offers the medical professional different functionalities to facilitate 
diagnosis and to complete a pre-surgical study that can later be visualized during the surgery. An 
example of these features is the multiple cut tool, which allows sections to be created only in certain 
regions, while keeping the others intact. This is depicted in Figure 19, where different anatomical 
regions automatically segmented from the same medical image are visualized simultaneously. As it 
is also possible to capture screenshots and write notes for each screenshot, the medical professional 
can create resources that can be visualized later during surgery. Even an augmented reality glass can 
be used during surgery to see the 3D model of the patient and the notes, which is useful, as screen 
touching is not required to interact with the visualization system due to hands recognition. 

 
Figure 19. Visualization platform with a cutting sequence for the different anatomical regions of a 
patient. 

4. Discussion 

The work on the Nextmed project represents a qualitative leap in terms of the study of 
radiological results, mainly due to two important points. Firstly, we provide the possibility of using 
automatic segmentation in the daily work of medical professionals, and secondly, we allow the 
industrialized visualization and manipulation of 3D models (not a specialized method for specific 
cases) using any computer or mobile device, through the use of augmented and virtual reality. 

Figure 19. Visualization platform with a cutting sequence for the different anatomical regions of
a patient.

4. Discussion

The work on the Nextmed project represents a qualitative leap in terms of the study of radiological
results, mainly due to two important points. Firstly, we provide the possibility of using automatic
segmentation in the daily work of medical professionals, and secondly, we allow the industrialized
visualization and manipulation of 3D models (not a specialized method for specific cases) using any
computer or mobile device, through the use of augmented and virtual reality.

Until now, systems have been designed to visualize a specific 3D model using these techniques, and
many of them are used only for training purposes [50–57]. However, the future of these technologies
in the medical sector will be to use them for all radiological results obtained from patients and not only
for specific cases. This is precisely the objective of Nextmed: to bring the advantages of augmented
and virtual reality to all hospitals, since the tools for doing so are now in place—any computer or
phone, as well as augmented and virtual reality glasses.

Therefore, the chief difference of this project from other similar works is that Nextmed has been
developed with the idea of using these technologies in a hospital setting and on a daily basis. Whereas
other studies [5–12] focused more exclusively on segmentation algorithms, this work includes these
algorithms as part of a complete platform that addresses other issues. In relation with previous
publications regarding the Nextmed project [32], main novelties are that the system has now been
tested in greater detail by professionals from Salamanca Hospital, including radiologists, surgeons,
and other specialists, as we wanted to obtain feedback from different points of view. In addition,
a cloud platform has been designed and visualization platforms now have new functionalities.

Although many workstations and segmentation programs, such as 3D Sclicer or Osirix, include
semi-automatic segmentation techniques, up to three hours may be required to obtain proper lung
segmentation. Automatic segmentation therefore provides a considerable improvement, being able to
complete the process in just a few minutes or even a few seconds, if using the right hardware. Table 1
lists the times required for our algorithms to produce different radiological results, improving the
results of other algorithms [46,47].

The central aspects of this work can be summarized in the following points:

(1) Different anatomical structures can be automatically segmented and a 3D model can be generated
in any computer (a workstation is not necessary).

(2) A tool is offered to physicians to visualize medical images in 3D with three different versions:
augmented, virtual reality, and computer.

(3) All algorithms were tested using more than 1000 dicom images from computed tomography.
(4) This technology was prepared for its implementation in the daily work of radiologists and

specialists, as the entire process is automated.
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(5) This work has given rise to the Nextmed project, which is currently still in progress.

Future Work

In the future, compatibility with nrrd and dicom files in the augmented and virtual display
platforms could be considered, which would allow them to interact with volumes of voxels, as well
as with meshes. This would involve the introduction of the VTK library in the graphic engine
provided by Unity3D, which would allow the voxels of a dicom or nrrd image to be rendered in
real time and enhance the doctor’s ability to study a particular region. For example, areas could be
manually isolated based on the Hounsfield units using a similar method to traditional programs for
processing medical images. To achieve this, OpenGL can be used to render images using VTK inside
the Unity3D environment.

Over the coming years, AI will change diagnostic methodology via radiological results. This will
allow medical professionals to analyze radiological results and to improve the existing visualization
techniques. The use of artificial intelligence to support artificial vision algorithms during automatic
segmentation would allow the segmentation processes to learn over time, obtaining increasingly better
results. AI also offers the possibility to employ automatic diagnostic techniques. In some cases, the use
of AI has already been successful [58], such as detecting metastasis [59], diabetic retinopathy [60],
or predicting cardiovascular risk factors [61].

Therefore, the inclusion of these AI techniques will allow the physician to study medical images
more efficiently and to take advantage of a first analysis to recognize alterations that could be
otherwise overlooked. For example, including a nodule identification module software with AI could
be interesting.

5. Conclusions

Medical professionals state that non-intrusive access to 3D models through the use of augmented
reality glasses during surgery could provide a significant additional advantage over traditional
workstations. Notes and images taken during the pre-surgical study are easily accessible, which is of
interest to surgeons, who cannot touch anything during surgery.

The noise that appears in many medical images poses a challenge for the artificial vision algorithms
at the time of segmenting certain regions. Nevertheless, the devices used to create these images are
becoming increasingly precise, which is why the number of cases with a sufficient amount of noise to
produce unsatisfactory segmentation results is much lower. In some cases, this is less than 1%, which
is why we can say that this does not pose a problem for automatic segmentation.

The application of binary masks has been useful for the development of segmentation algorithms;
however, creating masks that perfectly demarcate the regions is difficult. This could be enhanced by
applying AI techniques that improve this delimitation based on learning. One of the objectives for
which different files are generated during the segmentation process (see Section 2.4) is that, in the
future, these files can be used to train a neural network.

Studies have detected variations in the dicom with respect to the 3D mesh, due to the conversion
process [57]. Although the generated 3D models faithfully reflect the results visible in the medical images,
the minimization of this error must be considered a priority, since precision is a fundamental factor.

In the future, doctors and radiologists will use augmented and virtual reality to study medical
images on a routine and daily basis. However, to achieve this, a 3D model of the anatomical area of
interest must be affordably generated. As such, we must continue to progress the implementation of
automatic segmentation techniques that may be applicable for all types of cases. In this study, we also
focused on medical images obtained from computed tomography, but it is necessary to continue with
research that includes compatibility with magnetic resonance.

Supplementary Materials: The following are available online at https://github.com/arsoft-company/nextmed.
Video S1: Arsoft_AutomaticLungSegmentation.mp4, and other related resources.
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