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Abstract: An adaptive beamformer is sensitive to model mismatch, especially when the desired
signal exists in the training samples. Focusing on the problem, this paper proposed a novel adaptive
beamformer based on the interference-plus-noise covariance (INC) matrix reconstruction method,
which is robust with gain-phase errors for uniform or sparse linear array. In this beamformer, the
INC matrix is reconstructed by the estimated steering vector (SV) and the corresponding individual
powers of the interference signals, as well as noise power. Firstly, a gain-phase errors model of the
sensors is deduced based on the first-order Taylor series expansion. Secondly, sensor gain-phase
errors, the directions of the interferences, and the desired signal can be accurately estimated by
using an alternating descent method. Thirdly, the interferences and noise powers are estimated by
solving a quadratic optimization problem. To reduce the computational complexity, we derive the
closed-form solutions of the second and third steps with compressive sensing and total least squares
methods. Simulation results and measured data demonstrate that the performance of the proposed
beamformer is always close to the optimum, and outperforms other tested methods in the case of
gain-phase errors.

Keywords: robust adaptive beamformer; INC matrix reconstruction; sensor gain-phase errors;
compressed sensing

1. Introduction

Adaptive beamforming, which can enhance the signal of interest (SOI) while suppressing
interferences automatically, is a data-dependent method and is widely applied in the fields of array
signal processing, including radar, sonar, and wireless communication, etc. [1–4]. The standard
Capon beamforming is one of the well-known types, which can achieve the optimum output
signal-to-interference-plus-noise ratio (SINR) under ideal conditions without any model mismatches.
Yet in a practical radar system, various non-ideal factors are inevitable to exist, such as sensor gain-phase
errors, the sample covariance matrix contains the SOI and sensor failure (referred to as “sparse array”),
etc. Therefore, in the past decades, various robust adaptive beamforming (RAB) methods have been
proposed for improving the robustness of the Capon beamformer, which can be divided into the
following two major types:

The first type is non-reconstruction approaches, directly using the sample covariance matrix
(SCM) to calculate the adaptive weights, including the diagonal loading (DL) algorithms [5,6], the
shrinkage algorithms [7], the worst-case-based (WCB) algorithms [8], and the eigenspace-based (ESB)
algorithms [9,10]. Among them, the DL algorithms are one of the most widely used robust techniques
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by adding a diagonal parameter matrix to the sample covariance matrix, while the optimal DL factors
are hard to determine in different scenarios. The WCB algorithms can avoid the SOI self-cancellation
with a constraint, but the output performance is very sensitive to the accuracy of presumed prior
knowledge of the steering vector (SV). Unfortunately, the required uncertainty of estimation is hardly
satisfied in the actual system. The ESB algorithms are proposed to reduce the SV mismatches of the SOI,
via projecting the desired SV into the signal-plus-interference subspace of the SCM. However, it will
suffer severe performance degradation at a low signal-to-noise ratio (SNR). In [11], a new beamformer
design problem is studied with limited prior knowledge, which is very robust for the pointing errors.

The second type is INC matrix reconstruction approaches, which can completely eliminate the SOI
from the SCM and is first proposed by Gu [12]. In [12], the INC matrix is reconstructed by integrating
over the complement sector of the SOI angular sector, while the SOI SV is estimated by solving a
quadratically constrained quadratic programming problem. On this basis, Shen proposed two novel
types of beamformers based on the INC matrix reconstruction and the SV estimation of the SOI [13,14].
They can acquire excellent robustness in the case of existing pointing errors and limited snapshots.
By exploiting the sparsity of the signals in the whole angle sector, a low-complexity reconstruction
method is proposed in [15]. It effectively reduces the computational complexity while taking into
account the robustness of the algorithm. In [16], the INC matrix is reconstructed by combining a
p-shrinkage operator and alternating direction method, which can achieve good performance with
only single snapshot.

Nevertheless, the above methods are under the assumption that the array model is ideal. In a
practical system, the array model is often unpredictable in advance because of the existing sensor gain
and phase errors, which could significantly degrade the beamformer performance. In [17,18], adaptive
beamforming methods are proposed with the self-calibration technique of sensors gain-phase errors,
but they are very sensitive to the SV mismatches when SNR is high. In [19], an expanded robust capon
beamformer is presented, which improves the robustness against the array model errors. However, the
method suffers serious performance degradation when the errors are large. Recently, a self-calibration
RAB algorithm is proposed in [20], which allows the INC matrix to be reconstructed effectively when
sensor gain-phase errors are calibrated beforehand. Unfortunately, it is only suitable for a uniform
linear array (ULA) and requires that the partial sensors errors are accurately known.

In this paper, a novel adaptive beamformer with broad robustness is proposed to overcome the
previous works limitations. The beamformer can be simultaneously suitable for the problems of
the ULA, the sparse array, the gain-phase errors of the sensors, the training samples containing the
SOI and the pointing errors. The major contribution of this work is presented in the following three
aspects. To eliminate the influence of the gain and phase errors, an error model of the array SV is
first formulated with the sparse representation of the signal and first-order Taylor series expansion.
Then, the calibration coefficients, the SVs of the SOI and interferences can be jointly estimated using an
alternating descent method. Meanwhile, the Gerschgorin disks estimation method is employed to
obtain the number of signals. After array calibration, a quadratic optimization problem is established to
accurately solve the interferences power coefficients. In order to reduce the computational complexity,
the closed-form solution is derived with compressed sensing (CS) and total least squares (TLS)
methods. Finally, the INC matrix can be reconstructed as a linear combination of the products of the
interference SVs and the corresponding powers. The trials of simulation and the real data measured by
high-frequency surface wave radar (HFSWR) are designed to express the effectiveness and superiority
of the proposed algorithm.

The rest of this paper is organized as follows. The sparse signal model and some necessary
background are given in Section 2. Section 3 outlines the proposed gain and phase errors model of the
sensors and the corresponding self-calibration method, the estimation method of sources number, SVs,
and powers of the SOI and interference, and the sparse reconstruction algorithm of the INC matrix. In
Section 4, numerical simulations are presented. The verification of the measured data is designed in
Section 5. The conclusions are drawn in Section 6.
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2. Signal Model

2.1. Sparse Signal Model

Considering a uniform linear array composed of M sensors with inter-element spacing d. Let
K + 1 far-field narrow-band signals (one SOI and K interferences) impinge on the ULA. The array
observation vector at the t-th snapshot can be formed as:

x(t) =
K∑

k=0

a(θk)sk(t) + n(t) = A(θ)S(t) + n(t) t = 1, 2, · · · , T, (1)

where A(θ) = [a(θ0), a(θ1), · · · , a(θK)] is the array manifold matrix, S(t) = [s0(t), s1(t), · · · , sK(t)]
T

denotes the corresponding signal complex envelops, n(t) is the additive white Gaussian noise, T
indicates the number of sampling snapshots. a(θk) is the ideal SV at the direction θk, which can be
expressed as:

a(θk) =
[
1, e− j 2πd

λ sin(θk), · · · , e− j(M−1) 2πd
λ sin(θk)

]T
, (2)

where λ denotes the signal wavelength. Assuming the situation that the number of signals is less than
the number of sensors. The signals can be considered to be sparse when the directions of signals only
occupy certain isolated points in the observation angles. Let Q indicates the number of the grid, all the
signals are on the grids. Suppose the entire angle space covers from −90◦ to 90◦, and is divided into Q
equal grids with 1◦ spacing. Now, the new array manifold matrix (called as dictionary) A, and signal
complex envelops can be respectively redefined as:

A =
[
a(θ1), a(θ2), · · · , a(θQ)

]
(3)

S(t) =
[
01, 02, · · · , s0(t), · · · , 0, sK(t), · · · 0Q

]T
. (4)

It is clear that signal sparsity is satisfied because few non-zero value exists in the S(t). The
observation vector can be rewritten as x(t) = AS(t) + n(t). When the receiving array is sparse, that is,
only D(D < M) array elements can be used to sample the space signals, other elements are invalid.
Considering the failure elements are randomly distributed in the receiving array, now, the sparse
observation vector can be obtained by setting the corresponding rows to zero from the observation
vector of the full array.

2.2. Adaptive Beamforming

The output of the adaptive beamformer is defined as:

y(t) = wHx(t), (5)

where w is the adaptive weight vector. The optimal weight vector w can be obtained based on the
maximum output signal-interference-noise-ratio criterion, which is mathematically equivalent to the
following optimization problem:

min
w

wHRi+nw subject towHa(θ0) = 1, (6)

where H denotes Hermitian transpose, Ri+n is the ideal INC matrix, θ0 indicates the true direction of
the SOI. The optimal solution of the above problem can be written as:

w =
R−1

i+na(θ0)

a(θ0)
HRi+na(θ0)

. (7)
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In the practice, since the true direction θ0 of the SOI and the ideal INC matrix Ri+n are unavailable,
they are generally replaced by the nominal direction and the SCM R̂ =

∑T
t=1 x(t)xH(t)/T respectively.

As T→∞ , the SCM will converge to the ideal INC matrix. However, when the number of sampling
snapshots T is small, there is a large difference between Ri+n and R̂. At this time, the beamformer
performance will be severely degraded when the SCM contains the SOI or there is an SV mismatch
problem. Besides, [15] shows that the gain-phase errors of the sensors can further aggravate the
mismatch problem.

3. Proposed Algorithm

3.1. Gain and Phase Error Model

In the presence of gain and phase errors, the predefined dictionary cannot effectively represent
the exact array manifold, which will seriously degrade estimation performance of signal SVs. In this
section, we focus on establishing a model of the gain and phase errors. Considering the gain and phase
uncertainties are spatially invariant and time-invariant, now, the observation vector can be defined as:

z(t) = GAS(t) + n(t) (8)

G = diag
{
δg1e jδϕ1 , δg2e jδϕ2 , · · · , δgMe jδϕM

}
, (9)

where diag{·} indicates the diagonal matrix, δgm and δϕm denote the gain and phase errors at m-th
sensor, respectively. Let the first sensor be the reference sensor, that is, δg1 = 1 and δϕ1 = 0.

In order to simultaneously estimate the true directions of the signals and gain-phase errors, as
stated in [17], we convert the SVs with the errors into a sum of the true SVs and gain-phase errors.
Based on the first-order Taylor series expansion, the transformation expression can be shown as:

Ga(θk) = a(θk) + diag
{
a(θk)

}
∆, (10)

where diag
{
a(θk)

}
∆ expresses the error term, ∆ is an M-dimensional complex vector that can be

given by:
∆m = δgm + jδϕm + jδgmδϕmm = 1, 2, · · · , M. (11)

Thus, after conversion, the observation vector can be rewritten as:

z(t) = AS(t) +
[
∆1, ∆2, · · · , ∆Q

]
�AS(t) + n(t) = (A + P)S(t) + n(t). (12)

Because the gain and phase errors independent of directions of the signals, thus, we can obtain:

∆1 = ∆2 = · · · = ∆Q = ∆, (13)

where � is the Schur–Hadamard product. It is noticed that the true signal SVs, gain and phase errors
can be estimated when the P and S(t) are precisely solved.

3.2. The Estimation of the Gain-Phase Errors and Signal SVs

3.2.1. Gain Errors Estimation

The SCM can be computed with the T data snapshots with R̂ =
∑T

t=1 z(t)zH(t)/T, which can be
eigen-decomposed as:

R̂ =
M∑

m=1

γmumuH
m, (14)
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where γm indicates the eigenvalues arranged in descending order, um denotes the corresponding
eigenvector. The largest K + 1 eigenvalues

{
γm

}K+1
m=1 are signal eigenvalues, the others

{
γm

}M
m=K+2 are

noise eigenvalues.
Then, the estimated noise power can be given as:

σ̃2
n =

1
M−K − 1

M∑
m=K+2

γm. (15)

Define R̂(m, m) as the m-th diagonal element of R̂. Gain errors can be obtained by [21]:

δgm =

√
R̂(m, m) − σ̃2

n

R̂(1, 1) − σ̃2
n

m = 1, 2, · · · , M. (16)

3.2.2. The Estimation of Phase Errors and Signal SVs

After calibrating the gain errors, the phase errors and signal SVs can be acquired by solving the
sparsity regularized problem [22]:

min
S(t),P
‖P‖2F + ‖z(t) − (A + P)S(t)‖22 + ε‖S(t)‖1, (17)

where ε > 0 is the regular parameter. The alternating descent method can be utilized to effectively
solve Equation (17). Then, the above problem can be separated out two sub-optimization problems.

First, fixing error term P, where i denotes the iteration indicator, the first sub-problem of
Equation (17) can be formulated as:

argmin
Si(t)

‖Si(t)‖1

s.t.‖z(t) −
(
A + Pi−1

)
Si(t)‖

2

2
≤ ζ

(18)

where ζ is a presupposed threshold, the initial error term P0 = 0M×Q. It is noticed that Equation (18) is
completely consistent with the CS model. Hence, the Si(t) can be estimated by the greedy methods,
here, we use the SOMP (Simultaneous Orthogonal Marching Pursuit) method. Then, substituting the
estimated Si(t) into Equation (17). The second sub-problem is defined as:

Pi = min
P
‖Pi−1

‖
2
F + ‖z(t) −

(
A + Pi−1

)
Si(t)‖

2

2
. (19)

The close-form solution of the quadratic problem (19) can be obtained by making its first-order
derivative equal to be zero, which can be expressed as:

Pi =
[
z(t) −ASi(t)

](
Si(t)

)T
[
I + Si(t)

(
Si(t)

)T
]−1

, (20)

where I denotes the identity matrix. The algorithm circularly implements between Equations (18) and
(20). Its stop condition is ‖Si(t) − Si−1(t)‖2 ≤ ς or the maximum iteration number. Thus, all error terms
Pk and the SVs a(θ̃k), k = 0, 1, · · · , K of the signals can be obtained according to the location of the
sk(t) in Si(t). The θ̃k is the angle corresponding to the estimated grid position where the k-th signal is
located. Because the gain errors have been calibrated, the estimated phase errors of the k-th signal at
m-th sensor can be expressed as:

δϕk,m = − j×
(
Pk,m/Ak,m

)
m = 1, 2, · · · , M. (21)
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Finally, the phase error of the m-th sensor is given as:

δϕm =

K∑
k=0

δϕk,m

K + 1
m = 1, 2, · · · , M. (22)

Therefore, the compensation matrix is:

E = diag
{

1
δgm

e− jδϕm

}
m = 1, 2, · · · , M. (23)

3.2.3. The Estimation of Signal Number

In the above method, the sparsity of the signals should be previously estimated. For decades,
various estimation methods of source number have been proposed, such as, the MDL [23], the AIC [24],
and the GDE [25]. Among these type methods, the GDE can work efficiently in the situations of low
SNR and measured data. Therefore, the GDE is utilized here to estimate the number of the signals.
Construct a new covariance matrix, which can be written as:

Rc =

[
R̂1 r
rH R̂MM

]
, (24)

in which R̂1 is a front principal submatrix of R̂ with dimension of (M− 1) × (M− 1), r is an (M− 1)
dimension vector at the last column of R̂ without last element, R̂MM denotes the element at the last
row and column of R̂. Now, a crucial transformation matrix Tc can be constructed as:

Tc =

[
U1 0
0T 1

]
, (25)

where U1 indicates an (M− 1) × (M− 1) unitary matrix, it can be obtained by eigen-decomposing the
submatrix R̂1. The corresponding diagonal matrix Λc is given as:

Λc = diag
{
λ1,λ2, · · · ,λM−1

}
, (26)

where λ1 ≥ λ2 ≥ · · · ≥ λM−1. Then, the transformed covariance matrix as follows:

TH
c RcTc =

[
UH

1 R̂1U1 UH
1 r

rHU R̂MM

]
=

[
Λc ρ
ρH R̂MM

]
=



λ1 0 · · · 0 ρ1

0 λ2 · · · 0 ρ2
...

...
...

0 0 · · · λM−1 ρM−1

ρ∗1 ρ∗2 · · · ρ∗M−1 R̂MM


, (27)

where ρ = UH
1 r = [ρ1,ρ2, · · · ,ρM−1]

T, the number of signals K + 1 can be calculated by the
GDE criterion:

ε(n) =
∣∣∣ρn

∣∣∣− τ
M− 1

M−1∑
m=1

∣∣∣ρm
∣∣∣, n = 1, 2, · · · , L− 2, (28)

where τ ∈ [0, 1] denotes a regular factor. The number of the positive value in ε(n) is the number
of signals.
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3.3. INC Matrix Reconstruction

Here, according to the definition of the INC matrix proposed by Gu [15] and the angle sparsity of
the interferences, the new INC matrix can be reconstructed as:

R̃I+N =
K∑

k=1

σ̃2
ka(θ̃k)aH(θ̃k) + σ̃2

nI, (29)

where a(θ̃k) is the SV of the k-th interference obtained from Section 3.2. σ̃2
k denotes the

corresponding power value, which can be accurately estimated by solving the following quadratic
optimization problem:

min‖∆υ‖22 + ‖Rv − Ã(v + ∆υ)‖
2
2, (30)

where υ =
[̃
σ2

0, σ̃2
1, · · · , σ̃2

K

]T
denotes the estimated powers corresponding to the SVs matrix Ã, ∆υ

indicates the difference between the estimated signal powers with the true values. Rv = vec
(
ER̂EH

)
, Ã =[

vec
(
a(θ̃0)aH(θ̃0)

)
, vec

(
a(θ̃1)aH(θ̃1)

)
, · · · , vec

(
a(θ̃K)aH(θ̃K)

)]
, where vec(·) is a vectorization operation,

i.e., stacking all columns of a matrix on top of another, ER̂EH indicates the SCM R̂ is calibrated with
the compensation matrix E.

To eliminate the noise uncertainties term, based on the TLS theory, the closed-form solution of
Equation (30) can be expressed as:

v =
(
Ã

H
Ã− ς2I

)
Ã

H
b, (31)

where ς2 is the minimum eigenvalue of the matrix
[
Ã
∣∣∣∣b]H[

Ã
∣∣∣∣b], b = vec

(
ER̂EH

− σ̃2
nI

)
. Now, the new

INC matrix can be obtained according to Equation (29).
The proposed adaptive weight vector is:

w0 =
R̃
−1
i+na

(
θ̃0

)
a
(
θ̃0

)H
R̃i+na

(
θ̃0

) , (32)

where θ̃0 is the estimated direction of the SOI from Section 3.2.

3.4. Algorithm Procedure

The proposed algorithm is summarized in Algorithm 1:

Algorithm 1 The proposed robust adaptive beamformer

Step 1. Estimate the sensor gain errors by Equation (16).
Step 2. Estimate the number of signals by Equation (28).
Step 3. The gain errors should be calibrated beforehand. When the iteration is terminated, calculate the
directions of arrival (DOAs) of the signals and the phase errors of the sensors by (18) and (22), respectively. The
signal DOAs can be obtained by finding the peak in the Si(t).
Step 4. Calculate the calculation matrix using (23).
Step 5. Estimate interference powers by Equation (31) after compensating the gain and phase errors.
Step 6. Calculate the INC matrix with Equation (29).
Step 7. The weight vector is calculated by (32).
Step 8. The output signal after RAB processing can be obtained by (5).
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4. Simulations

In this section, considering uniform linear array is composed of 10 omni-directional sensors
spacing at half-wavelength. The gain errors

{
δgm

}M
m=1 and the phase errors

{
δϕm

}M
m=1 of the array are

respectively generated by:
δgm = 1 +

√

12δgβm, δϕm =
√

12δϕηm, (33)

where βm and ηm denote the independent and identically distributed random variables that are
uniformly distributed at [−0.5, 0.5], δg and δϕ indicate the standard deviations of δgm and δϕm,
respectively. One SOI and two interference sources are assumed from directions 0◦, −25◦, 35◦,
respectively. In each sensor, the interference-to-noise ratio (INR) is set as 30 dB. The additive noise
is spatially white Gaussian process. The norm direction of the SOI is equal to 2◦, i.e., there is a 2◦

pointing error between the true and norm directions of the SOI. The random gain-phase errors and
noise change from run to run while the other parameters are fixed. In the experiments below, δg = 0.2
and δϕ = 10, the number of Monte Carlo trials is 300 for every scenario.

The performance of the proposed algorithm is compared to the RC beamformer (RCB) [5], where
the uncertainty parameter ε = 3.25 is chosen; error compensation-based beamformer (ECBB) [18];
reconstruction-based beamformer (RBB) [13], the Gu’s beamformer [12], and the expanded RC
beamformer (ERCB), where ε = 0.6 is commended in [19]. For the RBB’s and Gu’s beamformers,
the angular sector of the SOI is supposed to be ΘS = [−5, 5], the corresponding complement sector
is ΘI = [−90, 5) ∪ (5, 90], the integral interval is 1. The maximum iterations number is 100 for the
proposed beamformer.

4.1. Performance Analysis of the Gain and Phase Errors

In the first test, the calibration performances of the gain and phase errors of the sensors are
analyzed. Let one signal be incident on the array, the SNR is set as 20 dB. The DOA of the signal is 10◦,
the number of snapshots is 20. The estimated bias is defined as:

bias =
1
T

T∑
t=1

(|vt − vt|/vt), (34)

where T is the number of snapshots, vt and vt respectively denote the true values and the estimated
ones. From Figure 1, it can be clearly seen that the estimated results of our algorithm is very closed to
the true ones and has high accuracy.
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4.2. Beampatterns Analysis of the Sparse Array

The normalized beampatterns of the different conditions are shown in Figure 2 with SNR = 20 dB
and snapshots T = 100. Here, we mainly compare the following four cases: full array without
calibration, the proposed beamformer for full array, the proposed beamformer for sparse array
(randomly selected 8 sparse elements, such as 1,3,4,5,7,8,9,10), the ideal Capon beamformer with full
array. By contrast, we can know that the beampatterns of the proposed beamformer is very close to the
ideal beamformer while the first side-lobe increases 3 dB. In addition, the proposed beamformer can
effectively solve the problem of sparse array, which mainly owes to the joint application of CS and
sparse reconstruction methods.
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4.3. Output SINR Against SNR

Assume that the signals are incoherent sources when signal frequencies are different between each
other, i.e., fi , f j

{
i , j

}
∈ [0, 1, · · · , K]. On the contrary, the signals are considered to be coherent sources.

In this experiment, the output SINR performance versus the input SNR is investigated. The SNR
varies from −30 to 35 dB. The number of snapshots is fixed to be 50. Figure 3a shows the comparison
result of the output SINR in the situation of the incoherent signals. It is found that the performance
of the proposed beamformer is very close to the optimal value in a wide range of input SNR. It can
be seen from Figure 3b, the output SINR of the proposed algorithm has the same performance as the
incoherent case. In the coherent situation, the proposed beamformer has at least 4 dB improvement
over the other tested beamformers when the input SNR is higher than −5 dB. The output SINRs of
Gu’s and RCB’s beamformers are severely degraded, this is mainly because the Capon technology
cannot effectively distinguish coherent sources.
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4.4. Output SINR Against the Number of Shapshots

In this test, the output SINR against the number of snapshots is investigated. The number of
snapshots changes from 10 to 100. The input SNR is fixed to be 15 dB. It can be seen from Figure 4 that
the convergence rates of the proposed beamformer are almost the same in the coherent and incoherent
cases. Compared to the optimal beamforming, the output SINRs are only 0.7–1.3 dB loss. The proposed
beamformer has much better performance than the other beamformers when the number of snapshots
varies from 10 to 100, especially for the coherent sources.
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5. Validation of the Measured Data

As shown above, the robustness of the proposed algorithm has been verified by the various
simulations. In the practical system, robust adaptive beamformer is usually applied to suppress
the side-lobe interference, while the gain and phase errors of the sensors can seriously degrade the
mitigation performance. Hence, we focus on further analyzing its robustness with the measured
HFSWR data in this section. As stated in [8–10], there are two issues that have a significant influence on
the output SINR of the RAB. The first one is the interference suppression performance; the second one
is the ability of preventing target self-cancellation. In the following, we will explore the performance
of the proposed algorithm aiming at the above problems.

5.1. Analysis of Estimation Accuracy of Interference and Noise

The measured range-Doppler spectrum of radio interference with HFSWR is shown in Figure 5a,
which covers all the range bins above 25th bins. The number of snapshots is set as 20, the training
samples are selected in range dimension of the interference area. From Equation (29), we can know, the
reconstruction effectiveness of the INC matrix depends on the estimation precision of interference and
noise. In this test, we determine the validity of the proposed Equation (30). In Figure 5b, the blue line
expresses the statistical average of all channel data at the 100th range bin, the normalized interference
power is about −53 dB, the noise power changes from −85 to −70 dB; the red line is the correspondingly
estimated value based on Equation (30). It can be seen from Figure 5b, the estimated interference
power equal to the measured value, two kinds of noise level are nearly equal. This shows the proposed
reconstruction method of the INC matrix is still effective for the measured gain and phase errors.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 16 

 

mitigation performance. Hence, we focus on further analyzing its robustness with the measured 
HFSWR data in this section. As stated in [8–10], there are two issues that have a significant influence 
on the output SINR of the RAB. The first one is the interference suppression performance; the second 
one is the ability of preventing target self-cancellation. In the following, we will explore the 
performance of the proposed algorithm aiming at the above problems. 

5.1. Analysis of Estimation Accuracy of Interference and Noise 

The measured range-Doppler spectrum of radio interference with HFSWR is shown in  
Figure 5a, which covers all the range bins above 25th bins. The number of snapshots is set as 20, the 
training samples are selected in range dimension of the interference area. From Equation (29), we can 
know, the reconstruction effectiveness of the INC matrix depends on the estimation precision of 
interference and noise. In this test, we determine the validity of the proposed Equation (30). In Figure 
5b, the blue line expresses the statistical average of all channel data at the 100th range bin, the 
normalized interference power is about −53 dB, the noise power changes from −85 to −70 dB; the red 
line is the correspondingly estimated value based on Equation (30). It can be seen from Figure 5b, the 
estimated interference power equal to the measured value, two kinds of noise level are nearly equal. 
This shows the proposed reconstruction method of the INC matrix is still effective for the measured 
gain and phase errors. 

 
(a) 

 
(b) 

Figure 5. The estimated result with the measured HFSWR data: (a) Range-Doppler spectrum; (b) 
Doppler profile at the 100th range bin. 

-4 -2 0 2 4 6 8

Doppler (Hz)

-100

-90

-80

-70

-60

-50

O
ut

pu
t (

dB
)

Channel mean value of the measured interference and noise

The estimated value of interference and noise

Figure 5. The estimated result with the measured HFSWR data: (a) Range-Doppler spectrum;
(b) Doppler profile at the 100th range bin.



Sensors 2020, 20, 2930 13 of 15

5.2. Performance Analysis for Interference Mitigation and Precenting Target Self-Cancellation

This section quantitatively analyzes the abilities of interference suppression and preventing target
self-cancellation of the proposed algorithm. Therefore, a simulated target with the same Doppler is
injected into the interference. A locality enlarged spectrum of Figure 5a in the injected target position
is shown in Figure 6a, the pointing error is still 2◦. The detailed target and interference parameters
are given in Table 1. In the corresponding area, the mitigation result with the proposed algorithm is
shown in Figure 6b, which shows that the interference is significantly suppressed. Figure 6c displays a
Doppler frequency profile at the 150th range bin after mitigation. It can be seen from Figure 6c, the
targets only lose 0.3 dB while the interference is nearly mitigated 14 dB. In conclusion, the proposed
method not only excellently suppresses interference, but well preserves target power.
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Table 1. Target and interference parameters.

Target and Interference Range Bin Doppler Angle Input Power Output Power

Interference 23th–200th 4.923 Hz 9◦ −49.82 dB −63.53 dB
Target1 150th 4.923 Hz −20◦ −52.20 dB −52.51 dB

6. Conclusions

In this paper, based on the sparse reconstruction method of the INC matrix, we propose a novel
robust adaptive beamformer against sensor gain and phase errors for a full and sparse array. In order
to eliminate the influence of sensor gain and phase errors, we derive an error model. On this basis, the
SVs of signals and the errors can be accurately estimated. The accurate powers of the signals and noise
can be obtained by solving a quadratic problem after the errors are calibrated. The simulation results
demonstrate that when the input SNR is higher than −5 dB, the output SINR of the proposed method
has at least 4 dB improvement than the other tested ones in the coherent case. The measured data show
that the interference is mitigated about 14 dB, but the target only losses 0.3 dB. From the measured
results, we can know that our algorithm not only can effectively suppress the real radio interference,
but can significantly avoid the self-cancellation of the SOI.
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