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Abstract: This article examines autonomous reconnaissance in a complex urban environment using 
unmanned aerial vehicles (UAVs). Environments with many buildings and other types of obstacles 
and/or an uneven terrain are harder to be explored as occlusion of objects of interest may often 
occur. First, in this article, the problem of autonomous reconnaissance in a complex urban 
environment via a swarm of UAVs is formulated. Then, the algorithm based on the metaheuristic 
approach is proposed for a solution. This solution lies in deploying a number of waypoints in the 
area of interest to be explored, from which the monitoring is performed, and planning the routes 
for available UAVs among these waypoints so that the monitored area is as large as possible and 
the operation as short as possible. In the last part of this article, two types of main experiments based 
on computer simulations are designed to verify the proposed algorithms. The first type focuses on 
comparing the results achieved on the benchmark instances with the optimal solutions. The second 
one presents and discusses the results obtained from a number of scenarios, which are based on 
typical reconnaissance operations in real environments. 

Keywords: autonomous aerial reconnaissance; collective perception; metaheuristic algorithm; 
simulated annealing; experiments 

 

1. Introduction 

Recently, swarm robotics has become a phenomenon in many real-world applications. It is about 
the coordination of multiple robots as a system to achieve a desired behavior. Collection of 
information about the environment is the most critical prerequisite for decision-making. For this, 
Unmanned Aerial Vehicles (UAVs) equipped with necessary sensors may be used in many situations 
and applications both in the civil and military domains. 

In this article, the problem of using a swarm of UAVs in military reconnaissance operations is 
formulated and the solution to this problem is proposed. The principles of collective perception are 
used during the process in order to accelerate the operation and increase its effectiveness. The 
reconnaissance operations are assumed to be performed in complex urban environments and/or very 
uneven terrain where obstacles or terrain may cause occlusions. 
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The article is organized as follows: in this section, the authors’ motivation is discussed along 
with the implementation of the results. Contributions of the research are also highlighted. Section 2 
reviews the literature related with these issues. Section 3 defines and formulates the problem. In 
Section 4, algorithms for a solution are proposed. Section 5 presents the results of experiments carried 
out for verification. Finally, Section 6 concludes the article and points out some possibilities of the 
future research in this area. 

1.1. Motivation 

The Military Decision-Making Process (MDMP) is one of the crucial processes in order to 
accomplish all the given tasks and missions. It is a very complex process composed of several steps. 
In the modern environment, any commander’s decision requires an analysis of countless information 
from different sources. Contemporary armed conflicts are characterized by a “big data” flow and its 
analysis, which significantly influences the MDMP. Moreover, the accuracy of any data used within 
the MDMP would tremendously influence the planning, development and subsequent evaluation of 
military missions. In order to support military commanders’ decision-making, the University of 
Defense developed the Tactical Decision Support System (TDSS) composed of several models of 
military tactics. It is designed as an open system with the possibilities of further development. 

Reconnaissance itself is a very important step of the MDMP, especially on the tactical level. It 
provides military commanders with essential information concerning the terrain, weather, enemy 
situation, etc. It should be continuous and as much accurate as possible. Especially aerial 
reconnaissance conducted by UAVs is a very strong means of information gathering. Moreover, its 
autonomy did not require any additional demand on the military structure and organization. 

The urban environment is currently one of the typical areas where contemporary armed conflicts 
take place. The armed conflicts in Syria, Ukraine and other places proved the necessity to deeply 
develop the information flow. The complexity of urban areas and different military tactics used 
require new approaches to support the MDMP of commanders. Subsequently, such new approaches 
would influence military tactics and diminish losses. There are several publications focused on this 
issue from different perspectives [1–6]. 

The model proposed in this article has been implemented as a part of the TDSS. The purpose of 
this system is to support commanders of the Czech Army on the tactical level. The implementation 
is still only in its trial version; this means it has been validated so far only by simulations. The real 
life experiments using drones in the real environment are still to be conducted. The idea of using this 
system for commander’s decision-making support is as follows. The commander, who needs to 
perform reconnaissance of some area of interest within his/her mission, inputs all necessary 
information and requirements into the system. Then, the system plans the routes of available UAVs 
at the disposal of the commander and presents the results for confirmation. Finally, the commander 
decides whether to launch the reconnaissance as he/she is responsible for the mission. After this 
decision, the reconnaissance operation can start immediately (or when required) by controlling the 
drones. 

1.2. Contributions 

The authors continue with their previous research in this area, see [7,8]. This article extends and 
completes their previous findings. In particular, the contributions are as follows: 

• The problem of autonomous aerial reconnaissance in complex environments via a swarm of 
unmanned aerial vehicles is formulated. The monitoring is performed from a number of 
waypoints deployed in the area of operations; each waypoint is defined in the three-dimensional 
space by its coordinates and altitude. 

• The approach to effectively evaluate the coverage (monitored area) from a number of deployed 
waypoints is proposed. Terrain and obstacles, which may occlude the objects of interest are 
taken into consideration as well as the parameters of the sensors used. 
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• The algorithm to estimate a minimum number of waypoints needed to explore a required 
portion of the area of interest is proposed. 

• The metaheuristic algorithm based on the simulated annealing principles is proposed to deploy 
waypoints in the area of operations (in three dimensions). 

• A set of experiments is designed to assess the proposed algorithms. The results are compared to 
the optimal solutions. 

• A set of scenarios is designed based on the parameters and features of the real typical 
reconnaissance operations, and the behavior and results are discussed. The real geographic data 
is used in these experiments. 

2. Literature Review 

The topic concerning autonomous aerial reconnaissance using UAVs is currently discussed very 
frequently by the scientific as well as military personnel. From the scientific point of view, the 
reconnaissance problem, as is understood in this article, can be seen as the Art Gallery Problem, 
which is a well-studied NP-hard visibility problem in computational geometry [9]. This problem has 
been studied mostly in the two-dimensional space [10,11]. 

The three-dimensional case of the problem (referred to as 3D Art Gallery Problem) is studied 
less frequently. For example, Marzal [12] aimed at the determination of the number of guards 
required to cover the interior of a pseudo-polyhedron as well as the placement of these guards; this 
study models the art gallery by an orthogonal pseudo-polyhedron. Savkin and Huang [13] estimated 
the minimal number of drones necessary to monitor a given area of a very uneven terrain. The 
proposed problem may be viewed as a drone version of the 3D Art Gallery Problem. Thanou and 
Tzes [14] addressed the area coverage problem of a 3D-space by a group of UAVs, equipped with 
omnidirectional cameras; the terrain is assumed known to each UAV which has a maximum flight-
altitude. 

Some of the publications dealing with the problem of using UAVs for monitoring or surveillance 
take into consideration the fact that the area, where reconnaissance is carried out, is full of visual 
obstacles, particularly in an urban area. Saripalli et al. [15] presented the design and implementation 
of a real-time vision-based approach to detect and track features in a structured environment using 
an autonomous helicopter. Shaferman and Shima et al. [16] examined the problem of tracking the 
moving ground target in an urban environment via a set of cooperating UAVs and proposed a 
stochastic search method (based on a genetic algorithm) for finding in real time monotonically 
improving solutions. Semsch et al. [17,18] dealt with the problem of multi-UAV-based surveillance 
in complex urban environments with occlusions. The problem lies in controlling the flight of UAVs 
with on-board cameras so that the coverage and recency of the information about the designated area 
may be maximized. Swarming of multiple UAVs in order to increase the performance and 
effectiveness of the operation has been recently studied in many researches including applications 
such as reconnaissance or surveillance. Alfeo et al. [19] proposed a swarm coordination bio-inspired 
algorithm and applied it to search for a target object using a swarm of UAVs equipped with imperfect 
sensors. Similarly, Li et al. [20] introduced a distributed algorithm for searching moving targets via a 
fleet of cooperative UAVs. Silva et al. [21] examined the problem of real-time object identification and 
tracking through cooperative UAVs in a complex and adversarial environment involving motion, 
crowded scenes and varied camera angles and proposed a distributed deep learning algorithm for a 
solution. 

Effective route planning and trajectory optimization of UAVs are critical in applications such as 
monitoring, reconnaissance or surveillance. Extensive surveys of planning methods are provided, for 
example, by Cabreira et al. [22] (methods based on coverage path planning), Zhao et al. [23] 
(computational-intelligence-based methods), Coutinho et al. [24] (identification of common attributes 
in aerial planning problems), or Geiger [25] (methods such as linear programming, dynamic 
programming, genetic algorithms and neural networks). In their research, Reardon and Fink [26] 
connected the issues of aerial reconnaissance (3D Art Gallery Problem) and path planning (Traveling 
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Salesman Problem) and formulated the problem of searching and identification of objects using both 
ground and aerial autonomous robotic systems. 

For the solution of the problem formulated in this article, two metaheuristic approaches were 
adapted: the simulated annealing for the waypoints deployment and the ant colony optimization for 
the path planning of UAVs. The choice of these methods has been supported by the experience of 
authors obtained in their previous research. Metaheuristic methods are, in general, problem 
dependent. Further on in this paragraph, several other methods, which could possibly be used to this 
problem, are mentioned on examples of their recent applications which are related to some extent to 
the problem examined in this article. A very popular method called Particle Swarm Optimization 
(PSO) is often used for various types of problems. It is a population based stochastic optimization 
technique developed in 1995 by Eberhart and Kennedy [27]. Since that time, a thousand of application 
have emerged. Shao et al. [28] use this method for the problem of generating cooperative feasible 
paths for formation rendezvous of UAVs which was formulated as a multi-objective optimization 
problem with many coupled constraints; the proposed algorithm can meet the kinematic constraints 
of UAVs and the cooperation requirements. Another very popular search heuristic approach belongs 
to the family of Genetic Algorithms (GA). It is inspired by Darwin’s theory of natural evolution; it 
reflects the process of natural selection. Cao et al. [29] adopted this algorithm for the problem of 
multi-base multi-UAV cooperative reconnaissance path planning; the problem is transformed into 
the shortest path combinatorial optimization using graph theory. However, the authors do not 
assume the occlusion caused by the terrain or obstacles. Tabu search formulated in 1986 by Glover 
[30] is another well-known local search method. Lee, Chen and Lai [31] hybridized this method with 
the 2-opt algorithm in the problem of the mission route planning of multiple unmanned robots in 
order to distribute tasks and coordinate the operation. A large family of bio-inspired algorithms has 
become very popular in recent years. To name a few: Artificial Bee Colony [32] (problem of UAVs 
used for wireless communication networks); Bat Algorithm [33] (problem of tracking a dynamic 
invading target by an UAV); or Grey Wolf Optimization [34] (multi-UAV multi-target urban tracking 
problem). 

3. Problem Definition 

In this section, the problem examined in this article is formulated. The problem is about planning 
routes of available UAVs for the reconnaissance mission performed in a complex urban environment. 
The goal is to plan the route so that the mission is carried out as fast as possible while the exploration 
of the area of interest is as complete as possible. The terrain and obstacles which may cause occlusions 
are taken into consideration. The list of all symbols and variables used in this and the following 
sections is included in the table at the end of the article. 

Let 𝑈 = 𝑈 ,𝑈 , … ,𝑈  be a finite set of UAVs where 𝑀 ≥ 1  is their number available to 
participate in a reconnaissance operation. At the beginning of the operation, each UAV is deployed 
in its initial position (base) in the area of operations. The UAVs launch from their bases, and, when 
the operation is over, they return back. Each UAV is equipped with a sensor system capable to 
monitor some portion of the area directly below it. These sensors are characterized by two parameters 
as follows: 

• Angular field of view (𝛼 ). 
• Maximum distance from monitored objects (𝑑 ). 

Both parameters are given by the technical construction and principles of the sensors. The 
sensors are homogeneous, i.e., all UAVs are equipped with the same type of sensors. Each UAV is 
able to monitor objects of interest located within the field of view of its sensor and not farther from 
the UAV than allowed by the maximum distance constraint. This principle in a plane is shown in 
Figure 1 where the green area (called object detection range) represents the space, in which the object, 
if located in this range, is detected by an UAV. 
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Figure 1. Object detection range of a sensor of an Unmanned Aerial Vehicles (UAV). 

The aim of the reconnaissance operation is to monitor as much portion of the area of interest 𝐴𝑜𝐼 as possible using a fleet of UAVs 𝑈. The area of interest is defined by a polygon with or without 
holes lying in the area of operations 𝐴𝑜𝑂 (𝐴𝑜𝐼 ⊆ 𝐴𝑜𝑂). During the operation, the height of flight of 
the UAVs is restricted. The limiting parameters are as follows: 

• Minimum height of flight above the ground level (ℎ ). 
• Maximum height of flight above the ground level (ℎ ). 

This means that the height of flight above the ground level ℎ of all UAVs at any moment of the 
operation must be within the allowed limits (ℎ ℎ ℎ ). Both limits are set by the commander 
based on the tactical requirements for the operation and/or technical parameters of sensors. 

Let 𝑊 = 𝑊 ,𝑊 , … ,𝑊  be a finite set of waypoints deployed in the area of operations where 𝑁 ≥ 1 is their number. The monitoring of the area of interest is performed from these waypoints 
only. When any UAV is located at waypoint 𝑊 ∈ 𝑊 at any time of the operation, some portion of 
the area of interest is observed (i.e., objects of interest are detected if located in the observed area). 

Let 𝑃 = 𝑃 ,𝑃 , …  be an infinite set of points lying on the ground in the area of operations. Each 
point 𝑃 ∈ 𝑃 is characterized by its elevation 𝐸 𝑃  (height above the mean sea level) determined by 
the terrain. An UAV monitoring from waypoint 𝑊 ∈ 𝑊  is located at some altitude ℎ ; see 
Equation (1) where ℎ  is the height above the ground level of the UAV at waypoint 𝑊 . ℎ = 𝐸 𝑊 ℎ    for all 𝑖 = 1,2, … ,𝑁 (1) 

Let 𝑉 ⊆ 𝑃 be a set of points lying in the area of interest, which is monitored from waypoint 𝑊 ; 
this means that an object of interest is detected by an UAV positioned at waypoint 𝑊  and altitude ℎ  if this object is located at any point from set 𝑉 . All points in 𝑉  must satisfy the conditions as 
follows: 

1. Points in 𝑉  must lie in the area of interest (𝑉 ⊆ 𝐴𝑜𝐼). 
2. Points in 𝑉  must be within the object detection range of the sensor (see Figure 1). 
3. There must be a visual line of sight (VLOS) between the sensor and all points in 𝑉  (see Figure 

2). 

Let 𝑂 = 𝑂 ,𝑂 , … ,𝑂  be a finite set of not-transparent obstacles lying in the area of interest 
where 𝐿 ≥ 0 is their number. An obstacle (e.g., a building) or an uneven terrain may occlude some 
portion of the area in the object detection range; this happens in case that the VLOS condition in point 
3 above is violated. The principle in a plane is shown in Figure 2: Figure 2a shows the situation 
without obstacles, whereas Figure 2b with obstacles. The green line represents points in set 𝑉 ⊆ 𝑃 
(for further reference called as visible), red line remaining points in 𝑃 but not in 𝑉  (for further 
reference called as occluded). 

𝑈 ∈ 𝑈 

𝑑𝑚𝑎𝑥 
𝛼  
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(a) (b) 

Figure 2. Determination of points monitored by an UAV: (a) without obstacles; (b) with obstacles. 

Figure 3a shows an example of the real situation from the top view. The polygon (blue line) 
encloses the area of interest; grey objects are obstacles (buildings in this case). Green area represents 
visible points in set 𝑉 . Figure 3b shows the same situation, but this time, five waypoints are 
deployed. The total visible area 𝑉 is given by the unification of sets 𝑉  for individual waypoints 
according to Equation (2). The total coverage of the area of interest through deployed waypoints is 
calculated according to Equation (3) as a ratio between the number of visible points (denoted as |𝑉|) 
and the number of all points in the area of interest (denoted as |𝐴𝑜𝐼|). 

𝑉 = 𝑉  (2) 

𝐶 = |𝑉||𝐴𝑜𝐼| (3) 

During the reconnaissance operation, UAVs in the fleet visit individual waypoints in the 
specified order. As all sensors of the UAVs are homogeneous, it is irrelevant, which UAV will visit 
which waypoint. Let 𝑅 = 𝑅 ,𝑅 , … ,𝑅  be a set of routes of individual UAVs. Route 𝑅 ∈ 𝑅 defines 
a trajectory of UAV 𝑈 ∈ 𝑈 as an order of waypoints to be visited: 𝑅 = 𝑅 ,𝑅 ,𝑅 , … ,𝑅 ,𝑅  
where 𝐾 ≥ 0 is the number of waypoints to be visited by UAV 𝑈 . Constraints in Equations (4)–(7) 
need to be satisfied: constraint in Equation (4) ensures that each UAV launches from its base and 
returns back at the end of the operation; and constraints in Equations (5)–(7) ensure that all the 
waypoints are visited just once. 

  
(a) (b) 

Figure 3. Visible points in the area of interest: (a) single waypoint; (b) multiple waypoints. 

𝑈 ∈ 𝑈 

ℎ  

𝑊𝑖 ∈ 𝑊 
Terrain 

𝑈 ∈ 𝑈 

Terrain 

𝑊𝑖 ∈ 𝑊 

 𝑂1 𝑂2 
𝑂3 

Visible 
Occluded 

𝑊  

Visible 
Occluded 

𝐶% = 18.78% 

𝑊  

𝑊  𝑊  

𝑊  

𝑊  

Obstacles 

𝐶% = 90.13% 
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𝑅 = 𝑅 = 𝑈    for all 𝑗 = 1,2, … ,𝑀 (4) 𝑅 ∈ 𝑊   for all 𝑗 = 1,2, … ,𝑀 and 𝑘 = 1,2, … ,𝐾  (5) 

𝐾 = 𝑁 (6) 

𝑅 𝑅    for all 𝑗,𝑝 = 1,2, … ,𝑀 (𝑗 𝑝), 𝑘 = 1, 2, … ,𝐾  and 𝑞 = 1, 2, … ,𝐾  (7) 

Equation (8) defines the time, in which UAV 𝑈  performs its route 𝑅 . The term 𝑅 𝑅  
expresses the time needed to fly from waypoint/base 𝑅  to the next waypoint/base 𝑅  on its 
route; it depends on the distance between both points and the flight parameters of UAV 𝑈 . The 
duration of the reconnaissance operation is defined in Equation (9); all UAVs start at the same time 
at the beginning of the operation, and the operation ends when the last UAV returns back to its base. 

𝑇 = 𝑅 𝑅  (8) 

𝑇 = max 𝑇 ,𝑇 , … ,𝑇  (9) 

A simple example with two UAVs (red dots) and five waypoints (blue dots) is shown in Figure 
4. The routes (violet color) are 𝑅 = 𝑈 ,𝑊 ,𝑊 ,𝑈  and 𝑅 = 𝑈 ,𝑊 ,𝑊 ,𝑊 ,𝑈 . 

 
Figure 4. Routes of UAVs in the operation. 

It is desired to plan the reconnaissance operation optimally. The optimization criteria are defined 
in Equations (10)–(12). The first optimization criterion in Equation (10) is connected with the second 
optimization criterion in Equation (11). The former minimizes the number of waypoints 𝑁 (the goal 
is to find such a number so that the monitoring may be performed in the requested quality from as 
low number of waypoints as possible), the latter maximizes the total coverage of the area of interest 𝐶 (the goal is to find positions of 𝑁 waypoints so that the visible area may be as large as possible). 
The third optimization criterion in Equation (12) is connected with the planning of routes 𝑅 for 
individual UAVs (the goal is to find such routes so that the operation time 𝑇 may be as short as 
possible). 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑁  (10) 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐶  (11) 

𝑊  

𝑊  𝑊  

𝑊  

𝑊  

𝑈  

𝑈  
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇  (12) 

The first two optimization criteria go against one another (the coverage is, generally, reduced 
when the number of waypoints is lowered). Thus, a new parameter called minimum coverage 𝐶  
is defined; it controls the requested quality of the operation as it determines the minimum necessary 
portion of the visible area in the area of interest—see Equation (13). The objective is to find a low 
number of waypoints, with which the coverage is still equal or higher than requested. 𝐶 ≥ 𝐶  (13) 

In general, each reconnaissance operation is characterized by a number of constant parameters 
and a number of optimization parameters (decision variables). Constant parameters are as follows: 

• Geographical data: the terrain and database of obstacles in the area of operations (𝐸, 𝑂). 
• Size, shape and position of the area of interest (𝐴𝑜𝐼). 
• Number and basic positions of available UAVs, parameters of their sensors (𝑀, 𝑈, 𝛼 , 𝑑 ). 
• Minimum and maximum permitted height of flight above the ground level (ℎ , ℎ ). 
• Minimum requested coverage (𝐶 ). 

Optimization parameters are as follows (all variables are continuous except the first one, which 
is discrete): 

• Number of waypoints (𝑁). 
• Positions of waypoints (coordinates 𝑥  and 𝑦  for all 𝑊 ∈ 𝑊). 
• Heights above the ground level of the UAVs at waypoints (ℎ  for all 𝑊 ∈ 𝑊). 

4. Solution Algorithms 

In this section, algorithms for solving the problem formulated in the previous section are 
proposed. First, the principle for calculating the coverage of the area of interest is presented. Then, 
algorithms for the optimization of criteria in Equations (10)–(12) follow. 

4.1. Evaluation of a Solution 

Let 𝑋  be a particular solution, lying in the state space, to the reconnaissance operation. This 
solution is characterized by 𝑁  waypoints 𝑊  deployed in the area of operations: 𝑋 =𝑊 ,𝑊 , … ,𝑊 = 𝑥 ,𝑦 ,ℎ , 𝑥 ,𝑦 ,ℎ , … , 𝑥 ,𝑦 ,ℎ , i.e., there are 3𝑁 optimization variables. For a 
particular problem (settings of constant parameters) and solution 𝑋  in the state space, the value of 
the coverage of the area of interest 𝐶  can be calculated: 𝐶 = 𝑓 𝑋 ; the value lies in interval 〈0,1〉. 

For calculation of 𝐶 , the number of visible points |𝑉|  in the area of interest needs to be 
determined—see Equation (3). To get this number, any point lying inside the area of interest must be 
evaluated if it is visible from any waypoint or not. In general, there are an infinite number of points 
P inside the area of interest, which is, of course, not possible to evaluate from the practical point of 
view. The rasterization of the area of interest is a possible solution to this. The principle is shown in 
Figure 5a. The area is evenly covered by a finite number of points 𝑃 using the Sukharev grid. The 
rasterization step 𝑑  determines the total number of points 𝑁 ; each point lies in the middle of its 
square. The visibility of each point in 𝑃 is evaluated independently on one another; in this way, set 𝑉 of visible points of size 𝑁  is created as illustrated in Figure 5b. The approximation of 𝐶  is then 
calculated according to Equation (14); the precision of the approximation can be controlled by the 
rasterization step 𝑑 . 
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(a) (b) 

Figure 5. Rasterization of the area of interest: (a) points in the area of interest; (b) visible points. 

𝐶 = |𝑉||𝑃| = 𝑁𝑁  (14) 

Evaluation of solution 𝑋  is performed by Algorithm 1. At the beginning, the set of visible 
points 𝑉 is emptied (line 1), and set 𝑃 is created based on the principles presented above (line 2). 
Then, each point 𝑃 ∈ 𝑃 is evaluated independently (line 3 to 7); if point 𝑃  is evaluated as visible 
from at least one waypoint 𝑊 ∈ 𝑊 (line 5), then this point is included in set 𝑉 and the algorithm 
continues by evaluation of the next point. The algorithm returns the coverage 𝐶  of solution 𝑋  
(lines 8 and 9). 

Algorithm 1 Evaluation of a solution in pseudocode 

 

Algorithm 2 elaborates the key process on line 5 of Algorithm 1. It evaluates the visibility of 
point 𝑃  from waypoint 𝑊  by testing four conditions: (a) distance between 𝑊  and 𝑃  must not be 
larger than the maximum permitted distance 𝑑  (line 1); (b) 𝑃  must be in the field of view 𝛼  
of the camera positioned in 𝑊  (line 2); (c) there is no obstacle 𝑂 ∈ 𝑂 disrupting the VLOS between 𝑊  and 𝑃  (line 3 and 4); (d) there is no point 𝑃 ∈ 𝑃 of elevation, which disrupts the VLOS between 𝑊  and 𝑃  (line 5 and 6).  

𝑑  

P1 P2 P3 
P4 … P5 

PN … 
P 

V1 V2 … 

… 
VN   V

 

Evaluate_Solution(𝑋 ) 
  Input: 𝑋  

  Output: 𝐶𝑁 
  Constant parameters: 𝐸,𝑂,𝐴𝑜𝐼,𝛼 ,𝑑 ,𝑑  

1. 𝑉 = ∅ 
2. 𝑃 = Rasterize_AoI(𝑑 ) 
3. for each point 𝑃 ∈ 𝑃 do 
4.   for each waypoint 𝑊 ∈ 𝑊 do 
5.     if 𝑃  is visible from 𝑊  then 
6.       𝑉 = 𝑉 𝑃  

7.       continue on line 3 
8. 𝐶𝑁 = 𝑉 𝑃  
9. return 𝐶𝑁 
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Algorithm 2 Visibility evaluation between a point and a waypoint in pseudocode 

 

The computational complexity of Algorithm 1 is in Equation (15). The first and the second terms 
are related to lines 3 and 4 of Algorithm 1: the visibility needs to be evaluated between 𝑁  rasterized 
points and (up to) 𝑁 waypoints. The third term represents the process on lines 3 and 4 of Algorithm 
2: each obstacle from set 𝑂 of size 𝐿 may disrupt the VLOS. The last term is connected with lines 5 
and 6 of Algorithm 2: elevation of points in 𝑃 may disrupt the VLOS (the reason of square root of 𝑁  is that only points in 𝑃 lying directly between 𝑊  and 𝑃  have to be tested). 𝑂 𝑁 ∙ 𝑁 ∙ 𝐿 ∙ 𝑁  (15) 

The evaluation of a solution is a key process in the optimization of the problem. Therefore, the 
great efforts were devoted by the authors to increase its efficiency. Two main improvements were 
implemented: (a) the floating horizon algorithm for computing visibility of a set of points in a line 
with the linear dependence was implemented; (b) the obstacles were superimposed on the terrain. 
Thus, the resulting computational complexity of the improved algorithm was reduced as stated in 
Equation (16). Moreover, the implementation was optimized from the coding point of view (only 
operations with integers are employed in the critical parts of the algorithm). The process is also 
parallelized and distributed on the cores of a multicore processor. 𝑂 𝑁 ∙ 𝑁  (16) 

4.2. Optimization of Waypoint Deployment 

In this section, an algorithm for optimization of a particular number of waypoints is proposed. 
The optimization criterion is to maximize the coverage 𝐶  according to Equation (11). The input of 
the algorithm, beside the constant parameters and algorithm settings, is the number on waypoints 𝑁 
to be deployed. The output is a particular solution 𝑋 = 𝑊 ,𝑊 , … ,𝑊 =𝑥 ,𝑦 ,ℎ , 𝑥 ,𝑦 ,ℎ , … , 𝑥 ,𝑦 ,ℎ  and its coverage 𝐶 . 

The proposed metaheuristic algorithm is based on the simulated annealing principles, which are 
inspired in annealing in metallurgy (reducing defects of material by involving heating and controlled 
cooling). The algorithm works in iterations where the process of solution transformation is 
performed. The transformed solution may replace the original—even if it is worse. This principle 
allows expanding the search space and prevents the algorithm to be stuck in some local optimum. 

The behavior or the algorithm is controlled by 5 parameters as follows: 

• Maximum temperature 𝑇 : the initial value of temperature used in the first iteration. 
• Minimum temperature 𝑇 : the threshold value of temperature (the algorithm ends when the 

temperature drops below this threshold). 
• Cooling coefficient λ: it controls the speed of temperature reduction by cooling in successive 

iterations.  
• Maximum number of transformations in iteration 𝑛 : it controls the higher limit of 

transformations performed per iteration. 

Point_Visibility(𝑃,𝑊 ,𝑃 ) 
  Input: 𝑃,𝑊 ,𝑃  
  Output: true/false 
  Constant parameters: 𝐸,𝑂,𝛼 ,𝑑  

1. if 𝑊 𝑃 𝑑  then return false 
2. if 𝐸 𝑊 ℎ 𝐸 𝑃 𝑊 𝑃 cos 𝛼 2⁄  then return false 
3. for each obstacle 𝑂 ∈ 𝑂 do 
4.   if 𝑂  disrupts VLOS between 𝑊  and 𝑃  then return false 
5. for each point 𝑃 ∈ 𝑃 do 
6.   if 𝐸 𝑃  disrupts VLOS between 𝑊  and 𝑃  then return false 
7. return true 
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• Maximum number of replacements in iteration 𝑛 : it controls the higher limit of 
replacements (accepting the transformed solution and replacing the original) per iteration. 

Algorithm 3 shows the principles in pseudocode. At the beginning, a random solution is 
generated (line 1; see Algorithm 4 for details) and evaluated (line 2; see Algorithm 1 for details). The 
current temperature is set to the maximum limit 𝑇  (line 3). The algorithm works in iterations 
(lines 4 to 18); the temperature does not change within an iteration. In each iteration, a number of 
transformations are performed (lines 5 to 17). Transformation of the current solution 𝑋  into the 
new solution 𝑋 (line 7) is the key process of the algorithm (see Algorithm 5 for details). 

Algorithm 3 Optimization of waypoint deployment in pseudocode 

 

The original solution is replaced by the transformed solution with some probability (line 9) 
according to the Metropolis criterion in Equation (17). In case that the transformed solution is better 
than the original, the original is always replaced. Otherwise, the probability depends on the 
difference of qualities of both solutions and the current temperature 𝑇 : the lower the difference 
and the higher the temperature, the bigger the probability. This means that in the first phases of the 
algorithm, the state space is largely expanded by accepting often worse solutions, whereas, towards 
the end of the optimization, the solution is tuned in its surrounding. The acceptance of the 
transformed solution is decided on line 10; function RandU 0,1  is a pseudorandom number 
generator with a uniform distribution. 

𝑝 𝑋 → 𝑋 =  1𝑒 for 𝐶 ≥ 𝐶otherwise  (17) 

An iteration ends when either the number of transformations 𝑛  or the number of replacements 𝑛  exceed their limits 𝑛  and 𝑛  respectively (see condition on line 6). Then the temperature 
is lowered (line 18) by cooling coefficient 𝜆 (0 𝜆 1) and the next iteration starts. The algorithm is 
terminated when the temperature 𝑇  drops below its lower limit 𝑇  (see condition on line 4). 

Deploy_Waypoints (𝑁) 
  Input: 𝑁 
  Output: 𝐶 ,𝑋  

  Constant parameters: 𝐸,𝑂,𝐴𝑜𝐼,𝛼 ,𝑑 ,ℎ ,ℎ ,𝑑  

  Algorithm settings: 𝑇 ,𝑇 ,𝛾,𝑛 ,𝑛  

1. 𝑋 = 𝑋 = Generate_Random_Solution(𝑁) 
2. 𝐶 = 𝐶 = Evaluate_Solution(𝑋 ) 
3. 𝑇 = 𝑇  

4. while 𝑇 ≥ 𝑇  do // Iterations 
5.   𝑛 = 𝑛 = 1 
6.   while 𝑛 𝑛  and 𝑛 𝑛  do // Transformations 
7.     𝑋 = Transform_Solution(𝑇 ,𝑁,𝑋 ) 
8.     𝐶 = Evaluate_Solution(𝑋 ) 
9.     𝑝 𝑋 → 𝑋 = 𝑓 𝐶 ,𝐶 ,𝑇  

10.     if RandU 0,1 𝑝 𝑋 → 𝑋  then do // Replacements 
11.       𝑋 = 𝑋  

12.       𝐶 = 𝐶  

13.       𝑛 = 𝑛 1 
14.     if 𝐶 𝐶  then do 
15.       𝑋 = 𝑋  

16.       𝐶 = 𝐶  

17.     𝑛 = 𝑛 1 
18.   𝑇 = 𝛾 ∙ 𝑇  

19. return 𝐶 ,𝑋  
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The best solution found during the whole optimization 𝑋  is stored (lines 14 to 16) and returned 
at the end of the algorithm (line 19). 

Algorithm 4 shows the process of the generation of a random solution (named on line 1 of 
Algorithm 3). Each variable of a solution is set in its permitted limits using a pseudorandom number 
generator with a uniform distribution (functions MinX, MaxX, MinY and MaxY return the minimum 
and maximum values of a circumscribed rectangle of the area of interest). 

Algorithm 4 Generation of a random solution in pseudocode 

 

Algorithm 5 presents the process (called on line 7 of Algorithm 3), in which the current solution 𝑋  is transformed into the new solution 𝑋 . In the transformation, one randomly selected variable 
is changed, the remaining variables copy the original values. The variable is selected by a 
pseudorandom integer number generator RandI 𝑎, 𝑏  with a uniform distribution (line 2) in the 
range from 1 to 3𝑁  as the solution is composed of 3𝑁  variables: 𝑋 =𝑥 ,𝑦 ,ℎ , 𝑥 ,𝑦 ,ℎ , … , 𝑥 ,𝑦 ,ℎ = 𝑋 ,𝑋 , … ,𝑋 . The size of the change is determined by a 
pseudorandom number generator RandN 𝜇,𝜎  with a normal distribution with a mean of 𝜇 = 0 
and a standard deviation of 𝜎 calculated on line 6 according to Equation (18). The standard deviation 
depends on the current temperature and the range of the variable (calculated on lines 3, 4 and 5 for 
individual types of variables: 𝑥 coordinate, 𝑦 coordinate and height). The bigger the temperature, 
the bigger the changes. Constant 𝜀  in Equation (18) is a small number influencing the standard 
deviation in situations when the current temperature is close to its minimum limit. 

𝜎 = 𝑇 𝑇 ∙ 𝑟𝑎𝑛𝑔𝑒3 𝜀𝑇 𝑇 𝜀 (18) 

The computational complexity of the algorithm for optimizing waypoint deployment is given in 
Equation (19). It is linearly dependent on the number of iterations 𝑛  computed according to 
Equation (20) and the maximum number of transformations 𝑛  (𝑛  is used instead of 𝑛  
because the number of transformations is always equal to or greater than the number of 
replacements). The last two terms correspond to the evaluation of the transformed solution in the 
loop—see Equation (16). 𝑂 𝑛 ∙ 𝑛 ∙ 𝑁 ∙ 𝑁  (19) 

𝑛 = log𝑇 log𝑇log 𝛾  (20) 

The algorithm was implemented in two versions: continuous and discrete. The former assumes 
all the variables of the solution to be continuous—waypoints can be deployed wherever in the area 
of operations. The latter one assumes the variables to be discreet with the distance between 
neighboring values set to the size of the rasterization step 𝑑 . It has an effect that the waypoints 
can be deployed only in the middle of rasterization squares. The discretization of each variable is 
performed by rounding to the nearest permitted value. 

Generate_Random_Solution(𝑁) 
  Input: 𝑁 
  Output: 𝑋  

  Constant parameters: 𝐴𝑜𝐼,ℎ ,ℎ  

1. 𝑋 = ∅ 
2. for 𝑖 = 1 to 𝑁 do 
3.   𝑥 = RandU MinX 𝐴𝑜𝐼 , MaxX 𝐴𝑜𝐼  

4.   𝑥 = RandU MinY 𝐴𝑜𝐼 , MaxY 𝐴𝑜𝐼  

5.   ℎ = RandU ℎ , ℎ  

6.   𝑋 = 𝑋 𝑥 ,𝑦 ,ℎ  

7. return 𝑋  
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Algorithm 5 Transformation of a solution in pseudocode 

 

4.3. Optimizing the Number of Waypoints 

This section presents Algorithm 6 for optimizing the number of waypoints according to the 
optimization criterion in Equation (10). The main idea of the algorithm consists in the first estimation 
of the number based on the parameters of sensors and the subsequent deployment of this number of 
waypoints; in the next phases, the value is updated according to the gap between the actual and 
required coverage. Of course, this is not the only approach to determine the number of waypoints. 
Another approach could be the binary search method where the value is determined between the 
limits by the interval halving. The algorithm proposed in this section was selected because of its low 
number of phases (see the results in Section 5.3). 

Algorithm 6 Optimizing the number of waypoints in pseudocode 

 

The input of the algorithm is the minimum required coverage 𝐶 . At first, the initial value of 𝑁 using Equation (21) is estimated (line 1) based on the size of the area of interest and parameters of 
sensors. Coefficient 𝜏 ≥ 1 is a constant, which can be set with regard to the parameters of scenarios 
(e.g., the terrain and obstacles); in most real situations, the best results were achieved with 𝜏 = 1.5 
(the purpose of this coefficient is discussed in Section 5.3 in more detail). Then, 𝑁 waypoints are 
optimized using Algorithm 3 (lines 2 and 3). 

𝑁 = 𝜏 ∙ 𝐶 ∙ |𝐴𝑜𝐼|𝜋 ∙ 𝑑 ∙ sin𝛼2  (21) 

If the coverage does not satisfy the minimum limit (line 4), the value of 𝑁 is updated (line 5) 
according to Equation (22) and the new number of waypoints are deployed again using Algorithm 3 
(lines 6 and 7). This process is repeated in a loop (lines 4 to 7) until such 𝑁 is found that the minimum 

Transform_Solution(𝑇 ,𝑁,𝑋 ) 
  Input: 𝑇 ,𝑁,𝑋  

  Output: 𝑋  

  Constant parameters: 𝐴𝑜𝐼,ℎ ,ℎ  

  Algorithm settings: 𝑇 ,𝑇  

1. 𝑋 = 𝑋  
2. 𝑘 = RandI 1,3𝑁  

3. if 𝑘 mod 3 = 1 then 𝑟𝑎𝑛𝑔𝑒 = MaxX 𝐴𝑜𝐼 MinX 𝐴𝑜𝐼  //x coordinate 
4. if 𝑘 mod 3 = 2 then 𝑟𝑎𝑛𝑔𝑒 = MaxY 𝐴𝑜𝐼 MinY 𝐴𝑜𝐼  //y coordinate 
5. if 𝑘 mod 3 = 0 then 𝑟𝑎𝑛𝑔𝑒 = ℎ ℎ  //height 
6. 𝜎 = 𝑓 𝑟𝑎𝑛𝑔𝑒,𝑇 ,𝑇 ,𝑇  

7. 𝑋 = 𝑋 RandN 0,𝜎  

8. return 𝑋  

Optimize_Waypoints_Number(𝐶 ) 
  Input: 𝐶  

  Output: 𝑁,𝐶 ,𝑋  

1. Estimate 𝑁 
2. 𝑋 = Deploy_Waypoints(𝑁) 
3. 𝐶 = Evaluate_Solution(𝑋 ) 
4. while 𝐶 𝐶  then do 
5.   Update 𝑁 
6.   𝑋 = Deploy_Waypoints(𝑁) 
7.   𝐶 = Evaluate_Solution(𝑋 ) 
8. return 𝑁,𝐶 ,𝑋  
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coverage constraint is met. The algorithm returns the number 𝑁 as well as the solution 𝑋  and its 
quality 𝐶  (line 8). 𝑁 = 𝑁 ∙ 𝐶𝐶  (22) 

4.4. Planning of Routes 

When the number of waypoints and their deployment in the area of operations are determined, 
the problem of planning routes for available UAVs follows. The optimization criterion is to minimize 
the duration 𝑇 of the reconnaissance operation as stated in Equation (12). This problem can be easily 
transformed into the well-known Min-Max Multi-Depot Vehicle Routing Problem (MDVRP) [35] 
where a set of customers should be served by a fleet of vehicles originating from multiple depots. 

The authors of this article studied this problem extensively in their previous research. The 
metaheuristic algorithm based on the Ant Colony Optimization (ACO) theory in combination with 
other principles was proposed as a solution. The results were published, for example, in [36,37]. 
Therefore, this topic will not be examined and further pursued in this article. 

5. Experiments and Results 

The solutions proposed in the previous section were verified on a series of experiments. All 
experiments were carried out on a computer with configuration as follows: CPU Intel i7-7700 3.5 GHz 
(4 cores), 32 GB RAM. 

5.1. Evaluation of a Solution 

The first set of experiments is aimed at the algorithm for the evaluation of a solution, i.e., 
calculation of the coverage for a particular solution, with regard to its efficiency and influence of the 
key parameters: number of waypoints and the total number of points in the area of interest. 

The constant parameters of the scenario for these experiments are as follows: number of 
waypoints 𝑁 = 5  and 𝑁 = 10 , respectively, field of view of sensors 𝛼 = 90° , maximum 
permitted distance between a camera and objects 𝑑 = 240 m, minimum and maximum height of 
flight ℎ = 50 m and ℎ = 300 m, width and height of the area of interest 950 m × 1150 m, 
number of obstacles in the area of interest 𝐿 = 266 (height of obstacles ranges between 5 m and 15 
m and their average height is 6.4 m), the terrain relatively flat (the difference between the minimum 
and maximum altitude in the area of operations is about 80 m). The shape of the area of interest and 
the layout of obstacles are shown in Figure 6a. Figure 6b,c show positions of deployed waypoints. 

   
(a) (b) (c) 

Figure 6. Scenario for the evaluation of a solution: (a) area of interest and the layout of obstacles; (b) 
deployment of waypoints for 𝑁 = 5; (c) deployment of waypoints for 𝑁 = 10. 
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Tables 1 and 2 show the results of the experiments. Table 1 presents the results achieved using 
the original algorithm with no code optimization (see Section 4.1) and the computational complexity 
given by Equation (15). In Table 2, the results are achieved when using the improved (optimized) 
algorithm with the computational complexity from Equation (16). 

In general, the original algorithm can be assumed more precise in evaluation than the optimized 
version. In order to increase its efficiency, the latter one works with the integers rather than real 
numbers in its critical sections; this may lead to minor approximations and inaccuracies. To calculate 
the coverage error, the solution achieved by the original algorithm for 𝑑 = 1 is used as benchmark 
(both for 𝑁 = 5 and 𝑁 = 10). 

The difference in the execution time (time to evaluate a solution) is immense. The main reason 
is repeating the VLOS tests of each point with a number of L obstacles in the original algorithm (see 
Equation (15)), while this is not done in the optimized version (see Equation (16)). In average (based 
on all experiments in Tables 1 and 2), the optimized version is almost 60 times faster than the original 
algorithm. For example, in case of 𝑁 = 5 and 𝑑 = 1, the optimized algorithm manages to evaluate 
more than 30 million points per second, whereas the original version evaluates only 0.5 million 
points. 

Table 1. Experiments with the solution evaluation via the original algorithm. 

Number of 
Waypoints 𝑵 

Rasterization 
Step 𝒅𝒓𝒂𝒔𝒕 (m) 

Number of 
Points 𝑵𝑷 

Coverage 𝑪𝑵 
Coverage 

Error 
Execution 

Time (ms) 1 
5 1 678,953 59.49% Benchmark 1347 
5 2 169,740 59.49% 0.00% 378 
5 5 27,160 59.54% 0.08% 74 
5 10 6786 59.43% 0.10% 15 
5 20 1696 60.26% 1.29% 4.4 
5 50 271 59.04% 0.76% 0.7 

10 1 678,953 93.98% Benchmark 1859 
10 2 169,740 93.98% 0.00% 465 
10 5 27,160 93.97% 0.01% 75 
10 10 6786 93.78% 0.21% 18 
10 20 1696 94.81% 0.88% 5.1 
10 50 271 95.20% 1.30% 1.3 

1 Each experiment was performed 1000 times and results were averaged. 

Table 2. Experiments with the solution evaluation via the optimized algorithm. 

Number of 
Waypoints 𝑵 

Rasterization 
Step 𝒅𝒓𝒂𝒔𝒕 (m) 

Number of 
Points 𝑵𝑷 

Coverage 𝑪𝑵 
Coverage 

Error 
Execution 

Time (ms) 1 
5 1 678,953 59.50% 0.02% 22.02 
5 2 169,740 59.74% 0.42% 5.53 
5 5 27,160 60.08% 0.99% 0.92 
5 10 6786 59.77% 0.47% 0.28 
5 20 1696 59.37% 0.20% 0.11 
5 50 271 56.52% 4.99% 0.06 

10 1 678,953 94.19% 0.22% 33.58 
10 2 169,740 94.54% 0.60% 8.56 
10 5 27,160 95.42% 1.53% 1.45 
10 10 6786 95.38% 1.49% 0.47 
10 20 1696 94.53% 0.59% 0.19 
10 50 271 91.97% 2.14% 0.11 

1 Each experiment was performed 1000 times and results were averaged. 
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Figure 7 compares the coverage errors. Although the original version provides more precise 
results than the optimized version, the error of the latter one is below 2% in all cases (with the 
exception of 𝑑 = 50, but the reduction of information is too big in this case). The illustration of 
the influence of the rasterization step on the evaluation is shown in Figure 8 for rasterization steps 𝑑 = 1, 𝑑 = 10 and 𝑑 = 50. 

  
(a) (b) 

Figure 7. Coverage errors for the original and optimized versions of the algorithm for the solution 
evaluation: (a) number of waypoints 𝑁 = 5; (b) number of waypoints 𝑁 = 10. 

   
(a) (b) (c) 

Figure 8. Influence of the size of the rasterization step on the solution evaluation: (a) rasterization step 𝑑 = 1; (b) rasterization step 𝑑 = 10; (c) rasterization step 𝑑 = 50. 

Figure 9 shows the dependence of the execution time on the number of points 𝑁  to be 
evaluated in a solution (for the original algorithm on the left, for the optimized version on the right). 
The linear dependence is apparent. The linear dependence on the number of waypoints N can also 
be seen in the graphs. However, it is not that twice the number of waypoints means twice the 
execution time (it is only about 1.6 times in this case). The reason is that when a point is once 
evaluated as visible, it does not have to be evaluated again from other waypoints; this case is more 
frequent when there are more waypoints. 
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(a) (b) 

Figure 9. Dependence of the execution time on the number of points: (a) original algorithm; (b) 
optimized algorithm. 

5.2. Optimizing the Waypoint Deployment 

A set of experiments was designed to validate the algorithm proposed in Section 4.2 for the 
deployment of a number of waypoints in the area of operations. Conditions and parameters for the 
benchmark scenarios are as follows: 

• The area of interest is assembled by joining a number of hexagons with the circumradius 100 m. 
• The terrain is absolutely flat (the altitude does not change within the area of operations). 
• There are no obstacles in the area of operations. 
• Parameters of sensors are 𝑑 = √2 ∙ 100, 𝛼 = 90°. 
• The number of waypoints to be deployed are the same as the number of hexagons. 

The principle of creating the area of interest is presented in Figure 10. The degree determines the 
number of hexagons in the diagonal. In the example, the degree equals 5, which means that 17 
hexagons were joined to create the area of interest and the same number of waypoints 𝑁 = 17 are to 
be deployed. 

 
Figure 10. Area of interest created by joining hexagons. 

This principle along with the conditions mentioned above ensures that the optimal solution can 
be easily found. When the waypoints are deployed optimally, the whole area of interest will be 
covered (𝐶% = 100%). The optimal solution is as follows: 
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• The waypoints (coordinates 𝑥 , 𝑦 ) lie in the centers of the hexagons (see Figure 10). 
• The monitoring height is exactly 100 m above the ground level (ℎ = 100 m). 

Six benchmark instances were created for verification. They differ by the degree as shown in 
Table 3. The fifth column of Table 3 shows the number of waypoints and the last column the number 
of variables per a solution vector 𝑋 . For example, in the case of instance d06, the solution is 
composed of more than 200 independent variables. The permitted range of the flight height does not 
differ in the instances. 

Table 3. Benchmark instances for verification of the deployment algorithm. 

Benchmark 
Instance 

Minimum 
Height 𝒉𝒎𝒊𝒏 

Maximum 
Height 𝒉𝒎𝒂𝒙 

Degree Number of 
Waypoints 𝑵 

Number of 
Variables in 𝑿𝑵 

d01 50 m 150 m 1 1 3 
d02 50 m 150 m 3 7 21 
d03 50 m 150 m 5 17 51 
d04 50 m 150 m 7 31 93 
d05 50 m 150 m 9 49 147 
d06 50 m 150 m 11 71 213 

Both the continuous and discrete versions of the algorithm proposed in Section 4.2 (Algorithm 
3) were used to find the solutions of the benchmark problems and the results were compared with 
the optimal solutions. The parameters of the algorithm were set as follows: 𝑇 = 10 , 𝑇 =10 , 𝛾 = 0.9, 𝑛 = 200, 𝑛 = 20. The algorithm was executed 50 times on each benchmark 
instance. 

The results achieved with the continuous version of the algorithm are recorded in Table 4. The 
optimal solution was found in the case of the simplest instances (d01 and d02). In other instances, a 
solution was found very close to the optimum. The difference between the best solution and the 
optimum (referred to as error in Table 4) is below 2% in all cases. The execution time depends on the 
rasterization step 𝑑 . 

Table 4. Results for benchmark problems achieved by the continuous version of the algorithm. 

Instance Rast. Step 𝒅𝒓𝒂𝒔𝒕 (m) 
Optimal 
Solution 

Solution Found 1 
Error 2 Execution 

Time (s) 1 Best Mean Stdev 
d01 2 100% 100% 100% 0.00% 0.00% 2.9 
d02 2 100% 100% 100% 0.00% 0.00% 31.4 
d03 5 100% 99.99% 99.87% 0.51% 0.01% 16.8 
d04 5 100% 99.91% 98.95% 0.84% 0.09% 32.4 
d05 10 100% 99.46% 98.00% 0.58% 0.54% 19.6 
d06 10 100% 98.26% 97.25% 0.46% 1.74% 28.1 

1 50 trials. 2 Difference between the best and optimal solution. 

Table 5 shows the results achieved by the discrete version of the algorithm. The optimum was 
found in case of instances d01, d02, d03; the maximum error in case of the most complex problems is 
below 1%. The execution time is slightly higher than in case of the continuous version; this is caused 
by the discretization of the variables in the transformation process. 

Table 5. Results for benchmark problems achieved by the discrete version of the algorithm. 

Instance 
Rast. Step 𝒅𝒓𝒂𝒔𝒕 (m) 

Optimal 
Solution 

Solution Found 1 
Error 2 

Execution 
Time (s) 1 Best Mean Stdev 

d01 2 100% 100% 100% 0.00% 0.00% 3.2 
d02 2 100% 100% 100% 0.00% 0.00% 32.1 
d03 5 100% 100% 99.96% 0.02% 0.00% 18.2 
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d04 5 100% 99.96% 99.14% 0.67% 0.04% 34.5 
d05 10 100% 99.51% 98.55% 0.43% 0.49% 21.0 
d06 10 100% 99.30% 98.06% 0.45% 0.70% 31.0 

1 50 trials. 2 Difference between the best and optimal solution. 

The comparison of the results achieved by the continuous and discrete versions of the algorithm 
is shown in Figure 11. In general, the discrete version provides better solutions than the continuous 
version; the more complex the problem, the better the results obtained by the discrete version. 
Therefore, the discrete version is used further on. Figure 12 shows the best solution achieved by the 
discrete version of the algorithm for instance d06 (𝐶% = 99.30%). 

  
(a) (b) 

Figure 11. Comparison of the continuous and discrete versions of the algorithm: (a) error of the best 
solutions; (b) error of the average values. 

 
Figure 12. The best solution found for instance d06. 

5.3. Optimizing the Number of Waypoints 

In this section, the algorithm proposed for optimizing the number of waypoints (Algorithm 6) 
is verified on the benchmark problems. The same problems as proposed in the previous section are 
used. 

The algorithm starts with the first estimation of 𝑁 according to Equation (21). The part of this 
equation is coefficient 𝜏 . This coefficient takes specific parameters and characteristics of the 
environment into consideration (e.g., the terrain and the number of obstacles). In the ideal scenario, 
where the waypoints could be deployed in such a way that the whole area would be covered from a 
number of waypoints and, at the same time, areas visible from sensors would not overlap, the 
coefficient should be 𝜏 = 1 and the estimation would correspond to the correct number. In the 
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benchmark problems proposed for verification, where the terrain is flat with no obstacles, the 
waypoints could be deployed so that the visible areas might overlap just slightly; therefore, the 
coefficient was set to 𝜏 = 1.1. In the real scenarios, the best value of the coefficient was empirically 
found as 𝜏 = 1.5. 

Table 6 shows the results of the algorithm. The minimal coverage is set to 𝐶 = 99%. The 
reason for this is that the full coverage represents the optimal solution, which can be hardly achieved 
in case of the more complex problems. Therefore, the algorithm error of 1% is assumed. As can be 
seen, the optimal numbers of waypoints are estimated in case of all the benchmark instances. 
Moreover, it was done in at most 3 phases: the first estimation (line 1 of Algorithm 6) and 2 updates 
(line 5 of Algorithm 6). Figure 13 illustrates the situation in case of instance d04. 

   
(a) (b) (c) 

Figure 13. The progress in optimizing the number of waypoints, for instance d04: (a) first estimation 
(𝑁 = 28); (b) first update (𝑁 = 30); (c) second update (𝑁 = 31). 

Table 6. Results of the algorithm for the optimizing the number of waypoints. 

Instance Optimal 𝑵 
First Estimation First Update Second Update 𝑵𝟏 𝑪%𝑵𝟏 𝑵𝟐 𝑪%𝑵𝟐 𝑵𝟑 𝑪%𝑵𝟑 

d01 1 1 100% – – – – 
d02 7 7 100% – – – – 
d03 17 16 96.90% 17 99.96% – – 
d04 31 28 94.77% 30 97.72% 31 99.88% 
d05 49 45 95.67% 48 98.35% 49 99.13% 
d06 71 65 95.68% 68 96.98% 71 99.03% 

5.4. Experiments on Real Scenarios 

The experiments in this section are based on the real scenarios that reflect typical reconnaissance 
operations. The environment of the scenarios is based on the real geographic data using two models: 
(a) The Digital Elevation Model (DEM), and (b) The Topographic Digital Data Model (TDDM). The 
former is a representation of the terrain surface in the form of a heightmap. The latter is a database 
of topographic and other objects; in the scenarios, buildings are used as not-transparent obstacles. 

Both geographic models come from the Military Geographic and Hydrometeorologic Office of 
the Ministry of Defense of the Czech Republic which provides geographic data for the Army of the 
Czech Republic. The DEM model has, in its last version, the distance between elevations 2.5 m and 
elevation precision 0.3 m; it is being updated regularly by methods of digital stereophotogrammetry 
and airborne laser scanning. The TDDM model contains topographic objects represented by a 
polygon and parameters (e.g., object height); it is being regularly updated using the method of direct 
mapping with the support of aerial imaging. 

Table 7 characterizes the environment of the scenarios: the size of the area of interest, the 
elevation difference (difference between the highest and the lowest altitude inside the area of interest) 
and obstacles (their number and average height). The scenarios offer various types of environment: 
from a small to large area to be explored, from a relatively flat to a very uneven terrain, from a low 
density to a high density of obstacles. For example, scenario sc04 is a typical urban environment with 
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an irregular shape of the area of interest, a very high density of tall obstacles (buildings) with narrow 
streets and a flat terrain. In comparison with this configuration, scenario sc05 is a large mountain 
environment with a very low density of obstacles, but a very uneven terrain. 

Table 7. Characteristics of the scenario’s environment. 

Scenario 
Area of Interest 

Elevation Difference 
Obstacles 

Width Height Area Count Height 
sc01 0.40 km 0.25 km 0.1 km2 44 m 14 14.6 m 
sc02 0.95 km 1.14 km 0.7 km2 79 m 266 6.4 m 
sc03 3.75 km 3.04 km 2.8 km2 129 m 533 5.1 m 
sc04 2.99 km 3.24 km 5.3 km2 47 m 936 10.6 m 
sc05 4.00 km 2.10 km 6.8 km2 654 m 8 9.4 

Table 8 presents the technical and tactical configurations: the number of UAVs available (at the 
disposal of the commander and deployed in the area of operations), the minimum requested 
coverage, parameters of sensors (the maximum distance to objects of interest and an angular field of 
view) and a minimum and maximum permitted height of flight of the UAVs. 

Table 8. Technical and tactical parameters of the reconnaissance operations. 

Scenario 
Number 
of UAVs 

Minimum 
Coverage 

Sensors Minimum 
Height 

Maximum 
Height 𝒅𝒎𝒂𝒙 𝜶𝒇𝒐𝒗 

sc01 1 99% 80 m 75° 20 m 120 m 
sc02 2 98% 150 m 75° 20 m 180 m 
sc03 5 99% 200 m 90° 50 m 300 m 
sc04 3 95% 200 m 90° 50 m 300 m 
sc05 4 99% 500 m 120° 50 m 400 m 

For optimization, the parameters of the algorithms were set as follows: 𝑇 = 10 , 𝑇 =10 , 𝛾 = 0.9 , 𝑛 = 10 ∙ 𝑛 , 𝑛 = 20  (for sc01, sc02, sc05) or 𝑛 = 50  (sc03, sc04) 
respectively. 

Table 9 presents the optimization results. The third column shows the number of waypoints 
estimated by Algorithm 6. The estimated number of waypoints were deployed using Algorithm 3; in 
total, 50 optimizations per scenario were conducted—for results, see the fourth to sixth columns. The 
best solution found exceeds the minimum coverage required for the scenarios (see Table 8) in all 
cases. The last column shows the average execution time of optimization; this depends, of course, on 
the size of the rasterization step. 

Table 9. Optimizations of the number and deployment of waypoints for the real scenarios. 

Scenario 
Rast. Step 𝒅𝒓𝒂𝒔𝒕 (m) 

Number of 
Waypoints 

Solution Found 1 Execution 
Time (s) 1 Best Mean Stdev 

sc01 2 23 99.19% 98.09% 1.06% 22.9 
sc02 3 37 98.58% 98.05% 0.28% 83.1 
sc03 5 70 99.26% 98.68% 0.41% 770.4 
sc04 5 111 95.47% 94.88% 0.26% 772.8 
sc05 10 22 99.03% 98.21% 0.38% 66.7 

1 50 trials. 

Figure 14 illustrates the deployment of waypoints and coverage for scenarios sc03 (on the left) 
and sc04 (on the right). In case of the former one, the area of interest is of the very irregular shape. 
Despite of this, the algorithm managed to deploy all the waypoints inside the area (70 waypoints 
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means 210 variables in the solution vector). In case of the latter one, the solution vector is composed 
of more than 300 independent variables. 

  
(a) (b) 

Figure 14. The best solution found: (a) instance sc03; (b) instance sc04. 

For the best solutions found, the routes of UAVs available in individual scenarios were planned 
using the algorithm mentioned in Section 4.4. The results are recorded in Table 10. The last two 
columns show the parameters of the optimized routes: the total distance covered by all UAVs 
participating in the operation, and operation time 𝑇 (the time when all the UAVs are back in their 
base positions); the latter is the optimization criterion defined in formula (12). In all cases, UAVs with 
the homogeneous flight parameters were used; the average flight velocity was set to 10 m ∙ s . 

Table 10. Optimizing the routes. 

Scenario Number 
of UAVs 

Number of 
Waypoints 

Coverage 
Routes 

Distance (km) Time 𝑻 (min) 
sc01 1 23 99.19% 1.515 2:31 
sc02 2 37 98.58% 6.823 5:41 
sc03 5 70 99.26% 25.756 8:41 
sc04 3 111 95.47% 25.234 14:07 
sc05 4 22 99.03% 16.067 7:11 

Figure 15 shows the routes for scenarios sc03 (on the left) and sc04 (on the right). The routes of 
individual UAVs are color coded. Moreover, the route times (times needed for UAVs to conduct their 
routes) are stated. The operation ends when the last UAV returns back to its base; thus, the 
optimization is about a good distribution of waypoints to available UAVs. The similar times of 
individual routes are apparent. 
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(a) (b) 

Figure 15. Planning the routes: (a) instance sc03; (b) instance sc04. 

The routes for UAVs are created by connecting the waypoints by straight lines (see Figure 15). 
This means that the routes are easily applicable for rotary-wing aircraft with the ability of vertical 
take-off and landing (VTOL) and abrupt changes in direction. The only requirement for them is the 
ability to automatically follow a set of predefined waypoints (and, of course, it needs to be equipped 
with an appropriate sensor). Nowadays, this ability is common not only for the state-of-the-art 
military UAVs but also for ordinary commercial drones. However, the model is applicable, with some 
minor limitations, even for fixed-wing aircraft—see [38] for more details. 

The experiments conducted so far have assumed that the monitoring can be performed only 
when the UAVs are located at waypoints, i.e., not during their flight between them. In many real 
situations, the monitoring can be performed continuously during the flight of the UAVs along their 
routes. This case was tested on the best solutions found (Table 9) and the routes planned for these 
solutions (Table 10). The results are in Table 11 where the original coverage (monitoring only from 
waypoints) is compared to the so-called continuous coverage (monitoring during the flight). The 
continuous monitoring provides better results (the worse original solution, the higher the 
improvement). 

Table 11. Comparison of the original and continuous monitoring. 

Scenario Number 
of UAVs 

Number of 
Waypoints 

Waypoints 
Coverage 

Continuous 
Coverage 

Improvement 

sc01 1 23 99.19% 99.71% 0.52% 
sc02 2 37 98.58% 99.50% 0.92% 
sc03 5 70 99.26% 99.66% 0.40% 
sc04 3 111 95.47% 97.82% 2.35% 
sc05 4 22 99.03% 99.70% 0.67% 

6. Conclusions 

The article presented the model of aerial reconnaissance using UAVs cooperating to conduct the 
operation as effectively as possible. The monitoring is performed from a number of waypoints 
deployed in the three-dimensional space in the area of operations. The terrain and non-transparent 
objects, which may cause occlusion, are taken into account. For the deployment of waypoints, the 
metaheuristic algorithm was proposed and verified by experiments; the results were compared with 
the optimal solutions. The possibility of the practical use was confirmed by a set of experiments based 
on the typical military reconnaissance scenarios and real geographic data. 

𝑈  𝑈  𝑈  

𝑈  
𝑈  
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The metaheuristic algorithm proposed for waypoints deployment is based on the simulated 
annealing principles. It is a simple algorithm yet very efficient in positioning problems. The strengths 
of the algorithm are its fast convergence to the optimum, efficient mechanism preventing a solution 
being stuck in some local optimum and low memory demands. The most time-consuming and 
memory demanding part of the whole optimization process is the evaluation of a particular solution. 
Therefore, a lot of effort was put into increasing its efficiency. The speed of the solution evaluation, 
as well as the memory demands, depends, beside the configuration of a computer used (power and 
available memory), on the rasterization; the number of points needed to be evaluated changes 
quadratically with the rasterization step. However, the precision of the evaluation is also dependent 
on the rasterization step. This results in two contrary requirements. On the one hand, the step should 
be as small as possible so that the evaluation is as precise as possible; on the other hand, it should be 
as large as possible so that the evaluation is as fast as possible. The choice of the rasterization step is, 
therefore, a compromise between the two requirements. 

The model proposed in this article was implemented into the decision support system for 
commanders of the Czech Army. Prior to any military mission there must be planning process which 
is called either Troops leading procedure (in case of company and below military units) or Military 
decision making process (in case of battalion level and higher). This process is complex, continuous 
and composed of many steps. As it is apparent from the results of experiments, time of optimization 
did not exceed 15 min in case of the most complex problems. During this time, there are other 
activities which are ongoing simultaneously. Moreover, ordinary planning process with no 
autonomous computation must be done by military personnel and lasts for significantly longer time. 
In conclusion, time of computation did not influence any critical military mission at all. 

Although the model is intended to be used for military purposes, there are other civil real life 
implementations and applications such as the rapid evaluation of a disaster area and management of 
recovery resources, identification of threats on land, border surveillance and protection, etc. 

The future work of the authors will be aimed at further optimization of the solution evaluation 
process. The significant speed improvement is to be achieved by implementing the algorithm on the 
graphics processing unit (GPU). For the further verification of the model, the experiments using the 
real UAVs are planned to be carried out. The current reconnaissance model will also be extended to 
the persistent surveillance model, in which the continuous monitoring of the area of interest by a 
swarm of UAVs is assumed. 
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Nomenclature 𝐴𝑜𝑂 Area of operations. 𝐴𝑜𝐼 Area of interest to be explored. 𝑈 Set of available unmanned aerial vehicles: 𝑈 = 𝑈 ,𝑈 , … ,𝑈 . 𝑈  An available UAV. 𝑀 Number of available unmanned aerial vehicles. 𝑊 Set of waypoints deployed in the area of operations: 𝑊 = 𝑊 ,𝑊 , … ,𝑊 . 𝑊  A waypoint deployed in the area of operations. 𝑥 ,𝑦  Coordinates of waypoint 𝑊  in the area of operations. 𝑁 Number of waypoints deployed in the area of operations. 𝛼  Angular field of view of sensors of the UAVs. 𝑑  Maximum distance from a sensor to an object of interest. ℎ  Altitude of an UAV at waypoint 𝑊 ∈ 𝑊. ℎ  Height of flight of an UAV above the ground level at waypoint 𝑊 ∈ 𝑊. 
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ℎ  Minimum allowed height of flight of UAVs. ℎ  Maximum allowed height of flight of UAVs. 𝑃 Set of points on the ground in the area of operations: 𝑃 = 𝑃 ,𝑃 , … . 𝐸 Function to determine the terrain elevation in any point in the 𝐴𝑜𝑂. 𝑂 Set of obstacles in the area of interest: 𝑂 = 𝑂 ,𝑂 , … ,𝑂 . 𝑂  An obstacle in the area of interest. 𝐿 Number of obstacles in the area of interest. 𝑉  Set of points in the area of interest visible from waypoint 𝑊 ∈ 𝑊. 𝑉 Set of points in the area of interest monitored from all the waypoints. 𝑑  Size of the rasterization step. 𝑁  Total number of points in the rasterized area of interest. 𝑁  Number of visible points in the rasterized area of interest. 𝑋  Solution in the state space (particular deployment of waypoints). 𝐶,𝐶  Coverage of the area of interest from all the waypoints. 𝐶  Minimum required coverage of the area of interest. 𝑅 Routes of UAVs: 𝑅 = 𝑅 ,𝑅 , … ,𝑅 . 𝑅  A route of UAV 𝑈  (order of nodes to be visited): 𝑅 = 𝑅 ,𝑅 ,𝑅 , … ,𝑅 ,𝑅 . 𝐾  Number of waypoints to be visited en route 𝑅 . 𝑇  Time to perform route 𝑅  by 𝑈 . 𝑇 Duration of the reconnaissance operation. 𝑇  Initial temperature (simulated annealing parameter). 𝑇  Minimum temperature threshold (simulated annealing parameter). 𝑇  Current temperature (variable used in the simulated annealing algorithm). 𝛾 Cooling coefficient (simulated annealing parameter). 𝑛  Number of transformations (simulated annealing parameter). 𝑛  Number of replacements (simulated annealing parameter). 𝜏 Constant used when estimating the necessary number of waypoints. 𝜇 Mean. 𝜎 Standard deviation. 𝜀 Constant used in the solution transformation process. 

References 

1. Stodola, P.; Mazal, J. Tactical Decision Support System to Aid Commanders in their Decision–Making. In 
Proceedings of the Modelling and Simulation for Autonomous Systems, Rome, Italy, 15–16 June 2016; pp. 
396–406. 

2. Bruzzone, A.G.; Procházka, J.; Kutěj, L.; Procházka, D.; Kozůbek, J.; Ščurek, R. Modelling and Optimization 
of the Air Operational Manoeuvre. In Proceedings of the Modelling and Simulation for Autonomous 
Systems, Prague, Czech Republic, 17–19 October 2018; pp. 43–53. 

3. Pokonieczny, K.; Rybanský, M. Method of developing the maps of passability for unmanned ground 
vehicles. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Kuala Lumpur, 
Malaysia, 24–25 April 2018; p. 012027. 

4. Stodola, P.; Nohel, J.; Mazal, J. Model of Optimal Maneuver used in Tactical Decision Support System. In 
Proceedings of the 2016 21st International Conference on Methods and Models in Automation and 
Robotics, Miedzyzdroje, Poland, 29 August–1 September 2016; pp. 1240–1245. 

5. Nohel, J. Possibilities of Raster Mathematical Algorithmic Models Utilization as an Information Support of 
Military Decision Making Process. In Proceedings of the Modelling and Simulation for Autonomous 
Systems, Prague, Czech Republic, 17–19 October 2018; pp. 553–565. 

6. Petrea, N.; Ginghina, R.; Pretorian, A.; Petre, R.; Barsan, G.; Otřísal, P.; Mosteanu, D. Experimental Survey 
Regarding the Dangerous Chemical Compounds from Military Polygons that Affect the Military Health 
and the Environment. Rev. Chim. 2018, 69, 1640–1644. 

7. Stodola, P.; Drozd, J.; Nohel, J.; Hodický, J.; Procházka, D. Trajectory Optimization in a Cooperative Aerial 
Reconnaissance Model. Sensors 2019, 19, 2823. 

8. Stodola, P.; Drozd, J.; Mazal, J.; Hodický, J.; Procházka, D. Cooperative Unmanned Aerial System 
Reconnaissance in a Complex Urban Environment and Uneven Terrain. Sensors 2019, 19, 3754, 
doi:10.3390/s19173754. 



Sensors 2020, 20, 2926 26 of 27 

 

9. Lee, D.T.; Lin, A. Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 1986, 32, 276–
282. 

10. Ahadi, A.; Zarei, A. Connecting guards with minimum Steiner points inside simple polygons. Theor. 
Comput. Sci. 2019, 775, 26–31. 

11. Bottino, A.; Laurentini, A. A nearly optimal algorithm for covering the interior of an Art Gallery. Pattern 
Recognit. 2011, 44, 1048–1056. 

12. Marzal, J. The Three-Dimensional Art Gallery Problem and Its Solutions. Ph.D. Thesis, Murdoch 
University, Murdoch, Australia, 2012. 

13. Savkin, A.V.; Huang, H. Proactive Deployment of Aerial Drones for Coverage over Very Uneven Terrains: 
A Version of the 3D Art Gallery Problem. Sensors 2019, 19, 1438. 

14. Thanou, M.; Tzes, A. Distributed visibility-based coverage using a swarm of UAVs in known 3D-terrains. 
In Proceedings of the International Symposium on Communications, Control and Signal Processing, 
Athens, Greece, 21–23 May 2014; pp. 425–428. 

15. Saripalli, S.; Sukhatme, G.S.; Mejias, L.O.; Cervera, P.C. Detection and Tracking of External Features in an 
Urban Environment Using an Autonomous Helicopter. In Proceedings of the International Conference on 
Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 3972–3977. 

16. Shaferman, V.; Shima, T. Unmanned Aerial Vehicles Cooperative Tracking of Moving Ground Target in 
Urban Environments. J. Guid. Control Dyn. 2008, 31, 1360–1371. 

17. Semsch, E.; Jakob, M.; Pavlíček, D.; Pěchouček, M. Autonomous UAV Surveillance in Complex Urban 
Environments. In Proceedings of the IEEE/WIC/ACM International Joint Conference on Web Intelligence 
and Intelligent Agent Technology, Milan, Italy, 15–18 September 2009; pp. 82–85. 

18. Jakob, M.; Semsch, E.; Pavlíček, D.; Pěchouček, M. Occlusion-aware Multi–UAV Surveillance of Multiple 
Urban Areas. In Proceedings of the Workshop on Agents in Traffic and Transportation, Toronto, ON, 
Canada, 11 May 2010. 

19. Alfeo, A.; Cimino, M.G.C.A.; De Francesco, N.; Lazzeri, A.; Lega, M.; Vaglini, G. Swarm coordination of 
mini–UAVs for target search using imperfect sensors. Intell. Decis. Technol. 2018, 12, 149–162. 

20. Li, X.; Chen, J.; Deng, F.; Li, H. Profit-Driven Adaptive Moving Targets Search with UAV Swarms. Sensors 
2019, 19, 1545. 

21. Silva, S.H.; Rad, P.; Beebe, N.; Choo, K.K.R.; Umapathy, M. Cooperative unmanned aerial vehicles with 
privacy preserving deep vision for real-time object identification and tracking. J. Parallel Distrib. Comput. 
2019, 131, 147–160. 

22. Cabreira, T.M.; Brisolara, L.B.; Ferreira, P.R. Survey on Coverage Path Planning with Unmanned Aerial 
Vehicles. Drones 2019, 3, 4. 

23. Zhao, Y.; Zheng, Z.; Liu, Y. Survey on computational-intelligence-based UAV path planning. Knowl.-Based 
Syst. 2018, 158, 54–64. 

24. Coutinho, W.P.; Battarra, M.; Fliege, J. The unmanned aerial vehicle routing and trajectory optimization 
problem, a taxonomic review. Comput. Ind. Eng. 2018, 120, 116–128. 

25. Geiger, B. Unmanned Aerial Vehicle Trajectory Planning with Direct Methods. Ph.D. Thesis, Pennsylvania 
State University, Old Maine, PA, USA, 2009. 

26. Geng, L.; Zhang, Y.F.; Wang, J.J.; Fuh, J.Y.H.; Teo, S.H. Mission planning of autonomous UAVs for urban 
surveillance with evolutionary algorithms. In Proceedings of the IEEE International Conference on Control 
and Automation, Hangzhou, China, 12–14 June 2013; pp. 828–833. 

27. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of IEEE International Conference 
on Neural Networks, Perth, Australia, 27 November–1 December, 1995; pp. 1942–1948. 

28. Shao, Z.; Yan, F.; Zhou, Z.; Zhu, X.P. Path Planning for Multi-UAV Formation Rendezvous Based on 
Distributed Cooperative Particle Swarm Optimization. Appl. Sci. 2019, 9, 2621. 

29. Cao, Y.; Wei, WY.; Bai, Y.; Qiao, H. Multi-base multi-UAV cooperative reconnaissance path planning with 
genetic algorithm. Clust. Comput. 2019, 22, S5175–S5184. 

30. Glover, F. Future Paths for Integer Programming and Links to Artificial Intelligence. Comput. Oper. Res. 
1986, 13, 533–549. 

31. Lee, M.T.; Chen, B.Y.; Lai, Y.C. A Hybrid Tabu Search and 2-opt Path Programming for Mission Route 
Planning of Multiple Robots under Range Limitations. Electronics 2020, 9, 534. 

32. Hu, B.; Sun, ZX.; Hong, HS.; Liu, J. UAV-aided networks with optimization allocation via artificial bee 
colony with intellective search. Eurasip J. Wirel. Commun. Netw. 2020, 2020, 40. 



Sensors 2020, 20, 2926 27 of 27 

 

33. Wang, YA.; Li, K.; Han, Y.; Ge, FW.; Xu, WS.; Liu, L. Tracking a dynamic invading target by UAV in oilfield 
inspection via an improved bat algorithm. Appl. Soft Comput. 2020, 90, 106150. 

34. Wang, XF.; Zhao, H.; Han, T.; Yhou, H.; Li, C. A grey wolf optimizer using Gaussian estimation of 
distribution and its application in the multi-UAV multi-target urban tracking problem. Appl. Soft Comput. 
2019, 78, 240–260. 

35. Carlsson, J.; Ge, D.; Subramaniam, A.; Wu, A.; Ye, Y. Solving min-max multi-depot vehicle routing 
problem. Lect. Glob. Optim. 2009, 55, 31–46. 

36. Stodola, P. Using Metaheuristics on the Multi-Depot Vehicle Routing Problem with Modified Optimization 
Criterion. Algorithms 2018, 11, 74. 

37. Stodola, P. Hybrid ant colony optimization algorithm applied to the multi-depot vehicle routing problem. 
Nat. Comput. 2020, doi:10.1007/s11047-020-09783-6. 

38. Stodola, P. Improvement in the Model of Cooperative Aerial Reconnaissance Used in the Tactical Decision 
Support System. J. Def. Modeling Simul. 2017, 14, 483–492. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 


