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Abstract: This article examines autonomous reconnaissance in a complex urban environment using
unmanned aerial vehicles (UAVs). Environments with many buildings and other types of obstacles
and/or an uneven terrain are harder to be explored as occlusion of objects of interest may often occur.
First, in this article, the problem of autonomous reconnaissance in a complex urban environment
via a swarm of UAVs is formulated. Then, the algorithm based on the metaheuristic approach is
proposed for a solution. This solution lies in deploying a number of waypoints in the area of interest
to be explored, from which the monitoring is performed, and planning the routes for available UAVs
among these waypoints so that the monitored area is as large as possible and the operation as short as
possible. In the last part of this article, two types of main experiments based on computer simulations
are designed to verify the proposed algorithms. The first type focuses on comparing the results
achieved on the benchmark instances with the optimal solutions. The second one presents and
discusses the results obtained from a number of scenarios, which are based on typical reconnaissance
operations in real environments.

Keywords: autonomous aerial reconnaissance; collective perception; metaheuristic algorithm;
simulated annealing; experiments

1. Introduction

Recently, swarm robotics has become a phenomenon in many real-world applications. It is about
the coordination of multiple robots as a system to achieve a desired behavior. Collection of information
about the environment is the most critical prerequisite for decision-making. For this, Unmanned Aerial
Vehicles (UAVs) equipped with necessary sensors may be used in many situations and applications
both in the civil and military domains.

In this article, the problem of using a swarm of UAVs in military reconnaissance operations is
formulated and the solution to this problem is proposed. The principles of collective perception are used
during the process in order to accelerate the operation and increase its effectiveness. The reconnaissance
operations are assumed to be performed in complex urban environments and/or very uneven terrain
where obstacles or terrain may cause occlusions.

The article is organized as follows: in this section, the authors” motivation is discussed along with
the implementation of the results. Contributions of the research are also highlighted. Section 2 reviews
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the literature related with these issues. Section 3 defines and formulates the problem. In Section 4,
algorithms for a solution are proposed. Section 5 presents the results of experiments carried out for
verification. Finally, Section 6 concludes the article and points out some possibilities of the future
research in this area.

1.1. Motivation

The Military Decision-Making Process (MDMP) is one of the crucial processes in order to
accomplish all the given tasks and missions. It is a very complex process composed of several steps.
In the modern environment, any commander’s decision requires an analysis of countless information
from different sources. Contemporary armed conflicts are characterized by a “big data” flow and its
analysis, which significantly influences the MDMP. Moreover, the accuracy of any data used within
the MDMP would tremendously influence the planning, development and subsequent evaluation
of military missions. In order to support military commanders’ decision-making, the University
of Defense developed the Tactical Decision Support System (TDSS) composed of several models of
military tactics. It is designed as an open system with the possibilities of further development.

Reconnaissance itself is a very important step of the MDMP, especially on the tactical level.
It provides military commanders with essential information concerning the terrain, weather, enemy
situation, etc. It should be continuous and as much accurate as possible. Especially aerial reconnaissance
conducted by UAVs is a very strong means of information gathering. Moreover, its autonomy did not
require any additional demand on the military structure and organization.

The urban environment is currently one of the typical areas where contemporary armed conflicts
take place. The armed conflicts in Syria, Ukraine and other places proved the necessity to deeply
develop the information flow. The complexity of urban areas and different military tactics used require
new approaches to support the MDMP of commanders. Subsequently, such new approaches would
influence military tactics and diminish losses. There are several publications focused on this issue from
different perspectives [1-6].

The model proposed in this article has been implemented as a part of the TDSS. The purpose of
this system is to support commanders of the Czech Army on the tactical level. The implementation
is still only in its trial version; this means it has been validated so far only by simulations. The real
life experiments using drones in the real environment are still to be conducted. The idea of using
this system for commander’s decision-making support is as follows. The commander, who needs to
perform reconnaissance of some area of interest within his/her mission, inputs all necessary information
and requirements into the system. Then, the system plans the routes of available UAVs at the
disposal of the commander and presents the results for confirmation. Finally, the commander decides
whether to launch the reconnaissance as he/she is responsible for the mission. After this decision,
the reconnaissance operation can start immediately (or when required) by controlling the drones.

1.2. Contributions

The authors continue with their previous research in this area, see [7,8]. This article extends and
completes their previous findings. In particular, the contributions are as follows:

e  The problem of autonomous aerial reconnaissance in complex environments via a swarm of
unmanned aerial vehicles is formulated. The monitoring is performed from a number of waypoints
deployed in the area of operations; each waypoint is defined in the three-dimensional space by its
coordinates and altitude.

e  The approach to effectively evaluate the coverage (monitored area) from a number of deployed
waypoints is proposed. Terrain and obstacles, which may occlude the objects of interest are taken
into consideration as well as the parameters of the sensors used.

e  The algorithm to estimate a minimum number of waypoints needed to explore a required portion
of the area of interest is proposed.
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e  The metaheuristic algorithm based on the simulated annealing principles is proposed to deploy
waypoints in the area of operations (in three dimensions).

e A set of experiments is designed to assess the proposed algorithms. The results are compared to
the optimal solutions.

e  Asetofscenariosis designed based on the parameters and features of the real typical reconnaissance
operations, and the behavior and results are discussed. The real geographic data is used in
these experiments.

2. Literature Review

The topic concerning autonomous aerial reconnaissance using UAVs is currently discussed
very frequently by the scientific as well as military personnel. From the scientific point of view,
the reconnaissance problem, as is understood in this article, can be seen as the Art Gallery Problem,
which is a well-studied NP-hard visibility problem in computational geometry [9]. This problem has
been studied mostly in the two-dimensional space [10,11].

The three-dimensional case of the problem (referred to as 3D Art Gallery Problem) is studied less
frequently. For example, Marzal [12] aimed at the determination of the number of guards required to
cover the interior of a pseudo-polyhedron as well as the placement of these guards; this study models
the art gallery by an orthogonal pseudo-polyhedron. Savkin and Huang [13] estimated the minimal
number of drones necessary to monitor a given area of a very uneven terrain. The proposed problem
may be viewed as a drone version of the 3D Art Gallery Problem. Thanou and Tzes [14] addressed the
area coverage problem of a 3D-space by a group of UAVs, equipped with omnidirectional cameras;
the terrain is assumed known to each UAV which has a maximum flight-altitude.

Some of the publications dealing with the problem of using UAVs for monitoring or surveillance
take into consideration the fact that the area, where reconnaissance is carried out, is full of visual
obstacles, particularly in an urban area. Saripalli et al. [15] presented the design and implementation
of a real-time vision-based approach to detect and track features in a structured environment using an
autonomous helicopter. Shaferman and Shima et al. [16] examined the problem of tracking the moving
ground target in an urban environment via a set of cooperating UAVs and proposed a stochastic
search method (based on a genetic algorithm) for finding in real time monotonically improving
solutions. Semsch et al. [17,18] dealt with the problem of multi-UAV-based surveillance in complex
urban environments with occlusions. The problem lies in controlling the flight of UAVs with on-board
cameras so that the coverage and recency of the information about the designated area may be
maximized. Swarming of multiple UAVs in order to increase the performance and effectiveness of the
operation has been recently studied in many researches including applications such as reconnaissance
or surveillance. Alfeo et al. [19] proposed a swarm coordination bio-inspired algorithm and applied
it to search for a target object using a swarm of UAVs equipped with imperfect sensors. Similarly;,
Li et al. [20] introduced a distributed algorithm for searching moving targets via a fleet of cooperative
UAUVs. Silva et al. [21] examined the problem of real-time object identification and tracking through
cooperative UAVs in a complex and adversarial environment involving motion, crowded scenes and
varied camera angles and proposed a distributed deep learning algorithm for a solution.

Effective route planning and trajectory optimization of UAVs are critical in applications such as
monitoring, reconnaissance or surveillance. Extensive surveys of planning methods are provided,
for example, by Cabreira et al. [22] (methods based on coverage path planning), Zhao et al. [23]
(computational-intelligence-based methods), Coutinho et al. [24] (identification of common attributes in
aerial planning problems), or Geiger [25] (methods such as linear programming, dynamic programming,
genetic algorithms and neural networks). In their research, Reardon and Fink [26] connected the issues
of aerial reconnaissance (3D Art Gallery Problem) and path planning (Traveling Salesman Problem)
and formulated the problem of searching and identification of objects using both ground and aerial
autonomous robotic systems.



Sensors 2020, 20, 2926 4 of 27

For the solution of the problem formulated in this article, two metaheuristic approaches were
adapted: the simulated annealing for the waypoints deployment and the ant colony optimization
for the path planning of UAVs. The choice of these methods has been supported by the experience
of authors obtained in their previous research. Metaheuristic methods are, in general, problem
dependent. Further on in this paragraph, several other methods, which could possibly be used to this
problem, are mentioned on examples of their recent applications which are related to some extent to
the problem examined in this article. A very popular method called Particle Swarm Optimization
(PSO) is often used for various types of problems. It is a population based stochastic optimization
technique developed in 1995 by Eberhart and Kennedy [27]. Since that time, a thousand of application
have emerged. Shao et al. [28] use this method for the problem of generating cooperative feasible
paths for formation rendezvous of UAVs which was formulated as a multi-objective optimization
problem with many coupled constraints; the proposed algorithm can meet the kinematic constraints of
UAVs and the cooperation requirements. Another very popular search heuristic approach belongs
to the family of Genetic Algorithms (GA). It is inspired by Darwin’s theory of natural evolution;
it reflects the process of natural selection. Cao et al. [29] adopted this algorithm for the problem of
multi-base multi-UAV cooperative reconnaissance path planning; the problem is transformed into the
shortest path combinatorial optimization using graph theory. However, the authors do not assume
the occlusion caused by the terrain or obstacles. Tabu search formulated in 1986 by Glover [30] is
another well-known local search method. Lee, Chen and Lai [31] hybridized this method with the
2-opt algorithm in the problem of the mission route planning of multiple unmanned robots in order to
distribute tasks and coordinate the operation. A large family of bio-inspired algorithms has become
very popular in recent years. To name a few: Artificial Bee Colony [32] (problem of UAVs used for
wireless communication networks); Bat Algorithm [33] (problem of tracking a dynamic invading target
by an UAV); or Grey Wolf Optimization [34] (multi-UAV multi-target urban tracking problem).

3. Problem Definition

In this section, the problem examined in this article is formulated. The problem is about planning
routes of available UAVs for the reconnaissance mission performed in a complex urban environment.
The goal is to plan the route so that the mission is carried out as fast as possible while the exploration of
the area of interest is as complete as possible. The terrain and obstacles which may cause occlusions are
taken into consideration. The list of all symbols and variables used in this and the following sections is
included in the table at the end of the article.

Let U = {Uy,Uy,..., Uy} be a finite set of UAVs where M > 1 is their number available to
participate in a reconnaissance operation. At the beginning of the operation, each UAV is deployed
in its initial position (base) in the area of operations. The UAVs launch from their bases, and, when
the operation is over, they return back. Each UAV is equipped with a sensor system capable to
monitor some portion of the area directly below it. These sensors are characterized by two parameters
as follows:

e Angular field of view (a ).

e  Maximum distance from monitored objects (dqx).

Both parameters are given by the technical construction and principles of the sensors. The sensors
are homogeneous, i.e., all UAVs are equipped with the same type of sensors. Each UAV is able to
monitor objects of interest located within the field of view of its sensor and not farther from the UAV
than allowed by the maximum distance constraint. This principle in a plane is shown in Figure 1 where
the green area (called object detection range) represents the space, in which the object, if located in this
range, is detected by an UAV.



Sensors 2020, 20, 2926 5o0f 27
T U €U

max

W

Figure 1. Object detection range of a sensor of an Unmanned Aerial Vehicles (UAV).

The aim of the reconnaissance operation is to monitor as much portion of the area of interest Aol
as possible using a fleet of UAVs U. The area of interest is defined by a polygon with or without holes
lying in the area of operations AoO (Aol C AoO). During the operation, the height of flight of the UAV's
is restricted. The limiting parameters are as follows:

e  Minimum height of flight above the ground level (/1,,,i5,).
e  Maximum height of flight above the ground level ().

This means that the height of flight above the ground level & of all UAVs at any moment of the
operation must be within the allowed limits (/1,,i, < It < hya). Both limits are set by the commander
based on the tactical requirements for the operation and/or technical parameters of sensors.

Let W = {Wy, W,, ..., Wy} be a finite set of waypoints deployed in the area of operations where
N > 1 is their number. The monitoring of the area of interest is performed from these waypoints only.
When any UAV is located at waypoint W; € W at any time of the operation, some portion of the area of
interest is observed (i.e., objects of interest are detected if located in the observed area).

Let P = {Pq, P2, ...} be an infinite set of points lying on the ground in the area of operations. Each
point P; € P is characterized by its elevation E(P;) (height above the mean sea level) determined by the
terrain. An UAV monitoring from waypoint W; € W is located at some altitude h; see Equation (1)
where £; is the height above the ground level of the UAV at waypoint W;:

1t

Wy =E(W;) +hi foralli=1,2,...,N )

Let V; C P be a set of points lying in the area of interest, which is monitored from waypoint W;;
this means that an object of interest is detected by an UAV positioned at waypoint W; and altitude tht
if this object is located at any point from set V;. All points in V; must satisfy the conditions as follows:

1.  Points in V; must lie in the area of interest (V; C Aol).
2. Points in V; must be within the object detection range of the sensor (see Figure 1).
3. There must be a visual line of sight (VLOS) between the sensor and all points in V; (see Figure 2).

Let O = {04, 0,,...,0L} be a finite set of not-transparent obstacles lying in the area of interest
where L > 0 is their number. An obstacle (e.g., a building) or an uneven terrain may occlude some
portion of the area in the object detection range; this happens in case that the VLOS condition in point
3 above is violated. The principle in a plane is shown in Figure 2: Figure 2a shows the situation
without obstacles, whereas Figure 2b with obstacles. The green line represents points in set V; C P
(for further reference called as visible), red line remaining points in P but not in V; (for further reference
called as occluded).
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Figure 2. Determination of points monitored by an UAV: (a) without obstacles; (b) with obstacles.

Figure 3a shows an example of the real situation from the top view. The polygon (blue line)
encloses the area of interest; grey objects are obstacles (buildings in this case). Green area represents
visible points in set V;. Figure 3b shows the same situation, but this time, five waypoints are deployed.
The total visible area V is given by the unification of sets V; for individual waypoints according to
Equation (2). The total coverage of the area of interest through deployed waypoints is calculated
according to Equation (3) as a ratio between the number of visible points (denoted as |V|) and the
number of all points in the area of interest (denoted as |Aol]):

N
V=UV; )
i=1
_ 1V
~Aol| ©)

During the reconnaissance operation, UAVs in the fleet visit individual waypoints in the specified
order. As all sensors of the UAVs are homogeneous, it is irrelevant, which UAV will visit which
waypoint. Let R = {Ry,Ry,...,Rum} be a set of routes of individual UAVs. Route R; € R defines a

trajectory of UAV U; € U as an order of waypoints to be visited: R; = {R?, R}, R?, e, R;(f , R;(f +1} where
K; > 0 is the number of waypoints to be visited by UAV U;. Constraints in Equations (4)~(7) need to be
satisfied: constraint in Equation (4) ensures that each UAV launches from its base and returns back at
the end of the operation; and constraints in Equations (5)—(7) ensure that all the waypoints are visited
just once:

Cy, = 18.78% Cy, = 90.13%

mmm Visible

mm Occluded [ Obstacles

(a) (b)

Figure 3. Visible points in the area of interest: (a) single waypoint; (b) multiple waypoints.
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RO=RU™ = U; forallj=1,2,...,M @)
RfeW forallj=12,..., Mandk=1.2,... K (5)
M
Y Ki=N ©6)
j=1
RE#R] foralljjp=12,...M(j#p), k=12... Kandg=12...K, @)

Equation (8) defines the time, in which UAV Uj performs its route R;. The term |R’]‘ - R’]?H|

expresses the time needed to fly from waypoint/base R¥ to the next waypoint/base R on its route;
it depends on the distance between both points and the flight parameters of UAV U;. The duration of
the reconnaissance operation is defined in Equation (9); all UAVs start at the same time at the beginning
of the operation, and the operation ends when the last UAV returns back to its base:

Kj
L k_ pk+1
T = )[R - RE| ®)
k=0
T= max(Tl, Tz, cee ,TM) (9)

A simple example with two UAVs (red dots) and five waypoints (blue dots) is shown in Figure 4.
The routes (violet color) are Ry = {U7, W1, W5, Uq} and Ry = {Up, Wo, W3, Wy, Ub}.

N>

Figure 4. Routes of UAVs in the operation.

It is desired to plan the reconnaissance operation optimally. The optimization criteria are defined
in Equations (10)—(12). The first optimization criterion in Equation (10) is connected with the second
optimization criterion in Equation (11). The former minimizes the number of waypoints N (the goal
is to find such a number so that the monitoring may be performed in the requested quality from as
low number of waypoints as possible), the latter maximizes the total coverage of the area of interest C
(the goal is to find positions of N waypoints so that the visible area may be as large as possible). The third
optimization criterion in Equation (12) is connected with the planning of routes R for individual UAVs
(the goal is to find such routes so that the operation time T may be as short as possible):

minimize(N) (10)

maximize(C) (11)
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minimize(T) (12)

The first two optimization criteria go against one another (the coverage is, generally, reduced
when the number of waypoints is lowered). Thus, a new parameter called minimum coverage Cy;,, is
defined; it controls the requested quality of the operation as it determines the minimum necessary
portion of the visible area in the area of interest—see Equation (13). The objective is to find a low
number of waypoints, with which the coverage is still equal or higher than requested:

In general, each reconnaissance operation is characterized by a number of constant parameters
and a number of optimization parameters (decision variables). Constant parameters are as follows:

e  Geographical data: the terrain and database of obstacles in the area of operations (E, O).

e  Size, shape and position of the area of interest (Aol).

e  Number and basic positions of available UAVs, parameters of their sensors (M, U, « foor Amax)-
e  Minimum and maximum permitted height of flight above the ground level (h,,i,, Max).-

e  Minimum requested coverage (Cyix).

Optimization parameters are as follows (all variables are continuous except the first one,
which is discrete):

e  Number of waypoints (N).
e Positions of waypoints (coordinates x; and y; for all W; € W).
e  Heights above the ground level of the UAVs at waypoints (i; for all W; € W).

4. Solution Algorithms

In this section, algorithms for solving the problem formulated in the previous section are proposed.
First, the principle for calculating the coverage of the area of interest is presented. Then, algorithms for
the optimization of criteria in Equations (10)—(12) follow.

4.1. Evaluation of a Solution

Let XN be a particular solution, lying in the state space, to the reconnaissance operation.
This solution is characterized by N waypoints W deployed in the area of operations: XN =
{W1, Wa,..., Wn} = {x1, y1, 11, %2, Y2, h2, ..., XN, YN, hin}, i-e., there are 3N optimization variables. For a
particular problem (settings of constant parameters) and solution X" in the state space, the value of
the coverage of the area of interest CV can be calculated: CN = f (XN ) ; the value lies in interval (0, 1).

For calculation of CN, the number of visible points |V] in the area of interest needs to be
determined—see Equation (3). To get this number, any point lying inside the area of interest must
be evaluated if it is visible from any waypoint or not. In general, there are an infinite number of
points P inside the area of interest, which is, of course, not possible to evaluate from the practical
point of view. The rasterization of the area of interest is a possible solution to this. The principle is
shown in Figure 5a. The area is evenly covered by a finite number of points P using the Sukharev grid.
The rasterization step d,4st determines the total number of points Np; each point lies in the middle of
its square. The visibility of each point in P is evaluated independently on one another; in this way, set
V of visible points of size Ny is created as illustrated in Figure 5b. The approximation of CN is then
calculated according to Equation (14); the precision of the approximation can be controlled by the
rasterization step dgst:

_ M _Nv

cN="1=
[P]  Np

(14)
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~
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Figure 5. Rasterization of the area of interest: (a) points in the area of interest; (b) visible points.

Evaluation of solution X" is performed by Algorithm 1. At the beginning, the set of visible points
V is emptied (line 1), and set P is created based on the principles presented above (line 2). Then,
each point P; € P is evaluated independently (line 3 to 7); if point P; is evaluated as visible from at
least one waypoint W; € W (line 5), then this point is included in set V and the algorithm continues by
evaluation of the next point. The algorithm returns the coverage CN of solution XV (lines 8 and 9).

Algorithm 1 Evaluation of a solution in pseudocode

Evaluate_Solution(x")

Input: XV

Output: ¢"

Constant parameters: E,0,A0l,0f0y,dmax,Arast
1. v=¢
2. P = Rasterize_Aol(d,4s:)
3. for each point P;€ P do
4. for each waypoint W; e W do
5. if P; is visible from W; then
6. V=v+{p}
7. continue on line 3
8. cY=vp|
9. return ¢"

Algorithm 2 elaborates the key process on line 5 of Algorithm 1. It evaluates the visibility of
point P; from waypoint W; by testing four conditions: (a) distance between W; and P; must not be
larger than the maximum permitted distance dyuax (line 1); (b) P; must be in the field of view a g, of the
camera positioned in W; (line 2); (c) there is no obstacle Oy € O disrupting the VLOS between W; and
Pj (line 3 and 4); (d) there is no point Py € P of elevation, which disrupts the VLOS between W; and P;
(line 5 and 6).
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Algorithm 2 Visibility evaluation between a point and a waypoint in pseudocode

Point_Visibility(P,W;,P;)

Input: P,W;,P;

Output: true/false

Constant parameters: E,0,a¢0p,dmax

if |W; — Pj| > dpq, then return false

if (E(Wl-) +h; — E(P,-))/|Wi — P;| < cos(ay,,/2) then return false
for each obstacle 0, € 0 do

‘ if 0, disrupts VLOS between W; and P; then return false
for each point P, € P do

‘ if E(P,) disrupts VLOS between W; and P; then return false
return true

NS Uk @

The computational complexity of Algorithm 1 is in Equation (15). The first and the second terms
are related to lines 3 and 4 of Algorithm 1: the visibility needs to be evaluated between Np rasterized
points and (up to) N waypoints. The third term represents the process on lines 3 and 4 of Algorithm 2:
each obstacle from set O of size L may disrupt the VLOS. The last term is connected with lines 5 and 6
of Algorithm 2: elevation of points in P may disrupt the VLOS (the reason of square root of Np is that
only points in P lying directly between W; and P; have to be tested):

O(NpN-L- y/Np) (15)

The evaluation of a solution is a key process in the optimization of the problem. Therefore,
the great efforts were devoted by the authors to increase its efficiency. Two main improvements were
implemented: (a) the floating horizon algorithm for computing visibility of a set of points in a line with
the linear dependence was implemented; (b) the obstacles were superimposed on the terrain. Thus,
the resulting computational complexity of the improved algorithm was reduced as stated in Equation
(16). Moreover, the implementation was optimized from the coding point of view (only operations
with integers are employed in the critical parts of the algorithm). The process is also parallelized and
distributed on the cores of a multicore processor:

O(Np-N) (16)

4.2. Optimization of Waypoint Deployment

In this section, an algorithm for optimization of a particular number of waypoints is proposed.
The optimization criterion is to maximize the coverage CN according to Equation (11). The input
of the algorithm, beside the constant parameters and algorithm settings, is the number on
waypoints N to be deployed. The output is a particular solution XN = (Wi, Wa,..., Wy} =
{x1,y1,h1, %0, Y2, ha, ..., XN, YN, I} and its coverage CN.

The proposed metaheuristic algorithm is based on the simulated annealing principles, which are
inspired in annealing in metallurgy (reducing defects of material by involving heating and controlled
cooling). The algorithm works in iterations where the process of solution transformation is performed.
The transformed solution may replace the original—even if it is worse. This principle allows expanding
the search space and prevents the algorithm to be stuck in some local optimum.

The behavior or the algorithm is controlled by 5 parameters as follows:

e  Maximum temperature Tyy: the initial value of temperature used in the first iteration.

e  Minimum temperature T,,;,,: the threshold value of temperature (the algorithm ends when the
temperature drops below this threshold).

e  Cooling coefficient A: it controls the speed of temperature reduction by cooling in successive iterations.
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e  Maximum number of transformations in iteration 711, it controls the higher limit of transformations
performed per iteration.

e  Maximum number of replacements in iteration 71, it controls the higher limit of replacements
(accepting the transformed solution and replacing the original) per iteration.

Algorithm 3 shows the principles in pseudocode. At the beginning, a random solution is generated
(line 1; see Algorithm 4 for details) and evaluated (line 2; see Algorithm 1 for details). The current
temperature is set to the maximum limit T}y (line 3). The algorithm works in iterations (lines 4 to 18);
the temperature does not change within an iteration. In each iteration, a number of transformations
are performed (lines 5 to 17). Transformation of the current solution XN into the new solution XN (line
7) is the key process of the algorithm (see Algorithm 5 for details).

Algorithm 3 Optimization of waypoint deployment in pseudocode

Deploy_Waypoints (N)

Input: N
Output: Cller, XDost

Constant parameters: E,0,401,050y,Amin NminAmax,ar
Algorithm settings: Tyuax, Tmin, ¥, Mimax,Mamax

1. XN, =X" = Generate_Random_Solution(N)

2. N =c" = Evaluate_Solution(x")

3. Tewr = Trnax

4. while T,,, = Ty, do // Tterations
5. n=n,=1

6. while n; < 1y, and n, < nype, do // Transformations
7. XV = Transform_Solution(T,,,,N,X")

8. cV' = Evaluate_Solution(xV")

9. p(x"' - xV) = f(cY,cN', T.y)

10. if Randu(0,1) < p(x"" - XxV) then do // Replacements
11. XN =xV

12. cN=cV

13. n,=n,+1

14. if ¢V > ¢, then do

15. XN =XV

16. e =cV

17. n=n+1

18. Towr =V Tewr

19. return CJlg, XN

The original solution is replaced by the transformed solution with some probability (line 9)
according to the Metropolis criterion in Equation (17). In case that the transformed solution is better
than the original, the original is always replaced. Otherwise, the probability depends on the difference
of qualities of both solutions and the current temperature T¢,;: the lower the difference and the higher
the temperature, the bigger the probability. This means that in the first phases of the algorithm,
the state space is largely expanded by accepting often worse solutions, whereas, towards the end
of the optimization, the solution is tuned in its surrounding. The acceptance of the transformed
solution is decided on line 10; function RandU(0, 1) is a pseudorandom number generator with a
uniform distribution:

, 1 for CN' > CN
XN - xN) = ' = 17
P( - ) { e~ CNTZuCrN otherwise (17)
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An iteration ends when either the number of transformations 111 or the number of replacements
1y exceed their limits #1,,,, and 12,4, respectively (see condition on line 6). Then the temperature
is lowered (line 18) by cooling coefficient A (0 < A < 1) and the next iteration starts. The algorithm
is terminated when the temperature T, drops below its lower limit T,,;, (see condition on line 4).
The best solution found during the whole optimization lei .; 18 stored (lines 14 to 16) and returned at
the end of the algorithm (line 19).

Algorithm 4 shows the process of the generation of a random solution (named on line 1 of
Algorithm 3). Each variable of a solution is set in its permitted limits using a pseudorandom number
generator with a uniform distribution (functions MinX, MaxX, MinY and MaxY return the minimum
and maximum values of a circumscribed rectangle of the area of interest).

Algorithm 4 Generation of a random solution in pseudocode

Generate_Random_Solution(V)

Input: N
Output: xV
Constant parameters: Aol,hpin, Amax

1. xV=¢

2. fori=1to N do

3. x; = RandU(MinX(4ol), MaxX(4ol))
4. x; = RandU(MinY(4oI), MaxY(4ol))
5. h; = RandU(hypin, Rmax)

6. XV =XV + {x;,y;, hi}

7. return XV

Algorithm 5 presents the process (called on line 7 of Algorithm 3), in which the current solution
XN is transformed into the new solution XV'. In the transformation, one randomly selected variable is
changed, the remaining variables copy the original values. The variable is selected by a pseudorandom
integer number generator RandI(a, b) with a uniform distribution (line 2) in the range from 1 to 3N as the
solution is composed of 3N variables: XN =[x, Y1, 1, %2, Y2, M2, ..., XN, YN, IN} = {Xll\], Xé‘], ... ,Xé\IN}.
The size of the change is determined by a pseudorandom number generator RandN(y, o) with a
normal distribution with a mean of u = 0 and a standard deviation of ¢ calculated on line 6 according
to Equation (18). The standard deviation depends on the current temperature and the range of the
variable (calculated on lines 3, 4 and 5 for individual types of variables: x coordinate, y coordinate and
height). The bigger the temperature, the bigger the changes. Constant ¢ in Equation (18) is a small
number influencing the standard deviation in situations when the current temperature is close to its

minimum limit: ranee
(Tcur - Tmin)'( 3g - E)

Tmax - Tmin

The computational complexity of the algorithm for optimizing waypoint deployment is given in
Equation (19). Itis linearly dependent on the number of iterations 7, computed according to Equation
(20) and the maximum number of transformations #1,,,y (M1,4x is used instead of 1y, because the
number of transformations is always equal to or greater than the number of replacements). The last
two terms correspond to the evaluation of the transformed solution in the loop—see Equation (16):

O(niter'nlmax'NP'N) (19)

log Tyin — log Tiax
logy

Niter = (20)
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The algorithm was implemented in two versions: continuous and discrete. The former assumes
all the variables of the solution to be continuous—waypoints can be deployed wherever in the area of
operations. The latter one assumes the variables to be discreet with the distance between neighboring
values set to the size of the rasterization step dy;s. It has an effect that the waypoints can be deployed
only in the middle of rasterization squares. The discretization of each variable is performed by
rounding to the nearest permitted value.

Algorithm 5 Transformation of a solution in pseudocode

Transform_Solution(7,,,,N,X")
Input: T, N,x"

Output: xV'

Constant parameters: Aol,hpin,himax
Algorithm settings: Ty, Tmin

1. x¥' =xV

2.  k =RandI(1,3N)

3. if kmod3 =1 then range = MaxX(4ol) — MinX(4ol) //x coordinate
4. if kmod 3 =2 then range = MaxY(4ol) — MinY(4ol) /Iy coordinate
5. if kmod3 =0 then range = hy a0y — hin //height

6. o = f(range, Tour, Tnax) Tmin)

7. XY =X} + RandN(0,0)

8. return xV'

4.3. Optimizing the Number of Waypoints

This section presents Algorithm 6 for optimizing the number of waypoints according to the
optimization criterion in Equation (10). The main idea of the algorithm consists in the first estimation
of the number based on the parameters of sensors and the subsequent deployment of this number
of waypoints; in the next phases, the value is updated according to the gap between the actual and
required coverage. Of course, this is not the only approach to determine the number of waypoints.
Another approach could be the binary search method where the value is determined between the limits
by the interval halving. The algorithm proposed in this section was selected because of its low number
of phases (see the results in Section 5.3).

Algorithm 6 Optimizing the number of waypoints in pseudocode

Optimize_Waypoints_Number(C,,;,)
Input: Cpin
Output: N,Cllee, XDost
Estimate N
Xp.se = Deploy_Waypoints(N)
cl.. = Evaluate_Solution(X},)
while ¢}, < C,,i;, then do
Update N
Xpese = Deploy_Waypoints(N)
¢l = Evaluate_Solution(X}.,)
return N,C)o XN,

NP
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The input of the algorithm is the minimum required coverage C,,;,. At first, the initial value of N
using Equation (21) is estimated (line 1) based on the size of the area of interest and parameters of
sensors. Coefficient 7 > 1 is a constant, which can be set with regard to the parameters of scenarios
(e.g., the terrain and obstacles); in most real situations, the best results were achieved with T = 1.5
(the purpose of this coefficient is discussed in Section 5.3 in more detail). Then, N waypoints are
optimized using Algorithm 3 (lines 2 and 3):

T-Cpin’| Aol

. Q)2
n-(dmax-sm J;v)

N =

(21)

If the coverage does not satisfy the minimum limit (line 4), the value of N is updated (line 5)
according to Equation (22) and the new number of waypoints are deployed again using Algorithm 3
(lines 6 and 7). This process is repeated in a loop (lines 4 to 7) until such N is found that the minimum
coverage constraint is met. The algorithm returns the number N as well as the solution XN and its
quality CN (line 8):

(22)

N = ’VN Cmin-‘

CN
4.4. Planning of Routes

When the number of waypoints and their deployment in the area of operations are determined,
the problem of planning routes for available UAVs follows. The optimization criterion is to minimize
the duration T of the reconnaissance operation as stated in Equation (12). This problem can be easily
transformed into the well-known Min-Max Multi-Depot Vehicle Routing Problem (MDVRP) [35] where
a set of customers should be served by a fleet of vehicles originating from multiple depots.

The authors of this article studied this problem extensively in their previous research.
The metaheuristic algorithm based on the Ant Colony Optimization (ACO) theory in combination
with other principles was proposed as a solution. The results were published, for example, in [36,37].
Therefore, this topic will not be examined and further pursued in this article.

5. Experiments and Results

The solutions proposed in the previous section were verified on a series of experiments.
All experiments were carried out on a computer with configuration as follows: CPU Intel i7-7700 3.5
GHz (4 cores), 32 GB RAM.

5.1. Evaluation of a Solution

The first set of experiments is aimed at the algorithm for the evaluation of a solution, i.e., calculation
of the coverage for a particular solution, with regard to its efficiency and influence of the key parameters:
number of waypoints and the total number of points in the area of interest.

The constant parameters of the scenario for these experiments are as follows: number of waypoints
N = 5and N = 10, respectively, field of view of sensors as,, = 90, maximum permitted distance
between a camera and objects dy;qx = 240 m, minimum and maximum height of flight #,,;, = 50 m and
hyax = 300 m, width and height of the area of interest 950 m X 1150 m, number of obstacles in the area
of interest L = 266 (height of obstacles ranges between 5 m and 15 m and their average height is 6.4 m),
the terrain relatively flat (the difference between the minimum and maximum altitude in the area of
operations is about 80 m). The shape of the area of interest and the layout of obstacles are shown in
Figure 6a. Figure 6b,c show positions of deployed waypoints.
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Figure 6. Scenario for the evaluation of a solution: (a) area of interest and the layout of obstacles;
(b) deployment of waypoints for N = 5; (¢) deployment of waypoints for N = 10.

Tables 1 and 2 show the results of the experiments. Table 1 presents the results achieved using the
original algorithm with no code optimization (see Section 4.1) and the computational complexity given
by Equation (15). In Table 2, the results are achieved when using the improved (optimized) algorithm
with the computational complexity from Equation (16).

Table 1. Experiments with the solution evaluation via the original algorithm.

Number of Rasterization Number of Coverage Coverage Execution
Waypoints N Step dyqst (m) Points Np cN Error Time (ms) !
5 1 678,953 59.49% Benchmark 1347
5 2 169,740 59.49% 0.00% 378
5 5 27,160 59.54% 0.08% 74
5 10 6786 59.43% 0.10% 15
5 20 1696 60.26% 1.29% 4.4
5 50 271 59.04% 0.76% 0.7
10 1 678,953 93.98% Benchmark 1859
10 2 169,740 93.98% 0.00% 465
10 5 27,160 93.97% 0.01% 75
10 10 6786 93.78% 0.21% 18
10 20 1696 94.81% 0.88% 5.1
10 50 271 95.20% 1.30% 1.3

! Each experiment was performed 1000 times and results were averaged.

Table 2. Experiments with the solution evaluation via the optimized algorithm.

Number of Rasterization Number of Coverage Coverage Execution
Waypoints N Step dyqst (M) Points Np CcN Error Time (ms) !
5 1 678,953 59.50% 0.02% 22.02
5 2 169,740 59.74% 0.42% 5.53
5 5 27,160 60.08% 0.99% 0.92
5 10 6786 59.77% 0.47% 0.28
5 20 1696 59.37% 0.20% 0.11
5 50 271 56.52% 4.99% 0.06
10 1 678,953 94.19% 0.22% 33.58
10 2 169,740 94.54% 0.60% 8.56
10 5 27,160 95.42% 1.53% 1.45
10 10 6786 95.38% 1.49% 0.47
10 20 1696 94.53% 0.59% 0.19
10 50 271 91.97% 2.14% 0.11

! Each experiment was performed 1000 times and results were averaged.
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In general, the original algorithm can be assumed more precise in evaluation than the optimized
version. In order to increase its efficiency, the latter one works with the integers rather than real
numbers in its critical sections; this may lead to minor approximations and inaccuracies. To calculate
the coverage error, the solution achieved by the original algorithm for d, = 1 is used as benchmark
(both for N = 5and N = 10).

The difference in the execution time (time to evaluate a solution) is immense. The main reason
is repeating the VLOS tests of each point with a number of L obstacles in the original algorithm
(see Equation (15)), while this is not done in the optimized version (see Equation (16)). In average (based
on all experiments in Tables 1 and 2), the optimized version is almost 60 times faster than the original
algorithm. For example, in case of N = 5 and d; = 1, the optimized algorithm manages to evaluate
more than 30 million points per second, whereas the original version evaluates only 0.5 million points.

Figure 7 compares the coverage errors. Although the original version provides more precise
results than the optimized version, the error of the latter one is below 2% in all cases (with the exception
of dryst = 50, but the reduction of information is too big in this case). The illustration of the influence of
the rasterization step on the evaluation is shown in Figure 8 for rasterization steps drsst = 1, drast = 10
and d,,5 = 50.

5% 3%
4%

2%
3%

2%

1%
1% I I
10 20 2 5 10 20 50

Error (%)
Error (%)

1 2 5 50 1
Rasterization step (m) Rasterization step (m)
M Original ® Optimized M Original ® Optimized

(a) (b)

Figure 7. Coverage errors for the original and optimized versions of the algorithm for the solution
evaluation: (a) number of waypoints N = 5; (b) number of waypoints N = 10.

@) (b) (©

Figure 8. Influence of the size of the rasterization step on the solution evaluation: (a) rasterization step
drast = 1; (b) rasterization step dpst = 10; (c) rasterization step drast = 50.

Figure 9 shows the dependence of the execution time on the number of points Np to be evaluated
in a solution (for the original algorithm on the left, for the optimized version on the right). The linear
dependence is apparent. The linear dependence on the number of waypoints N can also be seen in the
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graphs. However, it is not that twice the number of waypoints means twice the execution time (it is only
about 1.6 times in this case). The reason is that when a point is once evaluated as visible, it does not have
to be evaluated again from other waypoints; this case is more frequent when there are more waypoints.

2000 35
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Q ]
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"E 1000 ‘E
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i) 505
0 0 &
0 200,000 400,000 600,000 800,000 0 200,000 400,000 600,000 800,000
Number of points Number of points
—0—N=5 N=10 —0—N=5 N=10

(@) (b)
Figure 9. Dependence of the execution time on the number of points: (a) original algorithm;
(b) optimized algorithm.
5.2. Optimizing the Waypoint Deployment

A set of experiments was designed to validate the algorithm proposed in Section 4.2 for the
deployment of a number of waypoints in the area of operations. Conditions and parameters for the
benchmark scenarios are as follows:

e  The area of interest is assembled by joining a number of hexagons with the circumradius 100 m.
e  The terrain is absolutely flat (the altitude does not change within the area of operations).

e  There are no obstacles in the area of operations.

e  Parameters of sensors are dyy = V2100, a fou = 90.

e  The number of waypoints to be deployed are the same as the number of hexagons.

The principle of creating the area of interest is presented in Figure 10. The degree determines the
number of hexagons in the diagonal. In the example, the degree equals 5, which means that 17 hexagons
were joined to create the area of interest and the same number of waypoints N = 17 are to be deployed.

Figure 10. Area of interest created by joining hexagons.
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This principle along with the conditions mentioned above ensures that the optimal solution can be
easily found. When the waypoints are deployed optimally, the whole area of interest will be covered
(Cﬁ\]/o = 100%). The optimal solution is as follows:

e The waypoints (coordinates x;, y;) lie in the centers of the hexagons (see Figure 10).
e  The monitoring height is exactly 100 m above the ground level (f; = 100 m).

Six benchmark instances were created for verification. They differ by the degree as shown in
Table 3. The fifth column of Table 3 shows the number of waypoints and the last column the number of
variables per a solution vector XN For example, in the case of instance d06, the solution is composed
of more than 200 independent variables. The permitted range of the flight height does not differ in
the instances.

Table 3. Benchmark instances for verification of the deployment algorithm.

Benchmark Minimum Maximum Degree Number of Number of
Instance Height h,ip Height Ny Waypoints N Variables in XN
do1 50 m 150 m 1 1 3
do2 50 m 150 m 3 7 21
do3 50 m 150 m 5 17 51
do4 50 m 150 m 7 31 93
do5 50 m 150 m 9 49 147
do6 50 m 150 m 11 71 213

Both the continuous and discrete versions of the algorithm proposed in Section 4.2 (Algorithm 3)
were used to find the solutions of the benchmark problems and the results were compared with the
optimal solutions. The parameters of the algorithm were set as follows: Ty = 1072, Thin = 107,
¥y = 0.9, n1ax = 200, 124ax = 20. The algorithm was executed 50 times on each benchmark instance.

The results achieved with the continuous version of the algorithm are recorded in Table 4.
The optimal solution was found in the case of the simplest instances (d01 and d02). In other instances,
a solution was found very close to the optimum. The difference between the best solution and the
optimum (referred to as error in Table 4) is below 2% in all cases. The execution time depends on the
rasterization step dygs-

Table 4. Results for benchmark problems achieved by the continuous version of the algorithm.

Instance Rast. Step  Optimal Solution Found ! Error2 Execution

drast (m) Solution Best Mean Stdev Time (s) !
do1 2 100% 100% 100% 0.00% 0.00% 29
do2 2 100% 100% 100% 0.00% 0.00% 314
do3 5 100% 99.99% 99.87% 0.51% 0.01% 16.8
do4 5 100% 99.91% 98.95% 0.84% 0.09% 324
dos 10 100% 99.46% 98.00% 0.58% 0.54% 19.6
do6 10 100% 98.26% 97.25% 0.46% 1.74% 28.1

1 50 trials. 2 Difference between the best and optimal solution.

Table 5 shows the results achieved by the discrete version of the algorithm. The optimum was
found in case of instances d01, d02, d03; the maximum error in case of the most complex problems is
below 1%. The execution time is slightly higher than in case of the continuous version; this is caused
by the discretization of the variables in the transformation process.
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Table 5. Results for benchmark problems achieved by the discrete version of the algorithm.

I Rast. Step  Optimal Solution Found ' > Execution
nstance dygst (m)  Solution Error Time (s) !
rast Best Mean Stdev

do1 2 100% 100% 100% 0.00% 0.00% 3.2
do2 2 100% 100% 100% 0.00% 0.00% 32.1
do3 5 100% 100% 99.96% 0.02% 0.00% 18.2
do4 5 100% 99.96% 99.14% 0.67% 0.04% 345
dos 10 100% 99.51% 98.55% 0.43% 0.49% 21.0
doe 10 100% 99.30% 98.06% 0.45% 0.70% 31.0

1 50 trials. 2 Difference between the best and optimal solution.

The comparison of the results achieved by the continuous and discrete versions of the algorithm
is shown in Figure 11. In general, the discrete version provides better solutions than the continuous
version; the more complex the problem, the better the results obtained by the discrete version. Therefore,
the discrete version is used further on. Figure 12 shows the best solution achieved by the discrete
version of the algorithm for instance d06 (CZ/Q1 = 99.30%).

2% 3%
2%
8 1% 8
5 S 1%
} nil - |
0% — e 0% -
do0l d02 d03 do4 do5 doe d0l d02 d03 do4 do5 doe
Benchmark instance Benchmark instance
W Continuous M Discreet B Continuous M Discreet
(@) (b)

Figure 11. Comparison of the continuous and discrete versions of the algorithm: (a) error of the best
solutions; (b) error of the average values.

Figure 12. The best solution found for instance d06.
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5.3. Optimizing the Number of Waypoints

In this section, the algorithm proposed for optimizing the number of waypoints (Algorithm 6) is
verified on the benchmark problems. The same problems as proposed in the previous section are used.

The algorithm starts with the first estimation of N according to Equation (21). The part of this
equation is coefficient 7. This coefficient takes specific parameters and characteristics of the environment
into consideration (e.g., the terrain and the number of obstacles). In the ideal scenario, where the
waypoints could be deployed in such a way that the whole area would be covered from a number of
waypoints and, at the same time, areas visible from sensors would not overlap, the coefficient should
be 7 = 1 and the estimation would correspond to the correct number. In the benchmark problems
proposed for verification, where the terrain is flat with no obstacles, the waypoints could be deployed
so that the visible areas might overlap just slightly; therefore, the coefficient was set to 7 = 1.1. In the
real scenarios, the best value of the coefficient was empirically found as t = 1.5.

Table 6 shows the results of the algorithm. The minimal coverage is set to C,;, = 99%. The reason
for this is that the full coverage represents the optimal solution, which can be hardly achieved in case
of the more complex problems. Therefore, the algorithm error of 1% is assumed. As can be seen,
the optimal numbers of waypoints are estimated in case of all the benchmark instances. Moreover,
it was done in at most 3 phases: the first estimation (line 1 of Algorithm 6) and 2 updates (line 5 of
Algorithm 6). Figure 13 illustrates the situation in case of instance d04.

(a) (b) (c)

Figure 13. The progress in optimizing the number of waypoints, for instance d04: (a) first estimation
(N = 28); (b) first update (N = 30); (c) second update (N = 31).

Table 6. Results of the algorithm for the optimizing the number of waypoints.

. First Estimation First Update Second Update
Instance Optimal N
N cy N, o N3 c?
do1 1 1 100% - - - -
do2 7 7 100% - - - -
do3 17 16 96.90% 17 99.96% - -
do4 31 28 94.77% 30 97.72% 31 99.88%
do5 49 45 95.67% 48 98.35% 49 99.13%
doe6 71 65 95.68% 68 96.98% 71 99.03%

5.4. Experiments on Real Scenarios

The experiments in this section are based on the real scenarios that reflect typical reconnaissance
operations. The environment of the scenarios is based on the real geographic data using two models:
(@) The Digital Elevation Model (DEM), and (b) The Topographic Digital Data Model (TDDM).
The former is a representation of the terrain surface in the form of a heightmap. The latter is a database
of topographic and other objects; in the scenarios, buildings are used as not-transparent obstacles.

Both geographic models come from the Military Geographic and Hydrometeorologic Office of
the Ministry of Defense of the Czech Republic which provides geographic data for the Army of the
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Czech Republic. The DEM model has, in its last version, the distance between elevations 2.5 m and
elevation precision 0.3 m; it is being updated regularly by methods of digital stereophotogrammetry
and airborne laser scanning. The TDDM model contains topographic objects represented by a polygon
and parameters (e.g., object height); it is being regularly updated using the method of direct mapping
with the support of aerial imaging.

Table 7 characterizes the environment of the scenarios: the size of the area of interest, the elevation
difference (difference between the highest and the lowest altitude inside the area of interest) and
obstacles (their number and average height). The scenarios offer various types of environment: from a
small to large area to be explored, from a relatively flat to a very uneven terrain, from a low density to a
high density of obstacles. For example, scenario sc04 is a typical urban environment with an irregular
shape of the area of interest, a very high density of tall obstacles (buildings) with narrow streets and a
flat terrain. In comparison with this configuration, scenario sc05 is a large mountain environment with
a very low density of obstacles, but a very uneven terrain.

Table 7. Characteristics of the scenario’s environment.

Scenario Area of Interest Elevation Obstacles
Width Height Area Difference Count Height
sc01 0.40 km 0.25 km 0.1 km? 44 m 14 14.6 m
sc02 0.95 km 1.14 km 0.7 km? 79 m 266 6.4 m
sc03 3.75 km 3.04 km 2.8 km? 129 m 533 51m
sc04 299km  324km 53 km? 47 m 936 10.6 m
sc05 400km  210km 6.8 km? 654 m 8 9.4

Table 8 presents the technical and tactical configurations: the number of UAVs available (at the
disposal of the commander and deployed in the area of operations), the minimum requested coverage,
parameters of sensors (the maximum distance to objects of interest and an angular field of view) and a
minimum and maximum permitted height of flight of the UAVs.

Table 8. Technical and tactical parameters of the reconnaissance operations.

Scenario Number of Minimum Sensors Minimum Maximum
UAVs Coverage ;- - Height Height
sc01 1 99% 80 m 75° 20 m 120 m
sc02 2 98% 150 m 75° 20m 180 m
sc03 5 99% 200 m 90° 50 m 300 m
sc04 3 95% 200 m 90° 50 m 300 m
sc05 4 99% 500 m 120° 50 m 400 m

For optimization, the parameters of the algorithms were set as follows: Tyzy = 1072, T)yin = 1070,
Yy = 0.9, gy = 101245, N2max = 20 (for sc01, sc02, sc05) or 125 = 50 (sc03, sc04) respectively.

Table 9 presents the optimization results. The third column shows the number of waypoints
estimated by Algorithm 6. The estimated number of waypoints were deployed using Algorithm 3;
in total, 50 optimizations per scenario were conducted—for results, see the fourth to sixth columns.
The best solution found exceeds the minimum coverage required for the scenarios (see Table 8) in all
cases. The last column shows the average execution time of optimization; this depends, of course,
on the size of the rasterization step.
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Table 9. Optimizations of the number and deployment of waypoints for the real scenarios.

22 of 27

Solution Found !

Scenario Rast. Step Number of Execution
drast (m) Waypoints Best Mean Stdev Time (s) !
sc01 2 23 99.19% 98.09% 1.06% 229
sc02 3 37 98.58% 98.05% 0.28% 83.1
sc03 5 70 99.26% 98.68% 0.41% 770.4
sc04 5 111 95.47% 94.88% 0.26% 772.8
sc05 10 22 99.03% 98.21% 0.38% 66.7
1 50 trials.

Figure 14 illustrates the deployment of waypoints and coverage for scenarios sc03 (on the left) and
sc04 (on the right). In case of the former one, the area of interest is of the very irregular shape. Despite
of this, the algorithm managed to deploy all the waypoints inside the area (70 waypoints means 210
variables in the solution vector). In case of the latter one, the solution vector is composed of more than
300 independent variables.

(@)

(b)

Figure 14. The best solution found: (a) instance sc03; (b) instance sc04.

For the best solutions found, the routes of UAVs available in individual scenarios were planned
using the algorithm mentioned in Section 4.4. The results are recorded in Table 10. The last two columns
show the parameters of the optimized routes: the total distance covered by all UAVs participating
in the operation, and operation time T (the time when all the UAVs are back in their base positions);
the latter is the optimization criterion defined in formula (12). In all cases, UAVs with the homogeneous
flight parameters were used; the average flight velocity was set to 10 m-s

Table 10. Optimizing the routes.

1

Scenario Number of Numbe.r of Coverage Routes
UAVs Waypoints Distance (km) Time T (min)
sc01 1 23 99.19% 1.515 2:31
sc02 2 37 98.58% 6.823 5:41
sc03 5 70 99.26% 25.756 8:41
sc04 3 111 95.47% 25.234 14:07
sc05 4 22 99.03% 16.067 7:11
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Figure 15 shows the routes for scenarios sc03 (on the left) and sc04 (on the right). The routes of
individual UAVs are color coded. Moreover, the route times (times needed for UAVs to conduct their
routes) are stated. The operation ends when the last UAV returns back to its base; thus, the optimization
is about a good distribution of waypoints to available UAVs. The similar times of individual routes
are apparent.

T = max(Ty, Ty, Ts, Tp, Ts) = 8: 41

T, = 14:07

T = max(Ty, Ty, Ts) = 14:07

(b)

Figure 15. Planning the routes: (a) instance sc03; (b) instance sc04.

The routes for UAVs are created by connecting the waypoints by straight lines (see Figure 15).
This means that the routes are easily applicable for rotary-wing aircraft with the ability of vertical
take-off and landing (VTOL) and abrupt changes in direction. The only requirement for them is the
ability to automatically follow a set of predefined waypoints (and, of course, it needs to be equipped
with an appropriate sensor). Nowadays, this ability is common not only for the state-of-the-art military
UAVs but also for ordinary commercial drones. However, the model is applicable, with some minor
limitations, even for fixed-wing aircraft—see [38] for more details.

The experiments conducted so far have assumed that the monitoring can be performed only when
the UAVs are located at waypoints, i.e., not during their flight between them. In many real situations,
the monitoring can be performed continuously during the flight of the UAVs along their routes.
This case was tested on the best solutions found (Table 9) and the routes planned for these solutions
(Table 10). The results are in Table 11 where the original coverage (monitoring only from waypoints)
is compared to the so-called continuous coverage (monitoring during the flight). The continuous
monitoring provides better results (the worse original solution, the higher the improvement).

Table 11. Comparison of the original and continuous monitoring.

Number of Numberof Waypoints Continuous

Scenario UAVs Waypoints Coverage Coverage Improvement
sc01 1 23 99.19% 99.71% 0.52%
sc02 2 37 98.58% 99.50% 0.92%
sc03 5 70 99.26% 99.66% 0.40%
sc04 3 111 95.47% 97.82% 2.35%
sc05 4 22 99.03% 99.70% 0.67%
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6. Conclusions

The article presented the model of aerial reconnaissance using UAVs cooperating to conduct the
operation as effectively as possible. The monitoring is performed from a number of waypoints deployed
in the three-dimensional space in the area of operations. The terrain and non-transparent objects, which
may cause occlusion, are taken into account. For the deployment of waypoints, the metaheuristic
algorithm was proposed and verified by experiments; the results were compared with the optimal
solutions. The possibility of the practical use was confirmed by a set of experiments based on the
typical military reconnaissance scenarios and real geographic data.

The metaheuristic algorithm proposed for waypoints deployment is based on the simulated
annealing principles. It is a simple algorithm yet very efficient in positioning problems. The strengths
of the algorithm are its fast convergence to the optimum, efficient mechanism preventing a solution
being stuck in some local optimum and low memory demands. The most time-consuming and memory
demanding part of the whole optimization process is the evaluation of a particular solution. Therefore,
a lot of effort was put into increasing its efficiency. The speed of the solution evaluation, as well as
the memory demands, depends, beside the configuration of a computer used (power and available
memory), on the rasterization; the number of points needed to be evaluated changes quadratically with
the rasterization step. However, the precision of the evaluation is also dependent on the rasterization
step. This results in two contrary requirements. On the one hand, the step should be as small as
possible so that the evaluation is as precise as possible; on the other hand, it should be as large as
possible so that the evaluation is as fast as possible. The choice of the rasterization step is, therefore,
a compromise between the two requirements.

The model proposed in this article was implemented into the decision support system for
commanders of the Czech Army. Prior to any military mission there must be planning process which
is called either Troops leading procedure (in case of company and below military units) or Military
decision making process (in case of battalion level and higher). This process is complex, continuous and
composed of many steps. As it is apparent from the results of experiments, time of optimization did not
exceed 15 min in case of the most complex problems. During this time, there are other activities which
are ongoing simultaneously. Moreover, ordinary planning process with no autonomous computation
must be done by military personnel and lasts for significantly longer time. In conclusion, time of
computation did not influence any critical military mission at all.

Although the model is intended to be used for military purposes, there are other civil real life
implementations and applications such as the rapid evaluation of a disaster area and management of
recovery resources, identification of threats on land, border surveillance and protection, etc.

The future work of the authors will be aimed at further optimization of the solution evaluation
process. The significant speed improvement is to be achieved by implementing the algorithm on the
graphics processing unit (GPU). For the further verification of the model, the experiments using the
real UAVs are planned to be carried out. The current reconnaissance model will also be extended to the
persistent surveillance model, in which the continuous monitoring of the area of interest by a swarm of
UAUVs is assumed.
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Nomenclature

AoO Area of operations.

Aol Area of interest to be explored.

u Set of available unmanned aerial vehicles: U = {Uq, Uy, ..., Up}.

U; An available UAV.

M Number of available unmanned aerial vehicles.

144 Set of waypoints deployed in the area of operations: W = {Wy, W, ..., Wx}.
W; A waypoint deployed in the area of operations.

Xi,Yi Coordinates of waypoint W; in the area of operations.

N Number of waypoints deployed in the area of operations.

A fop Angular field of view of sensors of the UAVs.

dyax Maximum distance from a sensor to an object of interest.

hi{ " Altitude of an UAV at waypoint W; € W.

h; Height of flight of an UAV above the ground level at waypoint W; € W.
Rypiin Minimum allowed height of flight of UAVs.

Ny Maximum allowed height of flight of UAVs.

P Set of points on the ground in the area of operations: P = {P1,P;,...}.
E Function to determine the terrain elevation in any point in the AoO.
O Set of obstacles in the area of interest: O = {01,003, ...,Or}.

Oy An obstacle in the area of interest.

L Number of obstacles in the area of interest.

Vi Set of points in the area of interest visible from waypoint W; € W.

Vv Set of points in the area of interest monitored from all the waypoints.

Arast Size of the rasterization step.

Np Total number of points in the rasterized area of interest.

Ny Number of visible points in the rasterized area of interest.

xN Solution in the state space (particular deployment of waypoints).
c.cN Coverage of the area of interest from all the waypoints.

Cuin Minimum required coverage of the area of interest.

R Routes of UAVs: R = {Rq, Ry, ..., Rpy}-

R; A route of UAV Uj;. (order of nodes to be visited): R; = {R?, RJl., RJZ., .., Rf’, Rferl}.
K; Number of waypoints to be visited en route R;.

T; Time to perform route R; by U;.

T Duration of the reconnaissance operation.

Tinax Initial temperature (simulated annealing parameter).

Tin Minimum temperature threshold (simulated annealing parameter).
Teur Current temperature (variable used in the simulated annealing algorithm).
Y Cooling coefficient (simulated annealing parameter).

M max Number of transformations (simulated annealing parameter).

Momax Number of replacements (simulated annealing parameter).

T Constant used when estimating the necessary number of waypoints.
U Mean.

o Standard deviation.

€ Constant used in the solution transformation process.
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