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Abstract: In this paper, a nonlinear observer is proposed for the estimation of the current ripple in
a ferrite-core inductor working in partial saturation, mounted on a boost converter. The estimator
is based on a recently proposed nonlinear inductance model, which expresses the inductance as
a function of the inductor current, taking into account also the non-negligible effects of the core
temperature. The proposed observer is implemented on a low-cost microcontroller and tested,
both offline and online, on a real boost converter with different operating conditions. The offline tests
show a satisfactory estimation accuracy both during the electrical (fast) and thermal (slow) transients.
Due to the high microcontroller latency, some delays and inaccuracies occur during electrical
transients in the online tests. This work suggests that, in order to exploit the observer for control
purposes, the target architecture should be a high-performance microcontroller, a system-on-chip,
or a field programmable gate array, where parallelism can be exploited to speed-up the computations.
The proposed implementation can be instead suitable for switch-mode power supply (SMPS)
monitoring purposes.

Keywords: switch-mode power supply; ferrite-core inductor; magnetic saturation; nonlinear observer;
microcontroller

1. Introduction

Switch-mode power supplies (SMPSs) are employed in all modern devices and systems
using electrical energy: in consumer, industrial, aerospace, automotive, lighting, and other areas.
Their use is expected to grow due to the increase of more electric vehicles in all transportation
areas. SMPSs periodically store and release electrical energy, connecting power inductors alternately
to the main energy source and to the load, through semiconductor devices operating as switches,
typically driven by a pulse-width-modulation (PWM) signal.

The frequency and duty cycle of the PWM signal are imposed by a control system, such that
the converter output voltage is maintained at a reference value and the current flowing through the
inductor does not exceed safety limits, independently of variations in the input voltage and load
current. The simplest control strategy is the voltage mode control, where the difference between the
output voltage and the reference value is used as input for the controller, e.g., a proportional-integral
regulator. The main drawback of this approach is that it has a slow response to load current variations,
and good closed-loop performances are difficult to achieve [1,2].

With current mode control, the voltage error signal provides a current reference, which is
compared to the inductor current in order to obtain the control signal. A dual loop control is therefore
performed, which allows for faster transient response and (limited) over-current protection [3].
Current mode control of course requires measurements of the inductor current, which can be
basically performed through shunt resistors, mirroring circuits, or Hall effect sensors [4,5]. The shunt
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resistor is very simple, but it has a low accuracy, modifies the circuit, and increases the power loss.
Mirroring circuits are sensitive to electromagnetic interference and also exhibit a low accuracy. On the
other hand, Hall effect sensors do not have these disadvantages, but they are very expensive. In any
case, all these current sensing techniques add noise to the system and increase the overall converter
power consumption, size, and cost [6].

Sensorless current mode control [7] has therefore gained popularity (see [2] and the references
therein) as it allows improving the reliability of the system, the miniaturization of the device,
its efficiency, and its cost. Of course, an observer is required, which estimates the inductor current
based on measurements of other electrical variables. Many approaches have been proposed in the
literature [8–13]. In all of these works, the inductor is assumed to work in its linear region, where its
inductance is constant. In this case, the converter dynamics is linear for each configuration of the
switches, and classical bilinear averaged SMPS models can be exploited for the observer design.

Recent studies [14–16] showed that it was possible to design smaller and lighter SMPS by
exploiting ferrite-core inductors operating in partial saturation. In this situation, the inductance
drops as the inductor current increases, with a strong dependence on the core temperature (at higher
temperatures, the inductance starts dropping for lower current values). Several nonlinear behavioral
models have been therefore proposed (see [17] for a survey), which take into account these nonlinear
phenomena. In [18,19], in particular, the inductance was modeled as an arctangent function of the
inductor current, which translates towards the left as the temperature increases. A piecewise-affine
(PWA) version of the same model was proposed in [20] and used in [21], which allows computing
analytically the inductor current, based on the inductor voltage. With a nonlinear inductor model,
the overall SMPS is nonlinear for each switch configuration, and an averaged model cannot be used.

In this paper, we propose a nonlinear observer, based on the model proposed in [20], able to
estimate analytically the inductor current waveform, based on easily available measurements of the
SMPS input and output voltage and of the load current. In order to spare computation time, only the
minimum, maximum, and average current within a PWM period are actually estimated, which are
the most relevant quantities for control and monitoring purposes [22–24]. A disturbance term is also
estimated, based on the measurements of the SMPS output voltage. This allows partially compensating
for model parameters’ uncertainties. The load current has a much slower dynamics with respect to
the inductor current and can be acquired with a lower accuracy as it is not directly used for control
purposes. For this reason, a simple shunt resistor can be exploited. However, the measurement
of the inductor current is necessary to train the inductor model. To this aim, a laboratory SMPS is
equipped with a Hall effect current sensor, which will not be present on the SMPSs operating in the
real applications.

The proposed estimator is tested both offline and online, based on measurements performed on
a real boost converter. Different operating conditions (PWM frequency, duty cycle, and output current)
are applied to the SMPS, such that the inductor works both in its linear region and in saturation.
The relative error at steady-state and during slow thermal transients is below 10%.

The online tests are performed by implementing the proposed observer on a low-cost
microcontroller. In this case, some inaccuracies and delays can be observed during fast electrical
transients, mainly due to the high microcontroller latency (much higher than the PWM period).
This suggests that, in order to be successfully applied for sensorless current mode control, the proposed
observer should be implemented on a high-performance microcontroller, a system-on-chip (SoC),
or a field programmable gate array (FPGA). The proposed implementation could be instead exploited
for monitoring purposes, as the observer is able to sense a potentially dangerous increase of the
inductor current in a few milliseconds.

A preliminary simpler observer based on the model in [20] was proposed in [21]; the novelties of
this work with respect to [21] are:

• A disturbance term is added to the observer, estimated based on measurements of the output
voltage, which makes the observer more robust with respect to model parameters’ uncertainties.
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This is of paramount importance in practice, because model uncertainties (due for example to the
tolerances of the components) are always present;

• The estimated quantities are computed analytically; in [21], an iterative procedure based on the
Euler method was used;

• Due to the analytical formulation, measurements can be acquired every 200 µs, whereas a sampling
period of 10 ms was used in [21] in the same experiments, which would cause severe delays during
electrical transients, preventing the application of the observer even for monitoring purposes;

• Tests during fast electrical transients are performed.

2. Materials and Methods

Consider the boost converter shown in Figure 1. The operating conditions are the input voltage V,
the output current I, the period T (frequency F = 1

T ), and duty cycle D of the PWM signal, which drives
the MOS transistor operating as a switch. Variables i and v are the inductor current and capacitor
voltage (output voltage), respectively, whereas vD is the voltage drop across the diode and vL the
voltage drop across the inductor, including its parasitic series resistance RL. We also indicate with
RMOS the parasitic resistance of the transistor when it works as a closed switch (ON resistance).
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Figure 1. Schematic of a boost converter.

Figure 2 shows typical waveforms during electrical transients for i (top panel), v (middle panel),
and the PWM driving signal (bottom panel). We denote with tk the starting instant of the kth PWM
cycle, with period Tk (frequency Fk = 1

Tk
) and duty cycle Dk. We also define ik = i(tk), vk = v(tk),

t′k = tk + DkTk, i′k = i(t′k), v′k = v(t′k). We assume that V, I, and v can be always measured, whereas i
and vL are measured only on a laboratory converter for training the inductance model.

The online measurement of the voltage vL would not be a big issue, but it is actually unnecessary,
whereas the measurement of the inductor current is unpractical, as explained in the Introduction of this
paper. Moreover, Figure 3 shows the unfiltered inductor current measured through a Hall effect sensor
(an LEM LTS 6-NP). Notice the large oscillations in correspondence to the PWM switches, which could
lead to the wrong ripple estimations.

In order to model the inductor properly also when it works in partial saturation, we used the
nonlinear behavioral model proposed in [20], where the inductance L is expressed as a piecewise-affine
function of the inductor current, in particular:

L(i− J) = ah · (i− J) + bh if Xh ≤ i− J < Xh+1 (1)

where X0 and Xm are the domain boundaries and Xh (h = 1, . . . , m− 1) are the knee points of the
PWA function, with Xh+1 > Xh. It was shown in [15,18] that the L vs. i curve shifts towards the left
as the core temperature increases. This phenomenon is reproduced by the behavioral state variable
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J = J(pk, t), which does not directly represent a physical quantity and takes into account the effect of
core temperature variations [19]. State J satisfies the following first-order equation:

τ
dJ
dt

= αpk + β− J (2)

for t ∈ [tk, tk+1), pk being the average inductor power loss within the kth PWM cycle and α and β

fitting parameters.

0

1

Figure 2. Typical waveforms during electrical transients for i (top panel), v (middle panel), and the
PWM driving signal (bottom panel).

0

5

Figure 3. Unfiltered inductor current measurement with the indication of the real current ripple (green)
and the wrong current ripple, which could be obtained based on the measurements.

A very simple model that relates the average power loss to the SMPS operating conditions was
successfully used in [19] and is also exploited in this paper. We express the estimated average power
loss as:

p̃k = (γ + Dkδ)i2RMS,k (3)

where the root mean squared current on the kth PWM cycle is defined as:

iRMS,k =

√
1
Tk

∫ tk+1

tk

i2(t)dt (4)
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Parameters γ and δ must be fitted to experimental measurements.
By referring to the circuit shown in Figure 1, the boost converter state equations in the kth PWM

cycle are:

for tk ≤ t < t′k :


di
dt

=
V − (RL + RMOS)i + η

L(i− J)
(5)

dv
dt

= − I
C

(6)

for t′k ≤ t < tk+1 :


di
dt

=
V − vD − RLi− v + η

L(i− J)
(7)

dv
dt

=
i− I

C
(8)

where η is a disturbance term that takes into account the modeling errors, such as the uncertainties on
parasitic resistances. This unmeasurable quantity is estimated through the proposed observer.

2.1. Model Fitting

The power loss model depends on parameters γ and δ. Given the measurements of the inductor
voltage vL and current i, the average power loss within the kth PWM period can be computed as:

pk =
1
Tk

∫ tk+1

tk

vL(t)i(t)dt (9)

The parameters γ and δ can be therefore obtained by solving the following quadratic programming
(QP) optimization problem:

min
γ,δ

∑
k∈K

[pk − p̃k(γ, δ)]2 (10)

where K is the set of indices denoting the PWM cycles chosen for training the power loss model.
The inductance model depends on parameter vector x =

[X1, . . . , Xm−1, L(X1), . . . , L(Xm−1), α, β, τ, RL]; the number of knee points m and the domain
boundaries X0 and Xm are fixed a priori. As shown in [19], x can be obtained by solving the following
nonlinear optimization problem:

min
x ∑

t∈T
[i(t)− ı̃(t; x)]2 (11)

where T is the set of times used for training the model, i(t) are samples of the measured inductor
current, whereas ı̃(t; x) are the current values obtained by simulating the boost converter (through
Equations (1)–(8)) at the same time instants, by applying the same operating conditions. Problem (10)
is a quadratic programming (QP) problem, with respect to parameters γ and δ; therefore, it can
be easily solved with any QP algorithm. Problem (11) is instead a nonlinear programming (NLP)
problem, which can be solved, e.g., with evolutionary algorithms, simulated annealing, and direct
search methods.

2.2. Nonlinear Observer

We indicate with a “hat” the estimated variables provided by the proposed observer. The input
voltage and output current have a much slower dynamics with respect to i and v; therefore, we assume
that V = Vk and I = Ik, within the kth PWM cycle. Moreover, it was shown in [19] that also the
dynamics of J is much slower than the dynamics of i and v, as it is related to the temperature. We can
therefore assume that J(pk, t) assumes the constant value Jk = J(pk, tk) within the kth PWM period.
We further assume η = ηk within the kth PWM period.
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At the beginning of the kth PWM cycle, the measurements Vk, Ik, and vk are available, as well as
values v̂k, ı̂k, Jk, ηk−1, ı̄′k−1, and ı̄′′k−1, where:

ı̄′k−1 ,
1

Dk−1Tk−1

∫ t′k−1

tk−1

ı̂(t)dt, ı̄′′k−1 ,
1

(1− Dk−1)Tk−1

∫ tk

t′k−1

ı̂(t)dt (12)

The aim of the proposed observer is to estimate v̂k+1, ı̂′k, ı̂k+1, Jk+1, ηk, ı̄′k, and ı̄′′k . Based on these
quantities, it is possible to obtain the estimated inductor current ripple and the mean current.

• Estimation of ηk:

The disturbance can be estimated based on the measurements of the output voltage vk:

ηk = ηk−1 + K(vk − v̂k) (13)

where K is a positive gain. With this strategy, η is corrected until the estimated voltage coincides
with the measured one.

• Estimation of ı̂′k:

By integrating Equation (5) between tk and t′k, it is possible to obtain:

∫ t′k

tk

L(i− Jk)di =
∫ t′k

tk

(Vk + ηk)dt− (RL + RMOS)
∫ t′k

tk

idt (14)

The last integral is actually equal to DkTk ı̄′k, where ı̄′k is not known. However, it is reasonable to
assume that the current waveform does not change too much between the k− 1th and kth PWM
period, except for the case when the operating conditions are suddenly changed. For this reason,
we will assume ı̄′k u ı̄′k−1, which is instead known. The following initial value problem can be
therefore defined:  dı̂

dt =
Vk−(RL+RMOS)ı̄′k−1+ηk

L(ı̂−Jk)
, Wk

L(ı̂−Jk)
(Wk is a constant)

ı̂(tk) = ı̂k

(15)

which can be solved analytically (see Appendix A) in order to obtain ı̂′k. As shown in Appendix A,

we can also obtain analytically
∫ t′k

tk
ı̂(t)dt and

∫ t′k
tk

ı̂2(t)dt.

• Estimation of ı̂k+1:

By integrating Equation (6) between tk and t′k, it is possible to obtain:

v̂′k = v̂k − DkTk
Ik
C

(16)

and by integrating Equation (18) between t′k and tk+1, we obtain:

∫ tk+1

t′k
L(i− Jk)di =

∫ tk+1

t′k
(Vk − vD + ηk)dt− RL

∫ tk+1

t′k
idt−

∫ tk+1

t′k
vdt (17)

Here,
∫ tk+1

t′k
idt = (1− Dk)Tk ı̄′′k . We assume

∫ tk+1
t′k

vdt u 0.5(v̂k + v̂′k) and ı̄′′k u ı̄′′k−1.
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The following initial value problem can be therefore defined: dı̂
dt =

Vk−vD−RL ı̄′′k−1−0.5(v̂k+v̂′k)+ηk
L(ı̂−Jk)

,
W ′k

L(ı̂−Jk)
(W ′k is a constant)

i(t′k) = ı̂′k
(18)

which can be solved analytically (see Appendix A) in order to obtain ı̂k+1. As shown in
Appendix A, we also obtain analytically

∫ tk+1
t′k

ı̂(t)dt and
∫ tk+1

t′k
ı̂2(t)dt.

• Estimation of v̂k+1:

By integrating Equation (8) between t′k and tk+1, we obtain:

v̂k+1 = v̂′k +
1
C

∫ tk+1

t′k
[ı̂(t)− Ik]dt = (19)

= v̂′k +
1
C

∫ tk+1

t′k
ı̂(t)dt− (1− Dk)Tk

C
Ik = (20)

= v̂k +
1
C

∫ tk+1

t′k
ı̂(t)dt− Tk

C
Ik (21)

where all terms have already been computed in the previous steps.

• Estimation of Jk+1:

By applying the forward Euler method to Equation (2), we obtain:

Jk+1 =
τ − Tk

τ
Jk +

Tk(αpk + β)

τ
(22)

where the power loss model is exploited to compute:

pk = (γ + Dkδ)i2RMS,k (23)

where:

i2RMS,k =
1
Tk

∫ tk+1

tk

i2dt =
1
Tk

∫ t′k

tk

i2dt +
1
Tk

∫ tk+1

t′k
i2dt (24)

and the integrals have already been computed in the previous steps.

• Estimation of ı̄′k and ı̄′′k :
The estimated mean current values in intervals [tk, t′k] and [t′k, tk+1] can be computed as:

ı̄′k =
1

DkTk

∫ t′k

tk

idt (25)

ı̄′′k =
1

(1− Dk)Tk

∫ tk+1

t′k
idt (26)

• Estimation of the current ripple and mean current:
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Finally, the inductor current ripple ∆k and mean current ı̄k in interval [tk, tk+1] can be estimated as:

∆k = ı̂′k − ı̂k (27)

ı̄k =
1
Tk

∫ tk+1

tk

idt =
1
Tk

∫ t′k

tk

idt +
1
Tk

∫ tk+1

t′k
idt (28)

2.3. Initial Conditions

The initial conditions (at k = 0) for the estimated variables can be reasonably set by performing
the following assumptions:

• the converter is ideal (there are no power losses);
• the inductor works in its linear region.

These assumptions are quite restrictive; however, the initial conditions do not need to be really
accurate, as the observer is able to converge to the correct values in a few iterations. This is just
a strategy to set them close to the correct value.

The output voltage is measured; therefore:

v̂0 = v0 (29)

For an ideal converter, the average input power coincides with the output power, i.e.,
∫ tk+1

tk
Vidt =∫ tk+1

tk
vIdt. By assuming V, v, and I constant, we can derive:

ı̄′0 = ı̄′′0 =
v0 I0

V0
(30)

If the inductor is assumed to work in its linear region, then the ripple can be computed as:

∆0 =
V0D0T0

Lnom
(31)

which allows setting:

ı̂0 = ı̄′0 − 0.5∆0 (32)

ı̂′0 = ı̄′0 + 0.5∆0 (33)

If we assume that the inductor current is a perfect triangular wave (which is the case, with the
considered assumptions), we can compute its root mean squared value as:

ı̂2RMS,0 = (ı̄′0)
2 +

(0.5∆0)
2

3
(34)

which allows setting the initial power loss as:

p̂0 = (γ + D0δ)ı̂2RMS,0 (35)

2.4. Experimental Setup

The embedded estimator was implemented on a STM32F4 microcontroller and tested on a boost
converter composed of a bank of capacitors with total capacitance C = 330 µF, an MSS1038T-103
inductor with a nominal inductance Lnom = 10 µH, and a switch realized through a IXTP230N075T2
MOS transistor with RMOS = 250 mΩ. A common diode with voltage drop vD = 0.7 V was exploited.
The load current I was imposed through a PEL 3031E DC electronic load. The input voltage V was
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applied through a BREMI BRS 55 power source, whereas the driving PWM signal was provided to the
MOS gate by means of the same STM32F4 microcontroller, through an IX6R11S3 MOS driver. A RIGOL
DS1000Z oscilloscope with 10 bit resolution was used to sense the inductor current i (through an LEM
LTS 6-NP Hall effect transducer), which was the benchmark to evaluate the accuracy of the proposed
estimation method. This setup allowed applying different working conditions to the converter. In this
work, we set all the possible combinations of V, I, F, and D shown in Table 1 to train the inductance and
power loss models. For the highest current values, the inductor worked in partial saturation. The power
loss and inductance model parameters were identified starting from the experimental data by solving
optimization problems (10) with MATLAB routine quadprog and (11) through a mesh adaptive direct
search algorithm [25], and the resulting parameters are listed in Table 2. In order to speed up the
computation on the microcontroller, we fixed the knee points of the inductance PWA function equally
spaced in the interval [−20, 20]A, in particular X0 = −20A, Xm = 20A, and Xk = Xk−1 +

Xm−X0
m ,

k = 1, . . . , m− 1. The number of knee points was chosen as m = 13, because a larger number would
not improve significantly the modeling accuracy. The estimator gain was set heuristically to K = 0.01.

Table 1. Operating conditions used for training the models.

Parameter Values

V 5.5 V

I 1.2, 1.4, 1.6, 1.8, 2, 2.2 A

F 70 kHz

D 0.4, 0.5

Table 2. Models’ parameters.

Name Value Name Value

α −4.87 · 10−1 A/W β 5.25 A

γ 2.13 · 10−2 Ω δ 1.15 · 10−1Ω

RL 35 mΩ τ 85.50 s

L(X0), . . . , L(Xm) 12.1189 µH, 12.0834 µH, 12.0312 µH, 11.9543 µH, 11.8027 µH, 11.5529 µH, 10.3413 µH,
2.9057 µH, 1.6942 µH, 1.4444 µH, 1.2927 µH, 1.2158 µH, 1.1638 µH, 1.1274 µH

2.5. Microcontroller Implementation

The microcontroller generated the PWM signal, and therefore, it imposed the PWM period Tk and
duty cycle Dk. The input voltage Vk, the load current Ik, and the output voltage vk were acquired at the
beginning of each PWM cycle through three analog-to-digital converters (ADCs) with 12 bit resolution
and were stored in the microcontroller RAM through the integrated direct-memory-access (DMA)
interface. The sampling time was therefore variable as it was equal to Tk. The circuits used to scale the
measured quantities to the ADC range ([0, 3]V) are shown in Figure 4. In particular, the output current
was converted into a voltage through a 2mΩ resistor and a Texas Instruments INA 181 current sense
amplifier (right panel in Figure 4), whereas voltages v and V were scaled through voltage dividers (left
and middle panels).

As shown in Appendix A, many terms necessary for the estimation could be pre-computed
offline, and a uniform distribution of the PWA knee points was used, which allowed speeding up the
computation. The computation time was not constant, as it depended on how many regions of the PWA
function being explored; we measured a maximum latency of about Tc = 200 µs. The sampling period
was selected as the first multiple of the PWM frequency higher than Tc. For the PWM frequencies used
in this paper (50, 70, and 100 kHz), the sampling frequency was 5kHz. The estimated current values
ı̂k and ı̂′k were provided (every 200 µs) though two digital-to-analog converters. A single precision
floating point representation was adopted in the microcontroller.
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Figure 4. Signal conditioning circuit for online data acquisition.

3. Results

For these tests, a different sample of the MSS1038T-103 inductor was used, in order also to assess
the robustness of the inductance model with respect to different components. The Hall effect current
probe was used here to measure the inductor current only in order to compare it with the estimated
one, but it was not necessary for the estimation. Tests during fast electrical transients and slow
thermal transients were performed. The first tests were performed both offline, in order to assess the
accuracy of the estimator if computation delays were neglected, and online, where the estimator ran
on the microcontroller together with the boost converter. The tests on thermal transients were only
performed online.

3.1. Electrical Transient

3.1.1. Offline Tests

For these offline tests, measurements of the inductor current, input voltage, and output voltage
were obtained in correspondence with five changes in the SMPS operating conditions, listed in Table 3.
These time series, together with the operating conditions, were provided to the proposed observer with
a sampling time equal to the PWM period. The latency was therefore assumed to be lower than the
PWM period. Figure 5 shows the inductor current (top panels) and the output voltage (bottom panels)
for each test. The gray curves are the measured values i(t) and v(t), filtered through a Savitzky–Golay
smoothing filter with order one and a frame length of 200ns, whereas the red and blue curves in the
top panels correspond to ı̂k and ı̂′k, respectively, and the red curves in the bottom panels correspond
to v̂k.

Table 3. Switch-mode power supply (SMPS) operating conditions during transient tests.

# V I F D

#1 0V→ 5.5V 1.4A 70kHz 0.5

#2 5.5V 1A→ 2.5A 70kHz 0.5

#3 5.5V 2.5A→ 1A 70kHz 0.5

#4 5.5V 2A 100kHz→ 50kHz 0.5

#5 5.5V 1.5A 70kHz 0.4→ 0.5

Figure 6 shows enlargements of the panels in Figure 5, in correspondence to the changes in the
operating conditions. It can be noticed that the estimated electrical transients were qualitatively similar
to the measured ones. The differences were due to the model uncertainties, which were partially
compensated at steady-state through variable η. In order to quantify the performance of the observer,
we could compute the difference between the times when the estimated and measured currents reached
their steady-state, and we obtained about 0ms for Test #1, 2ms for Tests #2-#4, and 0.7 ms for Test #5.

In order to check the ability of the observer to compensate for errors in some parameters,
we repeated again Test #2 with the inductor’s parasitic series resistance RL = 350 mΩ, ten times
larger than the real value. The results are shown in Figure 7. The solid blue and red lines are the
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estimated values. Notice that the voltage converged to the real value, and ı̂′k exhibited a larger
overshoot (compared to Figure 5), but got close to the real value at steady-state. This behavior was
due to the correction term η. The dashed lines show indeed the same results with η = 0, leading to
completely wrong estimations also at steady-state.
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Figure 5. Results of offline estimations on Tests #1-#5 (see Table 3). Top panels: measured current (gray
curves) and estimated values ı̂k (red curves) and ı̂′k (blue curves). Bottom panel: measured output
voltage (gray curves) and estimated value v̂k (red curves).
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Figure 7. Results of Test #2 with parameter RL increased ten times. The dashed lines are the estimated
values obtained with η = 0.

3.1.2. Online Tests

For these tests, the observer was implemented on the microcontroller and operated online together
with the SMPS. The tests on the five changes in the operating conditions listed in Table 3 were repeated,
where the measurements were performed online by the microcontroller with a sampling period of
200 µs. The high microcontroller latency, which implied using a sampling period much larger than
the PWM period, constituted actually a problem during fast electrical transients, as the estimated
voltage and current transients resulted in being much slower (tens of milliseconds) than the real ones
(see the blue lines in Figure 8). In order to compensate for this delay partially, we made the model
used by the estimator faster by imposing its capacitance as Ĉ = C

c , with c > 0. Figure 8 shows the
results of Test #2 obtained with different values of c, from one to six. Notice that with the original
capacitance value (i.e., c = 1), the estimated current did not even reach the steady-state value in 10 ms,
whereas as c increased, the convergence speed also increased. By setting c > 4, oscillations appeared
in the estimation, which were not present in the measurements. For this reason, we chose c = 4.
We remark that scaling the capacitance had a negligible effect on the estimation at steady-state, as the
capacitance mainly influenced the output voltage ripple, which we did not estimate.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14 c = 1

c = 2

c = 4

c = 6

Figure 8. Results of Test #2 with different values of c.

Figure 9 shows the results of the online tests with the scaled capacitance (c = 4). The performance
at steady-state was comparable with the one obtained in the offline tests, whereas the effects of the
high latency, even if mitigated by the scaled capacitance, were clearly visible during the transients.

In order to appreciate the benefits of using a nonlinear inductance model, we performed Test
#2 by using a constant inductance L = Lnom = 10 µH. The results are shown in Figure 10: the black
curve is the measured current; the green curves are the estimated values with the nonlinear inductance
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(proposed observer); whereas the red curves are the estimated values with constant inductance. The left
panels show values ı̂k and ı̂′k (minimum and maximum current), whereas the right panels show the
average current within each PWM period. Notice that, by using a constant inductance, the estimation
was accurate for low currents (when the inductor worked in the linear region), but the ripple was
strongly underestimated for high currents (when the inductor worked in saturation). The mean
current was instead currently estimated at steady-state also with the constant inductance. This was
not surprising, as the current ripple was mainly determined by the SMPS operating conditions and not
by the inductance itself. The enlargement proved that the inductor was saturating, as the current was
not a triangular wave [15]. The relative percent error on the ripple, after the change in the load current,
was 4.85% with the nonlinear inductance and −27.5% with the constant inductance. This result was
expected as the constant inductance model could not model the inductor behavior in saturation.
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Figure 9. Results of online estimations on Tests #1-#5 (see Table 3). Top panels: measured current (gray
curves) and estimated values ı̂k (red curves) and ı̂′k (blue curves). Bottom panel: measured output
voltage (gray curves) and estimated value v̂k (red curves).
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Figure 10. Inductor current on Test #2 with nonlinear (green curves) and constant (red curves)
inductance. The black curve is the measured current and the gray curve in panel (b) its mean value
over each PWM period. The green (red) curves in panel (a) are the minimum and maximum currents
estimated with the nonlinear (constant) inductance. Panel (b) shows instead the mean estimated values.
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3.2. Thermal Transient

For this test, we set the operating conditions shown in Figure 11. Each operating condition was
kept constant for 15 min, in order to appreciate the effects of temperature. The top panel of Figure 12
shows the measured (black) and estimated (red) current envelope at electrical steady-state for all the
considered operating conditions. The current ripple is shown in the middle panel, whereas the relative
percent error on the current ripple is shown in the bottom panel. The measurements were acquired
every 4 s. Notice that the ripple error was below 10% in almost all the considered conditions, also those
where the inductor worked in saturation. Moreover, as clearly visible in the enlargement, the slow
ripple drift due to the temperature variation was correctly reproduced: this was due to the state
variable J. This effect would not have been taken into account with the standard linear inductor model.
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Figure 11. Operating conditions used for testing the estimator.
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Figure 12. Top panel: measured (black) and estimated (red) current at electrical steady-state for all the
considered operating conditions. Middle panel: measured (black) and estimated (red) current ripple.
Bottom panel: relative percent error on the current ripple.
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The top panel of Figure 13 shows the measured (black) and estimated (red) output voltage at
electrical steady-state for all the considered operating conditions. The relative percent error is shown
in the bottom panel. Thanks to the correction term η, the two curves almost overlap (the error was
always below 1%).

8

9
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0 60 120 180 240 300

0

0.5

1

Figure 13. Top panel: measured (black) and estimated (red) output voltage at electrical steady-state for
all the considered operating conditions. Bottom panel: relative percent error on the output voltage.

4. Discussion

The proposed observer achieved a relative percent error below 10% in estimating the current
ripple at steady-state and during the slow thermal transients, also when the inductor worked in
saturation and observers based on the classical linear inductor would fail. The accuracy could be
considered satisfactory, considering that it was coherent with the inductor model accuracy [20] and
that the inductance tolerance of the considered components was 30%. Offline results during fast
electrical transients showed that the estimated current and voltage profile was qualitatively similar to
the measured one. The delays in reaching the convergence, due to model inaccuracies, were lower
than 2 ms in the considered scenarios. This suggested that the proposed observer could be possibly
exploited for current mode control of SMPS or for more sophisticate model-based control strategies
such as model predictive control [26]. The main drawback of this approach was the computational
effort, which was strongly reduced with respect to [21], due to the analytical formulation, but was still
high for a low-cost microcontroller (e.g., the STM32F4 exploited in this work). The latency of 200 µs,
indeed, prevented the observer from being coupled with a controller, due to the high delays during
electrical transients. To this aim, a high-performance microcontroller, an SoC, or an FPGA should
be used. However, the proposed implementation could still be exploited for monitoring purposes,
in order to sense, for example, that the inductor current is increasing due to a change in the operating
conditions or due to the slow thermal drift. To this aim, indeed, it is only necessary to acknowledge
quickly when the current overshoots a safety threshold without accurately reproducing the current
profile. This task can be accomplished by the proposed implementation in a few milliseconds.

5. Conclusions

In this paper, we proposed an analytical formulation of an observer, able to estimate the
current ripple in saturating inductors within switch-mode power supplies. A recently proposed
PWA inductance model was exploited, which took into account the magnetic saturation and the
dependence of the inductance on the core temperature. Tests were performed both during fast electrical
transients and slow thermal transients on a real boost converter, where the observer was implemented
on a low-cost microcontroller. A disturbance term was also estimated, which allowed partially
compensating for the model parameters’ inaccuracies. With the selected microcontroller, the observer
had satisfactory performances during slow thermal transients and at steady-state. The observer could
therefore be exploited, e.g., for monitoring of the SMPS. In order to exploit the proposed observer for
current mode control, a faster hardware must be used, which is the subject of future research.
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Appendix A

Consider a continuous PWA function f (x) : D → R+, with D = {x ∈ R : X̂0 ≤ x ≤ X̂m} and
knee points X̂k, k = 1, . . . , m− 1 (see Figure A1), such that X̂k < X̂k+1, k = 0, . . . , m− 1. We remark
that f (x) > 0, ∀x ∈ D. This function can be defined as:

f (x) = âkx + b̂k, if X̂k ≤ x < X̂k+1, k = 0, . . . , m− 1 (A1)

Figure A1. Example of the piecewise-affine (PWA) function f (x) with m = 3.

Consider the following initial value problem:
dy
dt = W

f (y−ȳ)

y(τ0) = y0
(A2)

where X̂0 + ȳ ≤ y ≤ X̂m + ȳ and W and ȳ are constant parameters. We are interested in analytically
computing y(τ),

∫ τ
τ0

y(t)dt and
∫ τ

τ0
y2(t)dt, as a function of parameters W, y0, ȳ, τ0, and τ.

By defining:
x , y− ȳ, (A3)

Problem (A2) can be redefined as:  dx
dt = W

f (x)

x(τ0) = y0 − ȳ , x0
(A4)

We assume that y and ȳ are such that X̂0 ≤ x(t) ≤ X̂m, ∀t ∈ [τ0, τ].
Notice that, since f (x) > 0, x(t) is monotonically increasing if W > 0 and monotonically

decreasing if W < 0. We define variables Xk, k = 0, . . . , m as:

Xk =

{
X̂k, if W > 0

X̂m−k, if W < 0
(A5)
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We also define variables ak and bk, k = 0, . . . , m− 1, as:

ak =

{
âk, if W > 0

âm−k−1, if W < 0
bk =

{
b̂k, if W > 0

b̂m−k−1, if W < 0
(A6)

Figure A2 shows a possible time evolution of x(t) for W > 0 (the case W < 0 is analogous,
mutatis mutandis), starting at x0 for t = τ0 and ending at x(τ) for t = τ. Variables Xk are indicated on
the vertical axis. We denote as tk the time instants such that x(tk) = Xk, k = 0, . . . , m.

Figure A2. Example of function x(t), with m = 6, k′ = 2, and k′′ = 4.

In order to compute the desired quantities, it is necessary to identify the linear regions of the
PWA function shown in Figure A1 containing x0 and x(τ). To this aim, we denote with k′ the index k
such that x0 ∈ [Xk′−1 Xk′) and with k′′ the index k such that tk′′ < τ < tk′′+1. The identification of k′ is
faster if knee points are equally spaced within the domain. It may also happen that tk′−1 < τ < tk′ (i.e.,
both x0 and x(τ) lie in the same region), which implies that k′′ = k′ − 1. The following sections are
referred to the most common (and complex) case, where k′′ 6= k′ − 1. The case k′′ = k′ − 1 is discussed
in Appendix A.4.

Appendix A.1 Computation of x(t)

Since Xk′′ is known (it is a knee point), Problem (A4) can be recast as: dx
dt = W

f (x)

x(tk′′) = Xk′′
(A7)

The solution of this problem, however, requires computing time tk′′ , which can be evaluated
recursively starting from time tk′ . Time tk′ can be computed by integrating both sides of Equation (A4)
between τ0 and tk′ , which leads to:

∫ Xk′

x0

f (x)dx =
∫ tk′

τ0

Wdt (A8)

ak′−1
2

(X2
k′ − x2

0) + bk′−1(Xk′ − x0) = (tk′ − τ0)W (A9)

We can then obtain tk′ as:

tk′ = τ0 +
ak′−1X2

k′ + 2bk′−1Xk′ − ak′−1x2
0 − 2bk′−1x0

2W
(A10)
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If we now integrate both sides of Equation (A4) between tk−1 and tk, with k′ < k ≤ k′′, we obtain:

tk = tk−1 +
ak−1X2

k + 2bk−1Xk − ak−1X2
k−1 − 2bk−1Xk−1

2W
= tk−1 +

Φk−1
W

(A11)

where terms Φk ,
1
2 (akX2

k+1 + 2bkXk+1 − akX2
k − 2bkXk) can be computed offline, for k = 0, . . . , m− 1,

as they only depend on function f . It also appears that Φk = W(tk+1 − tk).
Once time tk′′ has been obtained (by recursively applying (A11)), it is possible to solve

Problem (A7) by integrating between tk′′ and τ, thus obtaining:

x(τ) =
−2bk′′ +

√
4b2

k′′ + 4ak′′
[
ak′′X2

k′′ + 2bk′′Xk′′ + 2(τ − tk′′)W
]

2ak′′
(A12)

Appendix A.2 Computation of
∫ τ

τ0
x(t)dt

By rewriting Equation (A12) for a generic k ≥ k′ and t ∈ [tk, tk+1), it is possible to recast it as:

x(t) = Ak + Bk

√
Ck + Dk(t− tk)W (A13)

with Ak = − bk
ak

, Bk = 1
2ak

, Ck = 4b2
k + 4ak(akX2

k + 2bkXk), and Dk = 8ak. Terms Ak, Bk, Ck, and Dk
can be computed offline for k = 0, . . . , m− 1, as they only depend on function f . For k = k′ − 1 and
t ∈ [tk′−1, tk′), x(t) is obtained as:

x(t) = Ak′−1 + Bk′−1

√
Ĉk′−1 + Dk′−1(t− τ0)W (A14)

where Ĉk′−1 = 4b2
k′−1 + 4ak′−1(ak′−1x2

0 + 2bk′−1x0), which depends on the initial condition x0.
The requested integral can be split into different intervals:

∫ τ

τ0

x(t)dt =
∫ tk′

τ0

x(t)dt + ∑
k′≤k<k′′

∫ tk+1

tk

x(t)dt +
∫ τ

tk′′
x(t)dt (A15)

The first integral depends on W and x0 and can be analytically computed by using the expression
of x(t) in (A14). The last integral depends on W and τ and can be analytically computed by using
the expression in (A12) by replacing τ with t. The remaining integrals only depend on W and can be
analytically computed by using the expression of x(t) in (A13). It is easy to verify that:

∫ tk+1

tk

x(t)dt ,
Ik
W

(A16)

where terms Ik only depend on function f and can be therefore computed offline for k = 0, . . . , m− 1.

Appendix A.3 Computation of
∫ τ

τ0
x2(t)dt

Furthermore, this integral can be split into different intervals:

∫ τ

τ0

x2(t)dt =
∫ tk′

τ0

x2(t)dt + ∑
k′≤k<k′′

∫ tk+1

tk

x2(t)dt +
∫ τ

tk′′
x2(t)dt (A17)

Furthermore, these integrals can be computed analytically, based on the definition of x(t) provided
in Equations (A12)–(A14). It is easy to verify that it is possible to write:

∫ tk+1

tk

x2(t)dt ,
Qk
W

(A18)
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where terms Qk only depend on function f and can be therefore computed offline for k = 0, . . . , m− 1.

Appendix A.4 Case k′′ = k′ − 1

If k′′ = k′ − 1, then both x(0) and x(τ) are within interval [Xk′′ Xk′′+1). In this case, f (x) =

ak′′x + bk′′ , for t ∈ [τ0, τ]. Therefore, it is easy to verify that:

x(τ) =
−2bk′′ +

√
4b2

k′′ + 4ak′′
(
ak′′x2

0 + 2bk′′x0 + 2(τ − τ0)W
)

2ak′′
(A19)

The integrals between τ0 and τ of x(t) and x2(t) can be computed analytically, based on the
definition of x(t) in Equation (A19).

Appendix A.5 Computation of y(τ),
∫ τ

τ0
y(t)dt and

∫ τ
τ0

y2(t)dt

By applying Equation (A3), we can compute:

y(τ) = x(τ) + ȳ (A20)

∫ τ

τ0

y(t)dt =
∫ τ

τ0

[x(t) + ȳ]dt =
∫ τ

τ0

x(t)dt + (τ − τ0)ȳ (A21)

∫ τ

τ0

y2(t)dt =
∫ τ

τ0

[x(t) + ȳ]2dt =
∫ τ

τ0

x2(t)dt + 2ȳ
∫ τ

τ0

x(t)dt + (τ − τ0)ȳ2 (A22)

where all quantities are known.

Appendix A.6 Remarks

The evaluation of y(τ),
∫ τ

τ0
y(t)dt and

∫ τ
τ0

y2(t)dt must be performed many times, during the
estimator operation, with different values of y0, ȳ, τ, τ0, and W. However, all terms Ak, Bk, Ck, Dk, Φk,
Ik, and Qk can be computed only once offline, as they only depend on function f , which does not
change. This allows sparing many online computations, thus reducing the circuit latency.
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