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Abstract: Plastic scintillation detectors are widely utilized in radiation measurement because of
their unique characteristics. However, they are generally used for counting applications because of
the energy broadening effect and the absence of a photo peak in their spectra. To overcome their
weaknesses, many studies on pseudo spectroscopy have been reported, but most of them have not
been able to directly identify the energy of incident gamma rays. In this paper, we propose a method
to reconstruct Compton edges in plastic gamma spectra using an artificial neural network for direct
pseudo gamma spectroscopy. Spectra simulated using MCNP 6.2 software were used to generate
training and validation sets. Our model was trained to reconstruct Compton edges in plastic gamma
spectra. In addition, we aimed for our model to be capable of reconstructing Compton edges even
for spectra having poor counting statistics by designing a dataset generation procedure. Minimum
reconstructible counts for single isotopes were evaluated with metric of mean averaged percentage
error as 650 for 60Co, 2000 for 137Cs, 3050 for 22Na, and 3750 for 133Ba. The performance of our model
was verified using the simulated spectra measured by a PVT detector. Although our model was
trained using simulation data only, it successfully reconstructed Compton edges even in measured
gamma spectra with poor counting statistics.

Keywords: plastic gamma spectra; energy broadening correction; Compton edge reconstruction;
deep learning; deep autoencoder

1. Introduction

Plastic scintillation detectors have poor spectroscopic characteristics because of poor energy
resolution and absence of photo peak in the region of interest, which is above 100 keV. Therefore, it is
hard to conduct radioisotope identification from plastic gamma spectra. Despite their weaknesses,
plastic scintillation detectors have been widely used in radiation monitoring systems, e.g., radiation
portal monitor, because they have unique characteristics such as low cost, are easily made in large
volume, etc. Therefore, various spectral processing techniques have been reported for pseudo
gamma spectroscopy of plastic scintillation detectors. Energy windowing [1–4], F-score analysis [5],
energy weighted algorithms [6,7], and inverse matrix [8] are representative methods for pseudo gamma
spectroscopy. However, these methods can be categorized as indirect pseudo gamma spectroscopic
methods because it is impossible to directly identify the energy of incident gamma rays. Even though
inverse matrix allows unfolding photo peaks in plastic gamma spectra, it works with spectra with
good counting statistics only.
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In contrast, there have been many studies on radioisotope identification, which is one of the
purposes of gamma spectroscopy, using pattern recognition methods, such as library matching [9,10]
and neural network-based classifiers [11,12]. Using library matching methods, it is possible to identify
radioisotopes only if the library data are prepared to match with the measured data. In the case of
neural network-based-classifiers, it is difficult to define practical accuracy. Although the outputs from
neural networks are in the form of probabilities, they do not represent practical accuracy without
confidence calibration [13].

In this paper, we propose a deep autoencoder model to correct the energy broadening effect, which
is one of the weaknesses of the plastic gamma spectra. If the energy broadening effect is corrected,
it is possible to conduct direct pseudo gamma spectroscopy differently from other methods because
Compton edges are represented in gamma spectra. The datasets for this study were generated using
the following procedure; establishment of probabilistic density function (PDF) library for radioisotopes
using the results of Monte Carlo simulations, synthesis of PDFs with dependent random ratios for
various combinations of radioisotopes, and generation of datasets via random sampling. For the
generated and measured plastic gamma spectra, it has been verified that our model can reconstruct
Compton edges from spectral measurement, even from spectra with low counting statistics.

2. Materials and Methods

2.1. Deep Autoencoder

An autoencoder is a type of an artificial neural network that generates an output signal whose
dimension is identical to that of the input signal. Figure 1 shows a schematic of autoencoder
architecture [14–16]. As shown in Figure 1, an autoencoder consists of two parts: encoder and
decoder. In the encoder, inputs are encoded into internal representations with reduced dimensions in
the latent space. In the decoder, internal representations are decoded into the reconstructed signal.
In this unsupervised manner, the autoencoder is widely used for dimension reduction in many
applications [17,18]. Furthermore, an autoencoder can be used for noise rejection. If we add noise
signals to training data and train an autoencoder to reconstruct the input signal without the noise,
the autoencoder is optimized to make a function to reject noise signals. A deep autoencoder is an
autoencoder model whose encoder and decoder consist of three hidden layers or more [19].
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HAMAMATSU) [20] and a preamp (E990-501, HAMAMATSU) [21] was used as a plastic scintillation
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detector. Optical grease (BC630, Saint-Gobain, Courbevoie, France) was applied at the junction between
the crystal and PMT for optical coupling. For optical shielding, the crystal was wrapped with Teflon
and black friction tape. A pulse processor (DP5G, Amptek, Hawthorne, NJ, USA) was used as a
shaping amp with time constant of 2.2 µs and multichannel analyzer. A high-voltage supplier (NHQ
224M, ISEG, Lisboa, Portugal) was used to supply operating voltage to the detector. Experiments to
measure gamma spectra were conducted in an aluminum dark box for the replenishment of optical
shielding. The dark box consisted of a 10 mm thick aluminum case with an internal space of 440 × 440
× 899 (W × H × L) mm. The detector was placed on the shelf of the dark box, and the window of the
detector was located at the center of the dark box. 22Na, 60Co, 133Ba, and 137Cs were used as gamma ray
sources, and the position of the source was fixed at 5 cm from the detector window. Figure 2 shows our
experimental setup. Energy calibration was conducted using a parametric optimization method [22].
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2.2.2. Monte Carlo Simulation

To simulate plastic gamma spectra, we implemented a simulation geometry that was analogous
to the experimental setup using the MCNP 6.2 software [23]. Compositions and densities of materials
were defined from a material data report [24]. Gamma ray sources were defined as point sources. An
F8 tally was used to simulate the spectral response of each source, and history number was set to 108.
The F8 tally is also called a pulse height tally, and it is utilized when simulating deposited energy
distribution according to energy bins, time bins, etc. Herein, we use the F8 tally with defining energy
bins to simulate spectral response of our plastic scintillation detector. Energy bins for the F8 tally
were defined as identical to energy calibrated channel bins. To acquire ideal and energy broadened
pulse height distributions, F8 tallies were defined with and without a Gaussian energy broadening
(GEB) card to acquire ideal and energy-broadened pulse height distributions, respectively. Coefficients
“a”, “b”, and “c” for the GEB card were calculated by a parametric optimization method [22] using
experimental spectra that were analogous to the measurement data to the maximum extent. Coefficient
used for the GEB card is 0.006779 for “a”, 0.3549 for “b”, and −0.4999 for “c”.

In MCNP 6.2, the energy broadening effect can be simulated with the use of a GEB option. When
the GEB option is activated, all particle histories tallied in F8 tally are recorded after random sampling,
which follows Gaussian probability distributions calculated by Equation (1):

f(E0, a, b, c) = Ae
−(

2
√

2 ln 2(E−E0)

a+b
√

E0+cE2
0

)
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where A is a normalization constant; a, b, and c are GEB parameters; E is the broadened energy; and E0

is the original energy before broadening.

2.2.3. Dataset Generation

The datasets were generated by random sampling and data synthesis using simulation data only.
Before dataset generation, we prepared libraries of PDFs for ideal and GEB cases as follows. For pulse
height spectra of 22Na, 60Co, 133Ba, and 137Cs simulated by MCNP code, each spectrum was divided by
the integral value of itself for data normalization. With this procedure, each normalized spectrum could
be represented as a PDF of detector response, because the summation of each normalized spectrum is
one. After PDF libraries were created, we generated datasets as follows. First, ratios for PDF synthesis
were selected as significant figures with first decimal place by dependent random sampling; the
summation of synthesis ratios should be one to keep the synthesized results as PDFs. Some examples
to explain the characteristics of dependent random ratios are as follows. If the synthesis ratio for 22Na
is one, the ratios for others should be zero. If the ratio for 22Na is 0.1, the ratio for 60Co is determined
in the range of 0 to 0.9. If the ratio for 60Co is determined as 0.5, the ratio for 133Ba is selected in a
range of 0 to 0.5. If the ratio of 133Ba is 0, the ratio of 137Cs is 0.4. With this spectral synthesis, data for
multiple radiation sources in various ratios can be generated without additional simulation. Second,
the number of samplings to simulate spectral data was then selected in the range of 40,000 to 100,000.
By randomly selecting the sampling numbers, datasets with various levels of statistical uncertainties
could be generated. This means that it is possible to build an autoencoder model with the ability to
reconstruct Compton edges even from spectra with poor counting statistics with the generated datasets.
Once the synthesis ratios and number of samplings were determined, PDFs were synthesized for ideal
and GEB cases, and spectra were simulated via random sampling with the synthesized PDFs and the
determined number of samplings. Next, spectra were normalized by total sum normalization, which
can be represented as Equation (2),

xi,norm =
xi∑n

i=1 xi
(2)

where xi is the ith element of the original data X, xi,norm is ith element of the normalized data Xnorm,
and n is the number of elements in the original data set.

In this manner, we established a procedure to generate datasets for the ideal case and GEB case
paired with each other. Figure 3 illustrates the dataset generation procedure. With the established
dataset generation procedure, we generated 60,000 spectra as a training set, 2000 spectra as a validation
set, and 2000 spectra as a test set. Figure 4 shows the examples of the generated datasets.
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3. Results

3.1. Results for Compton Edge Reconstruction with Test Set

The deep autoencoder was implemented in the Python environment using the Tensorflow [25]
and KERAS [26] libraries. Hyperparameters for our autoencoder model were determined by trial and
error as follows. The architecture of our model consists of three hidden layers as the encoder and
three hidden layers as the decoder. The dimension of the input layer is 500, which means spectral
data with 500 channel bins are provided as input to the autoencoder. The numbers of neurons in
encoder layers are 200, 100, and 50, and the numbers of neurons in the decoder layers are 100, 200,
and 500. This means that the input data are compressed by internal representations with dimension of
50 bins during the encoding process, and output with dimension of 500 bins is reconstructed from
internal representations during the decoding process. For activation functions of hidden layers, a
ReLU function was used for all layers of the encoder and the first and second layers of the decoder. For
the third layer of the decoder, a sigmoid function was used as the activation function.

To train the deep autoencoder, training and validation sets for GEB case were given as input,
and those for the ideal case were given as desired output. For data normalization, all data given to
the deep autoencoder were presented as a response function in percentage units by dividing them
into integral values of themselves and multiplying them by 100. In general, noise signals are added
to the dataset with additional data processing procedure for an autoencoder to have the ability of
noise reduction. In our problem, fluctuations in spectral data are coming from not noise signals
but statistical uncertainties. By generating dataset via random sampling with randomly selected
number of samplings, we can generate dataset with various level of counting statistics without
additional procedure.
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To compare reconstruction results with desired spectral data, mean absolute percentage error
(MAPE) was used as a loss function, as described by Equation (3),

MAPE =
100%

n

∑n

i=1

Oi − Ii
Ii

(3)

where n is the number of channel bins, i indicates the ith channel bin, O is the Compton edge
reconstructed spectrum, and I is the ideal spectrum given as desired output.

MAPE was employed for the following reason. Although there are various options for the loss
function, most of them represent difference rather than relative difference between two data sets.
Because the data used in this study are plastic gamma spectra, they have relatively high levels of
counts in low and high channels. Therefore, other options are mostly affected by values in the low
channel region, and values in the high channel region tend to be ignored. However, MAPE represents
the relative difference between two data because the subtraction of two data is divided by one of them.
Therefore, it can calculate the difference between two data with equivalent weights for the whole
region of spectral data whether the level of count is high or low.

The deep autoencoder was trained with the ADADELTA optimizer [27] for established training
and validation sets during 1000 epochs. Model checkpoint option was activated as a callback function
to save the best model built during the training procedure by monitoring validation loss, and the best
model in the training procedure was used as the final model. Figure 5 shows a schematic illustration of
the training procedure of our model, and Figure 6 illustrates the training and validation losses during
the training procedure.
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The performance of Compton edge reconstruction for the trained deep autoencoder was tested
using the generated test set. Averaged test loss was 20.019 for test sets. Figure 7 shows Compton edge
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reconstruction results for several spectra of single and multiple radioisotopes. The deep autoencoder
reconstructed the Compton edges in plastic gamma spectra, even though the spectra contains statistical
uncertainties. Information on spectra and their corresponding MAPE values are presented in Table 1.
Synthesis ratios in Table 1 were not estimated by the deep autoencoder, but rather acquired during the
test set generation procedure.
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h 83065 0.4 0.0 0.3 0.3 9.716 
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Figure 7. Results of Compton edge reconstruction for eight cases in the test set. Each synthesis ratio is
(a) 100% 22Na; (b) 100% 60Co; (c) 100% 133Ba; (d) 100% 137Cs; (e) 70% 22Na and 30% 137Cs; (f) 50% 22Na
and 50% 133Ba; (g) 20% 60Co, 20% 133Ba, and 60% 137Cs; and (h) 40% 22Na, 30% 133Ba, and 30% 137Cs.

Table 1. Information on seven cases in test set and their corresponding mean absolute percentage error
(MAPE) values.

Case The Number of Samplings
Synthesis Ratio

MAPE [%]
γNa γCo γBa γCs

a 76,310 1.0 0.0 0.0 0.0 5.499
b 78,240 0.0 1.0 0.0 0.0 5.025
c 58,955 0.0 0.0 1.0 0.0 10.534
d 56,272 0.0 0.0 0.0 1.0 3.138
e 81,944 0.7 0.0 0.0 0.3 12.374
f 61,253 0.5 0.0 0.5 0.0 8.363
g 59,065 0.0 0.2 0.2 0.6 8.438
h 83,065 0.4 0.0 0.3 0.3 9.716

3.2. Results of Compton Edge Reconstruction for Experimental Data

Reconstructions of Compton edges using the trained deep autoencoder were also conducted
for the experimental data. In the environment described in Section 2.2, plastic gamma spectra were
measured from single to multiple radioisotopes with a measurement period of 3600 s. Background
radiation was also measured, and background-subtracted measured spectra were provided as input
data to our autoencoder. Figure 8 shows the results of Compton edge reconstruction for measured
spectra of single and multiple radioisotopes. Compton edges marked in Figure 8 represent theoretical
energies of each source calculated by the following equation [28] (p. 51),

ECE = E

1− 1
1 + 2E

mec2

 (4)

where E is the energy of incident photon and mec2 is the rest-mass energy of the electron (511 keV).
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measured spectra of (a) 22Na; (b) 60Co; (c) 133Ba; (d) 137Cs; (e) 22Na and 60Co; (f) 22Na and 133Ba;
(g) 22Na and 137Cs; (h) 60Co and 133Ba; (i) 60Co and 137Cs; (j) 133Ba and 137Cs; (k) 22Na, 60Co and 133Ba;
(l) 22Na, 60Co and 137Cs; (m) 22Na, 133Ba and 137Cs; (n) 60Co, 133Ba and 137Cs; and (o) 22Na, 60Co, 133Ba,
and 137Cs.

As shown in Figure 8, the energies of Compton edges in the reconstructed spectra were matched
with their theoretical values calculated by Equation (4).

3.3. Minimum Reconstructible Counts

Similar to minimum detectable activity [29], the number of counts required to reconstruct Compton
edges in plastic gamma spectra should be verified. In previous studies on gamma (or pseudo gamma)
spectroscopy, similar concepts were defined to evaluate performance according to the activity of
radioactive sources or the number of counts in their detection systems [12,30]. However, these cannot
be used directly in our study because of the differences in their detailed concepts. Instead, averaged
MAPE was used as a quality factor to evaluate the minimum reconstructible count (MRC) of the
trained autoencoder. For each radioisotope, averaged MAPEs between reconstruction results and
reconstruction references were calculated as follows. First, measured spectra in Section 3.2 (i.e., input
spectra in Figure 8a–c) were normalized and utilized as PDFs for generating test sets for MRC evaluation.
Second, 100 spectra were generated as test sets with the procedure detailed in Section 2.2 for each
number of counts. Third, Compton edges were reconstructed for the test sets. Fourth, MAPEs between
reconstruction results and reconstruction references were calculated for 100 generated spectra, and the
averaged MAPE value was calculated. In this study, the reconstruction results presented in Section 3.2
(i.e., reconstructed spectra in Figure 8a–c) were used as a reconstruction reference. The threshold for
MRC was determined as 10% of the averaged MAPE by referring to Table 1. Whole steps for MRC
evaluation above were iterated with increment of the number of counts with interval of 50 for each
radioisotope. Figure 9 shows the averaged MAPE according to the number of counts for single-isotope
gamma spectra. MRCs were determined as the counts of which averaged MAPEs were decreased
to less than 10%. Table 2 shows the MRCs of the single isotopes, and Figure 10 shows examples of
generated spectra and reconstruction results corresponding to each MRC. In this table, MRCs are
higher in order of 60Co < 137Cs < 22Na < 133Ba. The reason why MRCs are different depending on
radioisotopes may be related to the intensities of energies of emitted photons and combinations of
radioisotopes. 60Co emits two energies of gamma rays with almost analogous ratios. However, 22Na
emits two energies of photons at different ratios; the intensity for a photon of 511 keV is almost double
that for a photon of 1275.4 keV. This means that a higher number of counts is required to extract features
for Compton edge reconstruction on the Compton continuum generated by a photon of 1275.4 keV.
In the same manner, 133Ba requires the highest number of counts for Compton edge reconstruction due
to the complex Compton edges in the low-energy region. In the case of 137Cs, the MRC was higher than
the MRCs of 60Co, even though it emits one energy of gamma rays. It may because higher number of
counts are required to discriminate following cases; one is 137Cs and the other is small ratio of 133Ba
and 137Cs.

Table 2. Determined minimum reconstructible counts (MRCs) where averaged MAPEs are lower than
10% for each isotope.

Radioisotope Energy [keV] [31] Emission Intensity [%] [31] MRC [#]

22Na
511 179.8

3050 ± 551274.5 99.9

60Co
1173.2 99.9

650 ± 251332.5 99.98
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Table 2. Cont.

Radioisotope Energy [keV] [31] Emission Intensity [%] [31] MRC [#]

133Ba

53.16 2.14

3750 ± 61

79.61 2.65
80.99 32.9
276.4 7.16
302.9 18.34
356 62.05

383.8 8.94
137Cs 661.66 85.21 2000 ± 44
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Compton edge reconstruction results. Reconstruction results on (a) generated spectrum for 22Na,
(b) generated spectrum for 60Co, (c) generated spectrum for 133Ba, and (d) generated spectrum for 137Cs.

To validate the MRC evaluation results, we measured the background and each isotope for 10,
20, 40, and 80 s corresponding to MRCs of 60Co, 137Cs, 133Ba, and 22Na, respectively, and Compton
edges were reconstructed from measured net spectra (i.e., background-subtracted spectra). Total net
counts for each measured net spectra were not exactly the same as the MRCs but were within statistical
uncertainties. Figure 11 shows the results of Compton edge reconstruction with experimental spectra
for validating each MRC. Identical to Figure 8, Compton edges marked in Figure 11 were calculated by
Equation (4).
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4. Discussion

A deep autoencoder model was presented to reconstruct Compton edges in plastic gamma spectra.
Our model was trained to reconstruct Compton edges in plastic gamma spectra, even though the
spectra have poor counting statistics, by designing a dataset generation procedure. As shown by
the experimental results, it successfully reconstructed Compton edges in plastic gamma spectra with
statistical uncertainties. Therefore, it was possible to conduct direct pseudo gamma spectroscopy using
Compton edge reconstruction results. Furthermore, the MRCs of single isotopes were evaluated with
the metric of MAPE as a loss function of our model.

Although our model shows good performance on Compton edge reconstruction in plastic gamma
spectra, there are three limitations we are aware of: First, the autoencoder generates data-specific
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results, i.e., it generates wrong results for spectra on radioisotopes that are not included in the training
set; in fact, this is a characteristic of machine learning methods. For example, if untrained radioisotope
is given, the autoencoder generates a spectrum which is one of the trained radioisotope or mixture of
trained isotopes. Second, MRCs may be increased according to the increase in types of radioisotopes.
For example, we evaluated the MRC of 60Co as 650, the minimum value among three isotopes. If,
however, a radioisotope emitting gamma rays of energies similar to those of 60Co with almost analogous
ratios was included in dataset, the MRC of 60Co may be increased because more counts are required
to distinguish 60Co from the isotope. Furthermore, the spectra we used as input are for bare source.
In practice, distortion of spectra may occur because of the presence of material surrounding the
source, and it may affect Compton edge reconstruction performance. Concerning these limitations,
further study is necessary.

5. Conclusions

This paper proposed a neural network model to reconstruct Compton edges in plastic gamma
spectra. Datasets for training and validation of our model were generated by Monte Carlo simulations,
data synthesis methods, and random sampling techniques. Although our model was trained by only
simulation data, it successfully reconstructed Compton edges in simulated and measured gamma
spectra, even though the spectra has poor counting statistics. Concerning the performance of Compton
edge reconstruction according to counting statistics, MRCs were evaluated, and it was found that
MRCs were related to the complexity of energies and intensities for emitted photons.

Many researchers have been reported methods for pseudo gamma spectroscopy such as energy
windowing, F-score analysis, energy weighted, and inverse matrix algorithms. These researches
excluding inverse matrix algorithm were able to find existence of radioactive materials from the
patterns after spectral data processing, rather than identifying the energy of gamma rays incident on
the detector. Even though inverse matrix algorithm was able to identify the energy of gamma rays
from unfolded gamma-ray spectra from plastic scintillators, it does not work for spectra with poor
counting statistics. However, our method allows conducting direct pseudo spectroscopy with the
analysis of reconstructed Compton edges even though the spectra have poor counting statistics.
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