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Abstract: Every day, hundreds of thousands of malicious files are created to exploit zero-day
vulnerabilities. Existing pattern-based antivirus solutions face difficulties in coping with such
a large number of new malicious files. To solve this problem, artificial intelligence (AI)-based
malicious file detection methods have been proposed. However, even if we can detect malicious
files with high accuracy using deep learning, it is difficult to identify why files are malicious.
In this study, we propose a malicious file feature extraction method based on attention mechanism.
First, by adapting the attention mechanism, we can identify application program interface (API)
system calls that are more important than others for determining whether a file is malicious. Second,
we confirm that this approach yields an accuracy that is approximately 12% and 5% higher than a
conventional AI-based detection model using convolutional neural networks and skip-connected
long short-term memory-based detection model, respectively.
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1. Introduction

Every day, hundreds of thousands of malicious files are created to exploit zero-day
vulnerabilities [1,2] For this reason, the existing pattern-based antivirus solutions face difficulties
in responding to new malicious files [3]. Traditional pattern-based antivirus solutions determine
whether files are malicious by evaluating their hash values, their string content, or their behavior.
However, new malicious files are being designed to avoid detection by existing antivirus solutions.
Therefore, malware detection requries an alternative solution.

Methods that use artifical intelligence (AI) for detecting malicious files have been recently
proposed [3–10]. AI has been widely employed for image recognition and machine translation [11,12].
Machine learning and deep learning techniques are widely utilized in AI applications. An advantage
of AI is that it can effectively identify data that are similar to the training data. That is, even if
there are no patterns for a new malicious file, it is possible to determine whether it is malicious [13].
Kaspersky Internet Security that uses machine learning has improved accuracy.

If we add the AI-based malware detection method to the existing anti-virus software, we can
increase the malware detection rate because we can detect malware that is not found by the existing
anti-virus software. It is known that, when using machine learning, the detection rate is higher and the
false positive rate is less than that of pattern-based detection [13]. When a new malware is exposed
to pattern-based antivirus software, it cannot establish whether it is malicious because the pattern is
not recognized. However, the AI-based malware detector determines whether it is malicious with
high probability.
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To detect malicious files based on AI using a PC, two modules are generally required: a malicious
file feature extraction module and an AI-based training and testing module, as illustrated in Figure 1.
Note that we can also use the AI-based malware detection method in a server, on a smartphone, or
in the cloud. However, the feature extraction modules would be slightly different according to the
operating systems. Because portable executable (PE) files are executed on the Windows OS and Android
application package (APK) files are executed on the Android OS, each requires a different feature
extraction module. However, the deep learning models for malware detection are similar.

As depicted in Figure 1, when the training files are available, the features are extracted using a
feature extraction module. Thereafter, once these features have been used to train the deep learning
model in the training module in a server or PC, we obtain the trained deep learning model.

Next, when a test file is provided, the existing pattern-based antivirus software examines it.
However, when it is new and the antivirus does not have the pattern in its database, it reports that it
cannot establish whether it is malicious. Note that, if it has a pattern, it will determine whether it is
malicious, but, if it cannot be decided, the suspect item is passed to the feature extraction module for
AI-based malware detection.

We extract the relevant features using the feature extraction module and determine whether
the file is malicious by using the trained deep learning model in the testing module in a user’s PC.
Note that we run the training and testing modules in a PC for simplicity. However, the training
module is run by a malware detection system administrator and the testing module is run by a user.
In addition, even if the training time is relatively long, the testing time is short. Therefore, we can
detect malware using the AI-based detection method at runtime.

Figure 1. Malware detection system structure based on artificial intelligence.

To extract feature data from malicious files, we can use static [4,5,14–17] and dynamic analyses [6–8]
Static analysis involves the extraction of features such as strings and opcodes, and dynamic analysis
extracts features such as application program interface (API) system calls by executing the malware.

Thereafter, by using extracted features with an AI model such as a convolutional neural network
(CNN)-based model or long short-term memory (LSTM)-based model, we can determine whether the
file is malicious or not. However, in the AI model, we do not know why the file is malicious. Therefore,
we must determine which features are more significant than others in a malicious file.

In this study, we propose a malicious file feature extraction method based on attention
mechanisms [18]. An attention mechanism calculates the weight of each input value of the deep
learning model, in order to determine which has a greater impact on the result. Thus, using this
mechanism, we can determine which features are more significant than others. To the best of our
knowledge, this study is the first to apply the attention mechanism to malicious file feature extraction.



Sensors 2020, 20, 2893 3 of 17

Furthermore, our experimental results indicate that this method increases the accuracy of the AI-based
malicious file detection system and determines in reasonable time whether the file is malicious.

The remainder of this paper is organized as follows: Related research is discussed in Section 2.
Basic malicious file feature extraction method and basic deep learning techniques for malicious file
detection are presented in Section 3. A new method for malicious file feature extraction is detailed
in Section 4. In Section 5, we demonstrate that the proposed method outperforms existing methods.
Finally, we provide a discussion and conclusions in Sections 6 and 7, respectively.

2. Related Work

Methods of analyzing malicious files can be categorized into static and dynamic analysis methods.
Static analysis methods judge whether a file is malicious by analyzing strings [14], import tables [15], byte
n-grams [16], and opcodes [16]. Static analysis methods can analyze malicious files relatively quickly,
although they face difficulties analyzing files when they are obfuscated or packed [17]. With dynamic
analysis methods, malicious files are analyzed by running them. However, these methods have
the disadvantage that malicious files may detect the virtual environment and not operate in it [4].
It may also be difficult to collect complete malicious behavior because malicious files may only run in
certain circumstances.

Recently, there have been many studies on malicious file analysis using AI. The methods in [4,5]
utilize a static analysis to analyze malicious files. The method in [4] extracts byte histogram features,
import features, string histogram features, and metadata features from a file and trains deep learning
models based on deep neural networks. The method in [5] learns a convolutional neural network
(CNN)-based deep learning model by extracting opcode sequences.

The approaches in [6–8] utilize a dynamic analysis method to analyze a malicious file, and execute
it to collect the API system call and extract a subsequence of a certain length from the system call
sequence using a random projection. The method in [6] utilizes a deep neural network-based deep
learning model, and that in [7] employs a deep learning model based on a recurrent neural network
(RNN). The authors of [8] proposed a deep learning model that simultaneously performs malicious
file detection and malicious file classification. In the present study, we employ both static and dynamic
analyses. Furthermore, a novel property is that we propose automatic feature extraction based on the
attention mechanism.

Even if malicious files can be detected with high accuracy using deep learning, we do not know
which API system calls are more important than others. Recently, the attention mechanism was
proposed in the neural machine translation community to provide sentence summarization [18]. To our
best knowledge, this study represents the first attempt to analyze and detect malicious files by adapting
the attention mechanism. By utilizing the attention mechanism, we can determine which API system
calls are more important in malicious files, and our approach yields a higher accuracy than existing
malware detection models.

Here, we focus on malicious Portable Executable (PE) files, but other types of malicious files also
exist. These include malicious PDF files [19] and PowerShell scripts [20,21]. Some researchers have
attempted to determine whether PDF files and PowerShell scripts are malicious using AI. However,
such approaches are outside the scope of the present study.

3. Deep Learning Based Malware Detection

Deep learning-based malware detection requires two modules. The first is feature extraction and
the second is a deep learning model. In Section 3.1, we introduce two feature extraction methods.
In Section 3.2, we present three deep learning models.

3.1. Feature Extraction for Malware Detection

In this section, we provide two feature extraction methods. The first is static analysis-based
feature extraction and the second is dynamic analysis-based feature extraction.
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3.1.1. Feature Extraction Using Static Analysis

Malicious file feature data are required for malicious file detection using deep learning. To this
end, we can extract malicious file feature data using static or dynamic analyses. First, for a static
analysis, we extract the assembly code using objdump [22], as shown in Figure 2. Next, we extract the
opcode sequences such as add, inc, and add. We can then construct a trigram sequence [23] for three
consecutive opcodes. The trigram sequence is created as follows:

(add, inc, add), (inc, add, xchg), (add, xchg, inc), . . .

The reason for creating trigram sequences is that there are approximately 100 opcodes, and when
these are placed into trigrams, the size of the trigram domain is approximately 1003, such that the
trigram sequence of each file can easily be distinguished from those of other files.

Figure 2. PE file assembly code.

3.1.2. Feature Extraction Using Dynamic Analysis

Next, we employ the Cuckoo Sandbox [24] to extract the API system calls of the portable
executable (PE) file. An example of an API system call list is presented in Table 1. We first run
the Cuckoo Sandbox, and then extract the API system call sequence. In addition, we extract the
trigrams for three consecutive API system calls to create a trigram sequence.

Table 1. API system call list.

API Num API System Call Category

1 CreateProcess 1
2 ExitProcess 1
3 TerminateProcess 1
4 OpenProcess 1
5 SearchProcess 1
6 ProcessDEPPolicy 1
7 InformationProcess 1
8 CreateLocalThread 2
9 ExitThread 2
10 TerminateThread 2
... ... ...

3.2. DL-Based Malware Detection Model

In this section, we introduce three deep learning models for malware detection. The first is
recurrent neural network, the second is LSTM, and the third is skip-connected LSTM (SC-LSTM).

3.2.1. Recurrent Neural Network (RNN)

Here, we introduce a basic deep learning model used for malicious file detection. RNNs are mainly
employed to process sequential information, such as language translation [25]. Figure 3 illustrates the
structure of a typical RNN used to translate German sentences into English. However, RNNs have
the disadvantage that the longer the input sentence, the smaller the influence of the preceding words.
This is known as the vanishing gradient problem [26].
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Figure 3. RNN for machine translation.

3.2.2. Long Short Term Momory (LSTM)

LSTM [27] was proposed to solve the aforementioned vanishing gradient problem [26]. LSTM has
three gates, as shown in Figure 4. The gates are a way to optionally let information through. They are
composed of a sigmoid neural net layer σ and a pointwise multiplication operaion ×. The first is the
forget gate ft, which determines whether the state Ct−1 of the previous cell is reflected as follows:

ft = σ(W f · [ht−1, xt] + b f ) (1)

where xt is an input, ht−1 is the output of the previous cell, W f is a weight, and b f is a bias.
The second is the input gate it, which determines how much the state of the previous cell will be

updated as follows:

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(Wt · [ht−1, xt] + bC) (3)

where C̃t is a new candidate value. Then, the state Ct of the next cell is calculated as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

The third is the output gate ot. The output ht of the current cell is calculated as follows:

ot = σ(Wo · [ht−1, xt] + b0) (5)

ht = ot ⊗ tanh(Ct) (6)

In LSTM, the state Ct−1 of the previous cell has the possibility to be changed less than in an RNN.
Therefore, LSTM has the advantage that the initial state of a cell can be better reflected.

3.2.3. Skip-Connected LSTM

A residual network is a technology that solves the problem that learning and evaluation errors do
not decrease in the image recognition field using a CNN model, even when the depth of the network is
increased. This technique adds a hidden input layer followed by some steps to present inputs without
weight calculations [11].

To improve the information flow of the LSTM network while maintaining the advantages of
the gate mechanism, it has been proposed to introduce skip connections between two LSTM hidden
states [12]. The result is called SC-LSTM. The structure of this model is illustrated in Figure 5.
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Figure 4. LSTM structure [27].

SC-LSTM has the advantage that the dependencies of long sequence information are better
captured by skip connections. The next hidden state is calculated as follows:

ht+L = ot+L ⊗ tanh(Ct+L) + ht (7)

Figure 5. Skip-connected LSTM structure.

4. Automated Feature Extraction Based on Attention

In this section, we propose an automated feature extraction method based on the attention
mechanism. First, in Section 4.1, we introduce the attention mechanism. Subsequently, in Section 4.2,
we present an attention-based feature extraction method for malware detection.

4.1. Attention Mechanism

Attention is a deep learning mechanism that looks for the parts of sequence data with greater
impacts on the results. A typical example of attention is text summarization [18] that involves
summarizing a given text. Using the attention mechanism, we can identify some of the main words to
summarize an article when it is given as a sequence of words. For example, the text shown in Figure 6
is summarized as follows:

russia calls f or joint f ront against terrorism (8)
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Figure 6. Alignment of text summarization [18].

The RNN model is utilized in neural machine translation (NMT). For example, German sentences
can be translated into English. NMT encodes the source sentence into a vector and decodes the sentence
based on that vector.

The attention mechanism allows the decoder to refer to a portion of the source sentence [25],
as shown in Figure 7 [25]. Here, X is the source sentence and y is the translated sentence generated
by the decoder. Figure 7 depicts a bidirectional RNN. The important point is that the output word yt

depends on the weight combination of all input states. Here, α is a weight that defines how strongly
each input state influences each output state. If α(3,2) is large, it means that the third word in the
output sentence refers to the second word in the input sentence.

In the attention model, the hidden state St is defined as follows:

st = f (st−1, yt−1, ct) (9)

Furthermore, the context vector ct is defined as follows:

ct =
T

∑
j=1

αi,jXj (10)

Weight αi,j is computed as

αi,j =
exp(ei,j)

∑T
k=1 exp(ei,k)

(11)

In addition, ei,j is computed as follows:

ei,j = a(si−1, Xj) (12)

Here, ei,j is an alignment model indicating how well the input j and output i are matched.
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Figure 7. Attention [25].

The advantage of attention is that it provides the ability to interpret and visualize what the model does.
For example, by visualizing the attention weight matrix when a sentence is translated, we can understand
how the model performs translation. As shown in the text summarization above, we can observe how
strongly each word in the output summary statement refers to each word in the input sentence.

4.2. Feature Extraction Based on Attention Mechanism

In this section, we propose an automatic feature extraction method based on the attention
mechanism. The idea behind this method is as follows: When we utilize the attention model to
identify the weight of each API system call in a sequence of length n, we find that the malicious file
detection rate increases when we consider subsequences of length k by extracting weighted words for
malicious file detection.

For example, the API sequence for a malicious file might may appear as follows:

{LoadLibrary, LoadCursor, RegisterClass, GetThreadLocal, Strcmp,
GlobalAlloc, GlobalFree, FindResource, LoadResource, VirtualProtect}

In the attention model, the weights of this sequence may be expressed as follows:

{0.3, 0.0125, 0.0125, 0.0125, 0.3, 0.0125, 0.0125, 0.0125, 0.0125, 0.3}

Here, we extract the APIs with the top three weights:

{LoadLibrary, strcmp, VirtualProtect}

This is the API sequence pattern that appears in import address table-hooking malicious files [9].
We expect the detection rate of malicious files to increase using subsequence data with the top three
weights through the attention model, rather than using the full sequence of length 10.

The purpose of the automatic feature extraction method is as follows: First, significant
subsequences of length k are extracted from a data sequence of length n extracted from a malicious file,
to enhance malicious file detection performance through deep learning.

After extracting significant data subsequences, malicious file analysts can analyze malicious
files more easily. That is, malicious file analysts can analyze malicious files by analyzing significant
subsequences of data, rather than examining the entire data sequence.

The automatic feature extraction method based on the attention mechanism is described as follows:
First, when files are provided, we extract features such as API system call sequences using Cuckoo
Sandbox. Note that we can extract features such as opcode sequences by static analysis instead of dynamic
analyses such as Cuckoo Sandbox. Second, we construct a trigram sequence {S1, S2, · · · , Sn} for three
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consecutive data. Third, we train the LSTM model based on the attention mechanism, and calculate the
weight Wi of each data point Si in the data sequence {S1, S2, · · · , Sn}, as depicted in Figure 8:

{(S1, W1), (S2, W2), · · · , (Sn, Wn)} (13)

Next, we extract the data subsequence with the k highest weights, as follows:

{(S′1, W ′1), (S
′
2, W ′2), · · · , (S′k, W ′k)} (14)

Figure 8. Structure of the automatic feature extraction module.

Finally, this subsequence is utilized as data for the deep learning model for malicious file detection.
As depicted in Figure 8, we obtained the trained deep learning model using the subsequence. When a
test file is given, we can determine whether the file is malicious in the testing module using the trained
deep learning model. We demonstrate our proposed method in the next section.

5. Experimental Results

5.1. Setup

All experiments were performed on the Ubuntu operating system, and the models used in the
experiments were implemented using Theano [28]. The detailed experimental conditions are described
in Table 2.

Table 2. Experimental environments.

Name Specification

OS Ubuntu 14.04 (64 bit)
CPU Intel i7-7700 (4.2 GHz)
RAM 32 GB
GPU GTX 1060
Cuda 8.0

5.2. Data

The files utilized in the experiments were PE files collected from HAURI [29]. We used 1000 normal
and 1000 malicious files. Table 3 presents the types of malware: trojan, win32, backdoor, worm,
dropper, malware, and virus. These were classified using Ahnlab V3 [30]. Note that the purpose of
this study is only to determine whether the files are malicious and not to classify the type of malware.
Different malware families may produce different detection results. There are other studies on malware
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classification [31], but this is beyond the scope of this research. However, we will consider the topic in
future work.

Table 3. Types of malware.

Malware Type Number

Trojan 646
Win32 281

Backdoor 23
Worm 25

Dropper 6
Malware 4

Virus 4

Total 1000

We extracted the API system call sequences from these PE files using the Cuckoo Sandbox.
These consisted of API unigram sequences. We then converted the three consecutive API system calls
into one trigram to create API trigram sequences, as depicted in Figures 9 and 10. Note that some PE
files did not execute well in the Cuckoo Sandbox; therefore, we removed the API sequences of length
less than 5. Finally, we used 690 normal files and 785 malicious files in the experiments. Each line in
Figures 9 and 10 provide the following information:

{File Name, PID (dummy), PPID (dummy), sequence length,
Normal (0) or Malicious (1), API Trigram Sequence}

Note that the length of the API unigram sequence was set to 800. Because we converted the
three consecutive API system calls into one API trigram, the length of the API trigram sequence is 798.
When the length is less than 798, it is padded with zeros.

Figure 9. Trigram sequence of normal files.

Figure 10. Trigram sequence of malicious files.

Subsequently, we used five-fold cross validation [32] as depicted in Figure 11. Cross-validation
is a statistical method used to estimate the skill of deep learning models. We randomly divided the
dataset into five subsets. In the first experiment, the first four subsets were used for the training and
the fifth subset was used for the test. In the fifth experiment, the first subset was used for the test and
the other four subsets were used for the training.
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Figure 11. Five-fold cross-validation.

The first experiment was performed to demonstrate the effect of attention. To this end,
we compared the accuracy of the attention-based model with those of the CNN-based [5] and SC-LSTM-
based models [10]. Note that we implemented the CNN-based model using Keras [33] instead of
Theano [28]. The second experiment was conducted to measure the time required to train and test the
attention-based model which was compared with the time required to train and test the CNN-based
and SC-LSTM-based models.

5.3. Performance Metric

In this section, performance evaluation indicators are described, before presenting the
experimental results. The indicators utilized in this study are accuracy, true positive rate (TPR),
and false positive rate (FPR). The confusion matrix used to calculate these values is shown in Table 4.

Table 4. Confusion matrix.

- Malware Benign File

Predicted Malware TP FP
Predicted Benign File FN TN

TP indicates that a file has been correctly evaluated by the system to be malicious, and TN
indicates that the system correctly determined that a benign file is normal. Furthermore, FP indicates
that a normal file has been incorrectly judged by the system as malicious, and FN indicates that the
system has incorrectly identified a malicious file to be normal. Each indicator is calculated as follows:

Accuracy = (TP + TN)/(TP + FP + FN + TN) (15)

TPR = TP/(TP + FN) (16)

FPR = FP/(FP + TN) (17)

Accuracy refers to the rate at which the system correctly determines both malicious and normal files.
The higher the value, the better the performance. TPR refers to the rate at which the system correctly
identifies malicious files as malicious. The higher the value, the better the detection performance.
FPR refers to the rate at which the system identifies normal files as malicious, and the lower the value,
the better the detection performance. All experiments were performed using 5-fold cross validation.
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5.4. Results

5.4.1. Accuracy

The first experiment was conducted to demonstrate the effect of the attention mechanism for
malware detection. The accuracy of the attention-based detection model was compared with those
of the CNN-based and SC-LSTM-based models, as shown in Figure 12. The attention-based model
yielded an accuracy that was approximately 12% and 5% higher than those of the CNN-based and
SC-LSTM-based models, respectively. Table 5 shows the numbers of true positives, false positives,
false negatives, and true negatives for each model.

Figure 12. Accuracy.

Table 5. Accuracy results.

Model Seq Length TP FP FN TN Accuracy

CNN 200 115 28 23 129 82.71
CNN 400 106 14 32 143 84.40
CNN 600 107 9 31 148 86.44
CNN 800 107 13 31 144 85.08

SC-LSTM 200 121 11 17 146 90.50
SC-LSTM 400 123 12 15 145 90.84
SC-LSTM 600 123 7 15 150 92.54
SC-LSTM 800 125 15 13 142 90.50
Attention 200 130 5 8 152 95.59
Attention 400 131 5 7 152 95.93
Attention 600 132 5 6 152 96.27
Attention 800 125 15 13 142 90.50

Note that, when the length of the sequence was 800, the accuracy of the attention-based model
was the same as that of the SC-LSTM-based model because the length of the original sequence was
limited to 800. This indicated that, when the length was 800, the input sequence of the attention-based
model was the same as that of the SC-LSTM-based model. In this case, the attention-based model did
not have any effect. When the length of the sequence was less than 800, the attention-based model
extracted subsequences whose API system calls were more important. Thus, the attention-based model
yielded a higher accuracy than the others.
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5.4.2. Training Time

The second experiment measured the computational time of the attention-based detection model.
This was compared with the computational times of the CNN-based and SC-LSTM-based models,
as shown in Figure 13. The computational time of the attention-based model consisted of the training
time of the attention-based model, whose input sequence length was 800, time required to extract the
top-k API system calls, and time needed to train the SC-LSTM-based model whose input sequence
length was k.

Note that, in the attention-based detection model, we first computed the weights of each API
system call in the input sequence. Then, we extracted the top-k API system calls and created a
subsequence. Next, we trained the SC-LSTM-model using the extracted subsequence.

Because we implemented the CNN-based model using Keras [33] instead of Theano [28],
the computational time for the CNN-based model was longer than that for the SC-LSTM-based model.
Training the attention-based model using an input sequence of length 800 required approximately
400 s. Therefore, the computational time of the attention-based detection model was longer than that
of the SC-LSTM-based model.

However, the attention-based detection model yielded a higher accuracy. In addition, by using
the attention-based model, we can identify which API system calls are more important to determine
whether a file is malicious.

Figure 13. Training time.

5.4.3. Test Time

The third experiment measured the time required to test the attention-based detection model
using a GPU. Once the system call information is available, the time taken to establish whether the
280 test files are malicious in the deep learning model can be determined. Note that the test time
does not include the time required to extract the API system call sequence using Cuckoo Sandbox.
To extract the API system call sequence using Cuckoo Sandbox, we executed each file for 3 min.
However, modern anti-virus software contains a module to extract API system calls in real time [30].
Therefore, we believe that malware can be detected using the attention-based detection model in
real time.

The time to test the attention-based detection model was compared with what is required to test
the CNN-based and SC-LSTM-based models, as depicted in Figure 14. The time required to test the
attention-based model is the time required to determine whether the file is malicious. The number of
test files was 280.
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Figure 14. Time required to test using GPU.

Because we implemented the CNN-based model using Keras [33] instead of Theano [28], the test
time for the CNN-based model was longer than that for the SC-LSTM-based model. Because the
attention-based model uses the same sized neural network as the SC-LSTM-based model, the test
time for the attention-based model was the same as that for the SC-LSTM-based model, and it was
proportional to the length of the API trigram sequence. When there were 280 test files and the length of
the API trigram sequence was 800, it required approximately 180 ms. We believe that this is reasonable.

In addition, we measured the time required to test the attention-based detection model using
only the CPU. This was compared with the time required to test the CNN-based and SC-LSTM-based
models using only the CPU, as presented in Figure 15. The time required to test the attention-based
model is the time required to determine whether the file is malicious using only the CPU.

When only the CPU was used, the time required to test the attention-based detection model was
significantly longer than when the GPU was used. This implies that we can reduce the time required
to test by using the GPU because it supports parallel computing in the deep learning model. Moreover,
when using only the CPU, the time required to test the CNN-based model is proportional to the length
of the sequence. It appears that, because the CPU does not support parallel computing in the deep
learning model, the test takes a significantly longer time.

Figure 15. Time required to test only using CPU.
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Furthermore, we give the memory overhead of each deep learning model as depicted in Figure 16.
Because the CNN-based model was implemented using Keras [33] and it is more complex than the the
SC-LSTM based and the attention-based models, its memory overhead is much larger than the others.
We believe that the attention-based model is suitable for devices with less memory.

Figure 16. Memory overhead.

6. Discussion

In this study, we proposed an attention-based detection model. It has approximately 12% and
5% higher accuracy than the CNN-based and SC-LSTM-based models. However, the attention-based
model requires a longer training time than the CNN-based and SC-LSTM-based models since it must
extract a data subsequece of length k as shown in Figure 13. However, when we detect malware
with anti-virus software, the training time is not important because we can use the pre-trained neural
network by the attention-based model. Because the test time of the attention-based model is less than
1 ms per file as shown in Figure 14, it is suitable for use in real anti-virus software.

7. Conclusions

In this study, we proposed an attention-based feature extraction method, and verified the
performance of the deep learning-based malicious file detection model utilizing this method. The deep
learning-based malicious file detection model using an attention-based feature extraction method
yields an accuracy that is approximately 12% and 5% higher than those of a CNN-based model and
SC-LSTM model, respectively.

In addition, the attention-based feature extraction method allows malicious code analysts to
only analyze parts of malicious code based on the features extracted by the attention-based feature
extraction method, rather than analyzing the entire malicious code. This is expected to considerably
reduce the efforts required by malicious code analysts.
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