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Abstract: Sub-micron aerosols are a vital air pollutant to be measured because they pose health effects.
These particles are quantified as particle number concentration (PN). However, PN measurements
are not always available in air quality measurement stations, leading to data scarcity. In order to
compensate this, PN modeling needs to be developed. This paper presents a PN modeling framework
using sensitivity analysis tested on a one year aerosol measurement campaign conducted in Amman,
Jordan. The method prepares a set of different combinations of all measured meteorological
parameters to be descriptors of PN concentration. In this case, we resort to artificial neural networks
in the forms of a feed-forward neural network (FFNN) and a time-delay neural network (TDNN)
as modeling tools, and then, we attempt to find the best descriptors using all these combinations as
model inputs. The best modeling tools are FFNN for daily averaged data (with R2 = 0.77) and TDNN
for hourly averaged data (with R2 = 0.66) where the best combinations of meteorological parameters
are found to be temperature, relative humidity, pressure, and wind speed. As the models follow the
patterns of diurnal cycles well, the results are considered to be satisfactory. When PN measurements
are not directly available or there are massive missing PN concentration data, PN models can be used
to estimate PN concentration using available measured meteorological parameters.

Keywords: particle number concentration; modeling; sensitivity analysis; artificial neural networks;
feed-forward neural network; time-delay neural network

1. Introduction

1.1. Motivation

Approximately seven million people die every year due to adverse health-related air pollution
issues, in which 4.2 million deaths are attributed to exposure to poor outdoor air quality.
Approximately 91% of the world’s population lives in areas where air pollution exceeds guideline
limits established by the World Health Organization (WHO) [1]. The most critical air pollutants
from a health perspective include airborne particulate matter (PM) and the gaseous pollutants,
such as ozone (O3), nitrogen dioxide (NO2), volatile organic compounds (e.g., benzene), carbon
monoxide (CO), and sulfur dioxide (SO2) [2,3]. In particular, particles less than 2.5 micrometers in
diameter (PM2.5) are able to penetrate deeply into human lungs, irritate and corrode the alveolar
wall, and consequently impair lung function. Although the diameter of PM2.5 is very small, it has a
large surface area, and then may be capable of carrying various toxic substances, passing through the
filtration of nose hair, reaching the end of the respiratory tract with airflow, and accumulating there by
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diffusion, damaging other parts of the body through air exchange in the lungs [4]. Atmospheric PM
also plays a role in ecosystems and Earth’s climate, leading to extensive research on the subject [5].

A critically important class of atmospheric PM is called ultra-fine particles (UFPs). These particles
are smaller than 100 nm in size (i.e., sub-micron aerosols). Scientific attention has recently moved
toward UFPs because these particles have very high surface area to mass ratios. Consequently, they can
easily enter the human respiratory system and deposit preferentially in the deepest areas of the lungs,
such as the tracheobronchial and alveolar regions, carrying toxic compounds [6]. Emissions associated
with traffic, industrial activities, and domestic heating contribute to a large fraction of UFPs [7].
Particle number (PN) concentrations are more informative in describing the abundance of UFPs
because these particles tend to dominate atmospheric PM number size distributions and contribute
little to PM mass concentrations that are presently used as air quality indicators (e.g., PM2.5 and
PM10) [8]. Unfortunately, there are much fewer data available on PN compared with PM [9,10] due
to the unavailability of instruments for measuring UFP in many air quality monitoring stations [6].
Therefore, we propose in this paper a modeling framework to be an alternative method in estimating
PN concentration using other available measurements. In this way, PN concentration can be monitored
in cities where the measurements are not available, and the air quality database can be updated for
further analysis.

1.2. Data-Driven Air Pollutant Modeling

Modeling air pollutants can generally be categorized into three main approaches, including:
physics- and expert-based and data-driven approaches [11]. First, physics-based approaches
use models that describe underlying physical processes related to air pollutants directly [12].
This modeling approach is typically accurate and reliable, but physics and chemistry knowledge
is required, especially related to a particular air pollutant to be modeled. In some cases, they can
be computationally demanding and may also be sensitive to the scale and quality of the parameters
involved [13]. Examples are the urban airshed model (UAM) [14] and the community multiscale
air quality (CMAQ) model [15]. Second, expert-based approaches, such as the expert elicitation
process [16], elicit knowledge from experts/specialists for modeling and analysis [17]. The involvement
of experts may be helpful to explain data anomalies or pattern outliers due to untypical air pollution
phenomena, such as forest fires, sudden traffic changes, etc. However, it is often difficult to find
agreement among experts about the use of expert systems and how the uncertainties of different
variables can be adequately accounted for [16]. Finally, the data-driven approach uses historical
datasets to identify relationships between measured variables and then builds models based on the
trends in the data. This approach does not typically require deep knowledge in air pollutant dynamics,
chemistry composition, and other explanatory variables. Due to these reasons, more practitioners
have recently utilized data-driven approaches, such as neural networks, as alternatives to physics- and
expert-based methods, to model air pollutant concentrations [18]. This work resorts to a data-driven
approach in the form of artificial neural networks (ANN) to model and estimate PN concentrations.
In particular, sensitivity analysis is carried out to find the best combination of measured variables for
estimating PN concentrations.

Data-driven-based modeling has been carried out for estimating different air pollutant
concentrations, including nitrogen dioxide (NO2) [19], sulfur dioxide (SO2) [20,21], ozone (O3) [22,23],
black carbon [11,24], particulate matter smaller than 10 µm (PM10) [21,25], and particulate matter
smaller than 2.5 µm (PM2.5) [26–28]. However, there is a very limited number of studies focusing
on estimating PN concentration. The estimations of PN concentration using data-driven methods
were focused on European cities, described in [29,30]. For the first time, this work proposes a
data-driven framework for estimating PN concentration in the Middle East and North Africa (MENA)
region. Furthermore, the modeling framework evaluates the performance by applying different
combination of measured variables, which is known as sensitivity analysis. The best combination of
measured variables leads to reliable PN models and then allows filling in the missing data in the air
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quality database and estimating the PN concentration without relying on expensive measurements.
The capability to estimate PN concentration on a daily and hourly basis allows a decision maker,
such as a government agency, to mitigate the impact caused from these sub-micron aerosols.

2. Materials

This section describes the materials used in this study. We explain the experimental setup,
and then, we describe how the data were pre-processed. We also discuss the environmental conditions
during the measurement period.

2.1. Database

In this study, we used a database obtained from a measurement campaign in Amman, the capital
city of Jordan, from 1 August 2016 until 31 July 2017. The city is considered as an area with Middle
Eastern urban conditions within the MENA region. This region serves as a compilation of different
aerosol particle sources including natural dust, anthropogenic pollution (e.g., generated from the
petrochemical industry and urbanization), as well as new particle formation [31].

The database includes sub-micron particle number concentration (PN) and meteorological
conditions. The aerosol measurement was performed at the aerosol laboratory, which is located
on the third floor of the Department of Physics, University of Jordan. The campus is located in an
urban background in the north part of Amman, Jordan. In particular, the campaign measured the
particle number size distribution using a scanning mobility particle sizer (NanoScan SMPS 3910, TSI,
MN, USA). The time resolution used in the SMPS was 1 min. The meteorological measurement was
performed with a weather station (WH-1080, Clas Ohlson: Art.no.36-3242, Helsinki, Finland) with a
5 min time resolution. The meteorological data were comprised of ambient temperature (T), absolute
pressure (P), relative humidity (RH), wind speed (WS), and wind direction (WD). The details of the
aerosol measurement campaign and the meteorological measurements were described in [31,32].

2.2. Data Handling

The particle number concentrations (PN), in cm−3, were calculated by integrating the measured
particle number size distribution over the specified particle diameter range, given by:

PNsub =
∫ 450 nm

10 nm
n0

N dlog10(Dp) (1)

where n0
N = dN/dlog10(Dp) is the measured particle number size distribution and Dp is the particle

diameter. Since air quality data are typically reported hourly or daily, the processed aerosol data
(PNsub concentration) and meteorological measurements were averaged hourly and daily. Having the
data for a year at an hourly resolution allowed the modeling to capture the diurnal cycle and
seasonal variability.

2.3. Environmental Conditions

Figure 1a shows time-series data of PN during the campaign. The red curve represents the
daily average, whereas the blue curve indicates the hourly measurement. It can be seen that the
PN concentration ranged between 103 cm−3 and 105 cm−3, with median values of 1400 cm−3 and
1500 cm−3, for daily and hourly data, respectively. In addition, Figure 2 presents PN histograms for
daily (left subplot) and hourly (right subplot). It can be seen that both histograms peaked at the bin
edge at about 1330 cm−3. Understanding the ranges and the median values of PNsub concentrations
allowed us to examine later if the modeling metrics were adequate.
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Figure 1. PNsub, shown in subfigure (a), and meteorological conditions, shown in subfigures (b–f),
during the experiments. Red and blue colors are daily and hourly averaged.

Figure 2. PN number concentration histograms during the experiments for daily averaged data (left)
and hourly averaged data (right).

Figure 1b–f present the meteorological conditions during the experiment. The red and blue curves
indicate daily and hourly averaged data. Figure 1b shows the temperature (T), with a minimum
peak of about 0 ◦C during winter and a maximum of about 40 ◦C during summer with the hourly
median value of 19.9 ◦C. Figure 1c indicates the relative humidity (RH), which varied between 10%
and 100% with the hourly median value of 52.3%. Figure 1d is the pressure (P), which ranged between
0.88 atm and 0.9 atm, and its median value was 0.888 atm. Figure 1e indicates wind speed (WS),
ranging between 0 km/h and 20 km/h with a median value of 5 km/h. It can be seen that there
were about 2 months of missing data in this variable. Finally, Figure 1f represents wind direction
(WD), where only daily averaged data are shown for better visualization. Wind blows mainly from
the south and west (180◦–270◦) from June to September. The wind direction varies in other months,
ranging from 45◦ to 270◦.



Sensors 2020, 20, 2876 5 of 16

3. Methods

This section describes the methodology for estimating PN concentration used in this study.
Figure 3 shows a block diagram illustrating this methodology. First, a database was formed using
processed data from aerosol and meteorological measurements as described in Section 2.2. In the second
step, the data underwent pre-processing procedures through data cleaning and data normalization,
which will be explained in Section 3.1. The next step was a part of the sensitivity analysis block,
consisting of several sub-steps.

Figure 3. The block diagram of the proposed sensitivity analysis for estimating PN concentration.

In this work, sensitivity analysis could be defined as a methodology to find the best
combination of measured variables for modeling PN concentration. Sensitivity analysis is more
effective than performing bivariate correlation analysis, including linear correlation, such as
Pearson [33] and Spearman [34], and non-linear correlation analysis, such as mutual information [35].
Bivariate correlation analysis is beneficial when two variables are investigated in terms of their
relationship, but when there are more than two variables interacting in multivariate directions,
those methods may no longer be effective. The first sub-step in sensitivity analysis is input selection.
This sub-step prepares a set of different measured variable combinations. Every single combination is
then fed as inputs for a chosen data-driven model. The next sub-step is to specify the chosen model
structure and other model properties. Then, the model parameters can be optimized in the model
training sub-step. Once the model parameters have been optimized, the model is then evaluated using
selected metrics; if the performance is not satisfactory, the model structure needs to be re-specified.
These steps are done iteratively until we achieve satisfactory performance defined by a modeler.
Once the model has met satisfactory condition, it estimates PN concentration using test data. Finally,
performance metrics can be evaluated, and the next sub-step is to take other input combinations.
These sub-steps can be done in sequence or in parallel depending on available computing resources.

3.1. Data Pre-Processing

The aerosol measurement data obtained from 1 August 2016 to 31 July 2017 were processed to
give the PN concentration. The meteorological measurements (T, RH, P, WS, WD) were collected for
the same period. Both data were merged, and the data were averaged daily and hourly, resulting
in 365 and 8760 observations, respectively. The data pre-processing began by removing the missing
data. The missing data constituted 6.7% of the total data points due to technical faults or instrument
maintenance. Since the data were obtained from different measured variables with various physical
units and magnitude, it was crucial to normalize the data. The scaling factor depended on the chosen
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model, which contained activation functions ranging between these values. In this case, the data were
scaled between 0 and 1 to transform them into the range of the activation function.

3.2. Modeling

The first sub-step in sensitivity analysis is to prepare a set of measured variable combinations,
as shown in Figure 4. Then, the inputs for a chosen model are selected based on this combination,
which can be done in sequence or in parallel.

Figure 4. Sensitivity analysis uses different combinations of meteorological variables as inputs for
PN modeling.

The second sub-step is to prepare a PN model. In this case, we used an artificial neural
network (ANN) to model PN concentration. Neural networks (NNs) provide a robust approach
for approximating real-valued (regression) and discrete-valued (classification) target functions
because they can mimic the non-linearity of the functions and their optimization methods are well
developed [36]. These models have been a popular choice among machine learning methods for
approximating complex functions [37] and have been utilized in a large number of applications [38],
including air pollution [18] and climate [39]. In this case, we resorted to two types of NNs, which were
a feed-forward neural network (FFNN) and a time-delay neural network (TDNN). FFNN is a
fully-connected network with two layers (input and hidden layers). FFNN has been the mostly
popular choice of NNs due to its fast operation, ease of implementation, and smaller training set
requirements [40]. TDNN structure is the same as FFNN, but the feed-forward network has a tapped
delay line at the input. TDNN is part of a general class of dynamic networks, where the dynamics
appear only at the input layer of a static multi-layer feed-forward network. This type of network is
suited well for dealing with time-series data [41].

Both FFNN and TDNN estimate PN concentration, ŷ, through the function of meteorological
variables, f (x, w), by optimizing the weights, w, of NN. Figure 5 displays a schematic representation
of a neural network with one hidden layer. The jth neuron in the Lth layer calculates the output zL

j as:

zL
j = σ

(
∑

i
wL

ji xi + bL
j

)
(2)

where the notation wL
ji represents the weight of connection between the computing neuron and its

ith input in the preceding layer and bL
j is a bias parameter. In the case of TDNN, a tapped delay line

is introduced at the input layer, where the input data are buffered for several time steps and then
fed to the input layer. The introduction of time delays (T) allows each neurons to have access to
n input values, corresponding to different input array instantaneous responses x(t− nT), . . . , x(t).
The symbol σ(.) is the activation function in the hidden layer. In this case, we used the rectified
linear unit (ReLU) activation function in the first layers (i.e., input and hidden layers), whereas the
linear activation function was used in the output layer. Once a training dataset, {x, y}, with reference
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inputs, x, and their corresponding outputs, y, was provided, optimized weights, w, could be found by
minimizing the cost function:

E = ∑
n

(
f (xn, w)− yn

)2

(3)

where f (xn, w) is the output of the NN from the training inputs xn. The optimization was done through
stochastic gradient descent. This sub-step is called model training. In the next sub-step, the model
was also evaluated to observe if the model specification was satisfactory. This step was done iteratively
through k-fold cross-validation, which is a resampling technique designed to partition dataset into
k (k-fold) subsets of data where one sample of them is held out while the model is trained with the
remaining samples and then tested on the hold-outs. Iteration is also carried out to find the best model
configurations, by adjusting the number of neurons for the input and hidden layers, weight initiation,
the number of training cycles (epochs), and the learning rate.

Figure 5. Schematic representation of a neural network with one hidden layer.

Once the model met a satisfactory performance defined by a modeler, the testing data could be
fed into the trained network to estimate PN concentration. The results were then evaluated through
several performance metrics, which will be explained in the following sub-section.

3.3. Performance Metrics

In order to evaluate the best PN model through sensitivity analysis, we resorted to three metrics,
as shown in Table 1. The symbols y, ȳ, and ŷ represent the real measurement value, the mean of the
measurement data points, and the estimated model value, respectively. The point number and the total
estimated values from the models are indicated by the notations i and n, respectively. The coefficient
of determination (R2) provides a measure of how well the observed outcomes are replicated by the
model, based on the proportion of total variation of outcomes explained by the model. The mean
absolute error (MAE) gives a simple interpretation as the average absolute difference between the
predicted model values (ŷ) and the real measurement data points (y). Root mean squared error (RMSE)
represents the standard deviation of the estimated errors (i.e., error residuals).

Table 1. The performance metrics used in the sensitivity analysis for the PN models’ evaluation.

Performance Metrics Formulation

Coefficient of Determination R2 = 1− ∑n
i=1(ŷi−yi)

2

∑n
i=1(yi−ȳ)2

Mean Absolute Error MAE = ∑n
i=1 |ŷi−yi |

n

Root Mean Squared Error RMSE =
√

∑n
i=1(ŷi−yi)2

n
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4. Results

4.1. Data Analysis

Figure 6 shows two matrix plots indicating the level of absolute Pearson correlation
coefficients (PCC) between measured variables for daily and hourly data. The color closest to light
yellow indicates a weak correlation, whereas the color closest to black indicates a strong correlation.
It can be seen that the daily RH had a modest correlation with PN (PCC was about 0.21, with a p-value
equal to zero), whereas the remaining daily measured variables had PCC values greater than 0.5,
which indicated good correlations with PN. The hourly PCC values seemed to be reduced when
compared to daily average data. The hourly RH showed a very weak correlation with PN (with PCC
lower than 0.1, with a p-value equal to 0.54). Other meteorological variables, such as T, P, WS, and WD,
still demonstrated satisfactory correlation with PN, ranging between 0.31 and 0.37 (with a p-value
equal to zero).

(a) (b)
Figure 6. Matrix plots: absolute Pearson correlation coefficients between measured variables for daily
and hourly averaged data. (a) Daily. (b) Hourly.

Figure 7 shows the cross-correlation between PN and meteorological variables for daily (Figure 7a)
and hourly (Figure 7b) averaged data. The x-axis shows different time lags, and the y-axis represents
normalized correlation coefficients (abbreviated as norm. cc in the Figure). Both sub-figures
demonstrate clearly that previous meteorological variables influenced the current PN concentration.
Therefore, the use of time-delayed meteorological measurements may be beneficial in improving PN
modeling accuracy based on the hourly data.

In general, the use of a large number of inputs typically increases the model complexity, leading to
limited model performance. On the other hand, limiting the number of inputs also allows a model
to be used without depending on many other measurements in practice. Therefore, it is vital to
consider these effects when determining the number of inputs involved in modeling [23]. Since the
matrix plotted only indicated bivariate correlation analysis, i.e., the correlation between two variables,
sensitivity analysis was a useful method to investigate the multivariate measured variables influencing
PN concentration. Sensitivity analysis was performed by training and testing PN modeling on all
possible measured variable combinations, then the best combination of measured variables explaining
PN concentration could be used as a final PN model.
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(a) (b)
Figure 7. Cross-correlation between PN data and meteorological parameters for daily and hourly
averaged data. Different time lags are shown on the x-axis, whereas the y-axis represents normalized
correlation coefficients (norm. cc). (a) Daily. (b) Hourly.

4.2. Sensitivity Analysis

We resorted to two different types of ANN, called FFNN and TDNN, with the model specifications
mentioned in Section 3. These models were then tested on all combination indexes of measured
meteorological variables to perform sensitivity analysis, as illustrated in Figure 4. The models were
trained and tested twice using daily and hourly average data. In this way, several best combinations
of meteorological variables could be evaluated, and then, the best combination would be selected to
be used as the inputs of PN models. The number of combinations of the variables used was 5 (if one
variable was used), 10 (if two variables were used), 10 (if three variables were used), 5 (if four were
variables used), and 1 (if five variables were used), with the total combinations being 31.

The performance metrics of modeling using these input variable combinations were tested
according to R2, MAE, and RMSE. Figures 8 and 9 present the performance metrics of PN modeling for
daily and hourly averaged data, respectively. The blue bars are FFNN, whereas the red bars are TDNN.
The low values of MAE and RMSE indicated that the models’ performance was better than the high
values of these metrics. On the other hand, the high R2 values indicated that the models’ performance
was better than the lower values. Since there were three metrics involved, the first priority was given
to R2, then MAE and RMSE.

It can be seen that for both models, i.e., FFNN and TDNN, applied on both types of data averaging,
having much fewer inputs did not provide adequate model performance because the inputs used were
not informative enough to describe the PN concentration. As a general rule, having more variables for
the inputs increases modeling accuracy.

Through the evaluation of the R2 values, Figure 8 (daily data averaging) shows that both models
performed well when the models used at least four measured variable combinations. From these,
the best R2 values were found at the combination indexes of 26 and 31. R2 values for FFNN were
found to be the same for both models, that is equal to 0.78. However, the R2 value for TDNN for the
combination index 26 (R2 = 0.77) was better than Number 31 (R2 = 0.71). Therefore, we decided to use
Combination Index 26 for daily PN modeling with T, RH, P, and WS as input variables. In particular,
FFNN seemed to be better than TDNN by observing R2 and RMSE values. Although MAE showed
otherwise, we decided to resort to FFNN as the PN model because of the simplicity of model’s
specification, development, and usage. Overall, when there were more than four inputs involved,
FFNN also provided better performance than TDNN.
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Figure 8. Performance metrics of daily modeling using FFNN (blue) and TDNN (red). The top, middle,
and bottom sub-figures are R2, MAE, and RMSE, respectively.

Figure 9. Performance metrics of hourly modeling using FFNN (blue) and TDNN (red). The top,
middle, and bottom sub-figures are R2, MAE, and RMSE, respectively.

On the other hand, Figure 9 demonstrates clearly that TDNN was better than FFNN in all
performance metrics across all input combinations. As in the case of daily data averaging, the best
two candidates were found in the combination indexes 26 and 31. However, the R2 value of the
combination index 31 (R2 = 0.67) was slightly better than 26 (R2 = 0.66). In this case, we decided to
use the combination index 26 due to several reasons. First, the combination index 26 was found to
be in agreement with the modeling using daily averaged data. Second, the combination index 26
had the best performance in terms of the MAE and RMSE metrics. Third, the best performing model
26 excluded the WD variable. WD was a circular variable, and in this study, we showed it in the
scale of 0◦ to 360◦, which created discontinuity at the north. To tackle this, a trigonometric function
had to be applied to resolve WD into two perpendicular directions before the data analysis. Finally,
it was better to have a model that used fewer input variables if the performance was similar to a
model with additional inputs. Therefore, in practice, the model with fewer inputs relied on fewer
measurements (i.e., instruments). In summary, both models (using daily and hourly averaged data)
used the combination index 26 with measured variables of T, RH, P, and WS. For now on, we present
the results of PN models using the combination index 26.

Figure 10 shows the scatter plots between the reference measured PN and the modeled PN using
variables T, RH, P, and WS, for daily (Figure 10a) and hourly (Figure 10b) averaged data. It can be
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seen that most estimated data points of PN concentration for both averaged data followed the 1:1 line.
Figure 11 shows the histograms of residual error between the PN measurement and the PN model for
daily (left) and hourly (right). The figure shows that the majority of residual data points lied around
zero residual error. This indicated that most of the estimated PN data points were precise.

(a) (b)
Figure 10. Scatter plot between PN measurement and PN estimation using four measured
meteorological variables (T, RH, P, and WS). (a) Daily. (b) Hourly.

Figure 11. Histograms of residual error between the reference instrument and PN estimation using
four measured variables (T, RH, P, and WS).

Figure 12 presents the median of diurnal cycles calculated on all days in a week for measured
PN (blue) and modeled PN (red). Furthermore, Figure 13 shows the median of diurnal cycles calculated
on workdays and weekends for measured PN (blue) and modeled PN (red). Both figures show that the
PN model followed the patterns of diurnal cycles in these two scenarios well. The results emphasized
that PN modeling, using TDNN with input variables of T, RH, P, and WS, was reliable. Even though
the variable RH presented a weak correlation to PN as shown in Figure 6a,b, through sensitivity
analysis, it was found that it became a good feature when combined together with other variables.
This indicated that using bivariate correlation analysis may not be optimal to find the best combination
of variables to estimate PN concentration. Therefore, sensitivity analysis was a suitable method in
this case.
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Figure 12. The median of diurnal cycles calculated on different days for measured PN and modeled
PN (No. 26).

Figure 13. The median of diurnal cycles calculated on workdays and weekends for measured PN and
modeled PN (No. 26).

5. Conclusions

Due to the adverse health effects on the human respiratory system, PN concentration is a vital air
pollutant to be measured or estimated if the measurement is not available or there are massive missing
data. This paper presented applying sensitivity analysis in the modeling framework of PN estimation.
A feed-forward neural network (FFNN) and a time-delay neural network (TDNN) were chosen as
the PN modeling tools. The sensitivity analysis utilized these models to be applied to different
meteorological variables to find the best combinations as model inputs to estimate PN concentrations.
In this case, sensitivity analysis was found to be more effective than bivariate correlation analysis.
Through Pearson correlation coefficient (PCC) analysis, the RH variable was found to have a weak
correlation with PN. However, when performing sensitivity analysis, RH was included in the top four
best variables for PN modeling. The best combination of measured variables was T, RH, P, and WS.
Using these variables as the model inputs, the best modeling techniques were FFNN for daily averaged
data with R2 = 0.77 and TDNN for hourly averaged data with R2 = 0.66. The hourly estimation
also followed the patterns of the diurnal cycle well, indicating that the established PN model was
promising with a satisfactory accuracy.

Nevertheless, this method would be less effective and efficient once the number of measured
variables and the amount of datasets become massive. For example, this might take place when
the datasets are comprised of more than ten variables or the measurement data resolution is in the
scale of minutes for a year-long dataset. Consequently, the method’s implementation would be
computationally demanding. One solution is to use extra computational resources to parallelize the
algorithms, such as through deployment on a computer cluster. Alternative solutions are to implement
automatic input selection as proposed in [23] or to apply methods that are capable of performing
variable selection, such as LASSO (least absolute shrinkage and selection operator) [42], which have
also been used in air pollutant monitoring [43]. Furthermore, since the developed methods were
based on statistical methods that utilized data from a specific region, they might work very well in
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the training location or in areas with similar emissions, processes, and meteorological conditions.
The developed models could be generalized by training them using data measured from different
areas. The transfer learning mechanism could be applied to re-train the pre-trained models once there
new measurement data are received from the same or a different area [44].

Future works include the use of more time-series models to accommodate time-dependent
variables in the form of white-box models, such as dynamic models or black-box models, such as long
short-term memory (LSTM). Additional experiments will also be done to include the measurements
of trace gases and radiation variables, which might also impact and improve the estimation of PN
concentration. Finally, in order to establish a spatio-temporal PN map, more measurements at different
locations are needed, and the missing measurements can be done through models’ interpolation.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial neural network
CMAQ Community multiscale air quality
CO Carbon monoxide
CPC Condensation particle counter
FFNN Feed-forward neural network
LASSO Least absolute shrinkage and selection operator
LSTM Long short-term memory
MAE Mean absolute error
MENA Middle East and North Africa
NNs Neural networks
NO2 Nitrogen dioxide
O3 Ozone
OPS Optical particle sizer
P Absolute pressure
PCC Pearson correlation coefficients
PM Particulate matter
PM10 Particulate matter smaller than 10 µm
PM2.5 Particulate matter smaller than 2.5 µm
PN Particle number
R2 Coefficient of determination
ReLU Rectified linear unit

www.era-planet.eu
www.smurbs.eu


Sensors 2020, 20, 2876 14 of 16

RF Precipitation
RH Relative humidity
RMSE Root mean squared error
RNN Recurrent neural network
SMPS Scanning Mobility Particle Sizer
SO2 Sulfur dioxide
T Temperature
TDNN Time-delay neural network
UAM Urban airshed model
UFPs Ultra-fine particles
WD Wind direction
WHO World Health Organization
WS Wind speed
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