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Abstract: As the Internet of Things (IoT) is predicted to deal with different problems based on
big data, its applications have become increasingly dependent on visual data and deep learning
technology, and it is a big challenge to find a suitable method for IoT systems to analyze image
data. Traditional deep learning methods have never explicitly taken the color differences of data
into account, but from the experience of human vision, colors play differently significant roles in
recognizing things. This paper proposes a weight initialization method for deep learning in image
recognition problems based on RGB influence proportion, aiming to improve the training process
of the learning algorithms. In this paper, we try to extract the RGB proportion and utilize it in
the weight initialization process. We conduct several experiments on different datasets to evaluate
the effectiveness of our proposal, and it is proven to be effective on small datasets. In addition,
as for the access to the RGB influence proportion, we also provide an expedient approach to get
the early proportion for the following usage. We assume that the proposed method can be used
for IoT sensors to securely analyze complex data in the future.

Keywords: convolution neural network (CNN); image recognition; IoT application; k-nearest
neighbor (k-NN)

1. Introduction

The Internet of Things (IoT) is designed for making everything in our living environment
integrated to improve quality of life [1]. With a wide range of sensor-equipped devices working
together [2], the whole system is expected to accomplish a host of arrangements effectively with only
minor human interactions[3]. In most cases, the data need to be obtained from visual sensing devices.
For example, there is gesture recognition for unlocking in the smart home, image segmentation
for judgments in autonomous driving, medical image analysis in the health care system, and so
forth [4–6]. When an IoT system integrates with visual sensors like complementary metal oxide
semiconductor (CMOS) image sensors [7], a huge amount of data will be collected or generated by
them [8], and these data need to be analyzed fast in order to achieve better communication of devices
in the IoT system [9,10].

While the mission to figure out hidden knowledge behind those complex data cannot be
easily solved by the traditional methods, deep learning (DL) algorithms, an advanced branch of
machine learning, are extremely necessary for IoT applications [11]. The aforementioned smart
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home, self-driving, and smart health systems are all prime examples. Computer vision with DL is
indispensable for the whole system to ensure its functions [12,13]. In recent years, IoT researchers
have been faced with problems when trying find a more appropriate way to implement CV and DL
technologies. They came up with various approaches to improve machine learning algorithms
and design frameworks for faster data analytics [14,15], but how to speed up the analysis process
much further remains a important problem.

To address the aforementioned problem, this paper proposes an improved method
for initialization in DL for image recognition problems based on the RGB influence proportion.
The method is designed to take the influence of RGB information out of the data from visual sensors
into consideration for the training process. The proposed method is based on a phenomenon observed
from human beings that people catch different colors from each of their eyeballs, and each of them
plays a different role for perception [16]. Even though the idea is already included in the convolution
layers in CNN, it has not been tried on the initialization process. With the influential proportion of
RGB channels, we can modify the initialization approach for image processing problems so as to make
it come into effect during the training phase. To test the proposed method, different sizes of datasets
and learning models, including a convolution neural network (CNN) and a fully connected neural
network are configured to figure out the effectiveness of RGB-based initialization for image recognition
jobs. As the effect of the initialization method needs to be observed in the training process, the learning
curves are recorded to evaluate the performance. Additionally, a convenient way with k-nearest
neighbor (k-NN) to get the early RGB proportion is provided and tested in our work. To be more
precise, this proposal has made the following major contributions:

(i) It presents an initialization option for CNN to make use of RGB proportions, which can be
modified in the future, and thereby shortens the convergence of the learning models.

(ii) It proved that k-NN can be used to extract the early proportion for the RGB-based initialization,
which can be deemed as a pre-training process.

The remainder of this paper is organized as follows. Related work of our paper is described
in Section 2. Section 3 mentions the proposed work as well as some details of our experiments,
and the corresponding results with their analysis are presented in Section 4. Section 5 recommends
some future work and concludes the paper.

2. Related Work

2.1. Weight Initialization Methods

With the special nature of multilayer architectures, deep learning methods are able to reinforce
different fields and finish more complicated missions, which makes them enjoy a high reputation
in the field of machine learning [17]. As a typical nonlinear method, it shows great performance in
training flexibility and dealing with the complicated nonlinear relationship in data [18]. Nowadays,
after improvements in various dimensions, deep learning shows outstanding success in different areas,
including natural language processing (NLP) [19], speech recognition [20], computer vision [21], etc.

However, being a nonlinear method also means that DL algorithms suffer from high variance.
In such cases, neural networks are very sensitive to some initial conditions, such as the size of
the dataset and the initial weights, in particular, which play an essential part in neural networks [22].
A good weight initialization aims at helping the neural network to preserve a stable learning tendency
and to shorten the convergence time [23]. Without a suitable weight initialization, the network may be
trained at the deadly risk of creating an exploding gradient or vanishing gradient, which can result in
a very slow convergence or even an inability to converge. Thus, it is of great importance to choose a
proper weight initialization approach when training a network [24].

Zero initialization is never a viable approach, as it makes the gradient of every layer the same
value during back propagation. Random initialization performs better than the zero one, but it is not
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easy to find the appropriate range of random values because if weights are initialized too high or too
low, problems like gradient vanishing or gradient explosion can still cause errors during training [25].
Recently, a variety of weight initialization approaches were put forward to cope with this problem,
including Gaussian distribution initialization.

As is shown in Table 1, Xavier et al. aimed at keeping the variances of input and output data
the same to ensure that zero output phenomenon can be avoided, but their method is only based on
linear functions [26]. To deal with this, He et al. made some modifications to Xavier’s method [27]. After
those improvements, the initialization could well perform when using ReLU as the activation function.

Table 1. Research gaps in the related work.

Method Using Color Influence Differences Influence on Convergence

Traditional CNN In the convolution process /
Gaussian distribution initialization / /

Xavier Initialization / By keeping variance consistent
He Initialization / Xavier’s method based on ReLU

These methods have been proven to be expedient in weight initialization in neural networks
and are now very popular in the deep learning field [28]. However, in computer vision, data with RGB
channels are usually encountered. That is because, in addition to texture, shape, and material, color
also plays an important part in recognizing things for human beings [29]. To mimic human vision,
RGB color mode was designed, and data on computers now are finally filled with colors. Colors are
the basic elements in vision problems, as they can be treated as detailed data contributing to greater
performance of image recognition [30], object detection [31], etc. Additionally, when humans deal with
colors caught by the different cone cells in the retina (red, green, and blue cells), the perception differs
according to the degree of each color—named the RGB influence proportion herein.

Traditionally, the channels are regarded as the third dimension of data input in most of
the CNN-based models [32]. However, under different datasets, the RGB influence proportion varies,
which means that there can be a specific channel or two channels more influential than the others. If we
can utilize the RGB influence proportions to modify the random weights at the beginning, the whole
model might be prone to being influenced more by those most influential channels, so that the model
might converge faster [33]. Thus, we suppose that we can improve the weight initialization method in
image recognition based on the RGB influence proportion.

2.2. K-Nearest Neighbors Algorithm

k-NN is a simple but effective machine learning algorithm. Based on the distances from
the training sample, k-NN needs no training process for the result, making it the representative
of “lazy learning” [34]. k-NN finishes a prediction by referring to the majority vote from k nearest
samples from the input object in the feature space [35].

It is necessary to get the proportion before implementing RGB-based weight initialization.
Since the RGB influence proportion is not always a provided value, an approach to gaining an
early proportion is in great need. In the meanwhile, as the k-NN algorithm enjoys a great reputation
for its prediction speed and simple theory [36], we can use k-NN to get the early RGB proportion
for the subsequent initialization. Even though the accuracy is not great, but the proportion of accuracy
can be used as the early one for RGB-based initialization.

Since it is not our target to get great accuracy in this stage, and also the process of k-NN is not
drawn out, we perform a small grid search over the number of neighbors k from 1 to 30 to observe
the most appropriate k for extrapolating the RGB proportion.
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3. Materials and Method

The basic framework of our proposed method is illustrated in Figure 1. Generally, the whole
process can be divided into two phases: gaining the proportion and using it in the initialization phase.
In order to utilize the RGB influence proportion, we need to obtain it first. Despite the pre-processing
stage for cleaning data from the visual sensors, those input data need to run through an RGB proportion
gaining stage to obtain the early proportion, which is going to be applied to the weight distribution.
After that, those data will be treated as an input for DL models, such as CNN, and the training process,
and the final accuracy will be recorded for evaluation of this initialization method.

Figure 1. Basic framework of the proposed RGB-based initialization.

3.1. Utilizing the RGB Influence Proportion

In our previous work [37], to find out the different RGB influences on image recognition
problems, we designed experiments that trained three CNNs on 3 different datasets separated by
RGB channels from one dataset. The results showed that in terms of different object classifications,
the performance of each CNN varies. In other words, RGB channels show, respectively, different
influence proportions. As is shown in Figure 2, the three channels have different significance levels;
e.g., the frog classification, where the RGB influence proportion is 0.91 : 0.94 : 1.15 (all numbers of
proportions are transformed; e.g., 0.602 : 0.62 : 0.761 ≈ 0.91 : 0.94 : 1.15 here). Some of them show
slight differences, such as automobile classification—0.99 : 1.04 : 0.99. Additionally, we obtain the RGB
proportion of the whole dataset, which is 0.98 : 1.01 : 1.01. We suppose that we can improve the weight
initialization based on the influence proportion of RGB channels when the proportion is appreciable
enough. It seems that the effectiveness will be less significant when it comes to some large datasets
whose influences on the differences of RGB channels are not obvious, including some datasets full
of colors and some comprehensive datasets, but have conducted experiments on them to find out
the real effect.

To verify our idea above, we design different experiments, one of which is to find out
the effectiveness of RGB-based initialization on small datasets containing frog and automobile images
split from CIFAR-10 dataset, and another one is conducted on the whole dataset. For the reason that
the difference of RGB influence in frogs is more appreciable than the automobile one, we stack them up
to build a small dataset that relatively has a difference of RGB influence (R : G : B = 0.96 : 0.98 : 1.06).
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The output layers of different CNNs are modified a little according to their classification jobs, but their
basic structures are the same as a whole. Additionally, we conduct the experiment on a fully-connected
network in a small dataset to find out whether it is practicable in a fully connected neural network.

Figure 2. RGB influence proportion in some dataset within CIFAR-10.

As for how to utilize the color differences, we assume that we can generate the weight distributions
according to their influence proportions. In this case, no matter what kind of neural network we
are using, the RGB-based initialization is only applied in the first layer, as it is directly connected to
the input data. However, there are little differences in initialization methods for different learning
models because of their different mechanisms.

In CNN, we first get the RGB influence proportion from the dataset by other learning methods
and then generate the random distributions for weights of different channels according to the obtained
proportion. As there are three channels, we can get three different kernels distributed to three different
distributions. Then we stack them up as one convolution filter for the first layer. Figure 3 shows
that we set the weight proportion of each channel of the kernels according to the RGB proportion
and the process of stacking up into a whole filter.

Figure 3. RGB initialization implementation in convolution neural network (CNN).

In a fully connected neural network, there are not any structures like filters. As is shown in
Figure 4, we have to divide the neurons of input layers into three parts equally. In this case, because in
the first layer, each part deals with its only channel, we can group all of them by their corresponding
channels, and set the weight distribution of each part according to the RGB proportion just like what
we did for each kernel in CNN.
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Figure 4. RGB initialization implementation in a fully-connected network.

3.2. Experiment Configurations

Learning Models

In this section, we describe the baseline framework of CNN we use throughout the corresponding
experiments. Table 2 illustrates the overall framework of our experiments.

Table 2. CNN model configuration for the experiments.

Layer (Type) Output Shape Param

input (32× 32 RGB image)

conv2d_1 (Conv2D) (None, 32, 32, 32) 896
dropout_1 (Dropout) (None, 32, 32, 32) 0
conv2d_2 (Conv2D) (None, 32, 32, 32) 9248

max_pooling2d_1 (MaxPooling2) (None, 16, 16, 32) 0
conv2d_3 (Conv2D) (None, 16, 16, 64) 18,496
dropout_2 (Dropout) (None, 16, 16, 64) 0
conv2d_4 (Conv2D) (None, 16, 16, 64) 36,928

max_pooling2d_2 (MaxPooling2) (None, 8, 8, 64) 0
conv2d_5 (Conv2D) (None, 8, 8, 128) 73,856
dropout_3 (Dropout) (None, 8, 8, 128) 0
conv2d_6 (Conv2D) (None, 8, 8, 128) 147,584

max_pooling2d_3 (MaxPooling2) (None, 4, 4, 128) 0
flatten_1 (Flatten) (None, 2048) 0
dense_1 (Dense) (None, 2500) 5,122,500

dropout_5 (Dropout) (None, 2500) 0
dense_2 (Dense) (None, 1500) 3,751,500

dropout_6 (Dropout) (None, 1500) 0
dense_3 (Dense) (None, 10) 15,010

Every experiment here shares almost the same architecture except for the output layer. During
the training stage, the input to our networks is a 32× 32 RGB image. We only apply a 0–1 normalization
in the pre-processing stage by dividing every datum by 255. All convolutional layers are filled with
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filters with the size of 3× 3 and rectification non-linearity (ReLU) [38] as the activation function.
Besides, we apply the same padding method in filters to capture every pixel of the images. We also
attach several max-pooling layers after some of the convolution layers (some convolution layers
are followed by dropout layers with a ratio of 0.3) [39], which are performed on 2× 2 windows,
with stride 2.

After the convolution stage, there are three fully connected layers, whose activation functions are
also ReLU except for the output layer. In different experiments, the output sizes of soft-max function
in the final layers differ (two neurons on the small dataset and 10 on the whole dataset).

As we also conduct the experiment on a fully-connected network; its overall structure is
demonstrated in Table 3. The total structure is pretty simple. With the same input layer as the CNN,
all we have here are fully connected layers followed by dropout layers.

Table 3. Fully connected model configuration.

Layer (Type) Output Shape Param

input (32× 32 RGB image)

dense_1 (Dense) (None, 10,000) 30,730,000

dropout_1 (Dropout) (None, 10,000) 0

dense_2 (Dense) (None, 1000) 10,001,000

dropout_2 (Dropout) (None, 1000) 0

dense_3 (Dense) (None, 100) 100,100

dropout_3 (Dropout) (None, 100) 0

dense_4 (Dense) (None, 2) 202

3.3. Weight Initialization

As for the most important part in our experiments, weight initialization, we apply different
approaches for comparison. We separately used normal distribution and the RGB-based one.
Initializing weights randomly from a normal distribution is the most common method for weight
initialization. The figures of weights w are distributed to the standard normal distribution, with
mean = 0 and standard deviation = 1. Figure 5a shows an example from this distribution.

Figure 5. Examples of weight distribution (a) after normal initialization, and (b) after RGB-based
initialization.

Then, the RGB-based initialization we use here is based on the standard normal distribution.
Given the influence proportion of RGB channels is separately Pr,Pg,Pb, we have the weight distribution
of the red channel as below:
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P(w) =
Pr√
2π

exp(− w2
2 ) . (1)

Those of other channels are in the similar way. As for their proportion, take the proportion of red
channel Pr as an example again; we have

Pr =
Ar

Ar + Ag + Ab
, (2)

where Ar, Ag, Ab respectively represent the accuracy from the early prediction. Additionally,
an example of this distribution is shown in Figure 5b with proportion Pr : Pg : Pb = 0.96 : 0.98 : 1.06 of
the small dataset we stacked up above.

3.4. k-NN for the Early Proportion

As one of the most widely used algorithms in pattern recognition, k-NN is easy to implement.
In k-NN, k denotes the number of nearest neighbors that we choose to give the prediction.
The equations in this section refer to T. Cover et al’s work [36].

To calculate the distance, Euclidean distance is most popularly used. The standard Euclidean
distance is defined below.

d(xi, x0) =

√√√√ n

∑
j=1

(x(j)
i − x(j)

0 )2, (3)

where one of the k nearest samples from training dataset xi representing the feature vector of one
sample xi = (x(0)i ,x(1)i , . . . ,x(n)i ) and x0 from the testing dataset have the same size.

Then, it computes the most common class in its k nearest neighbors to predict its class.
The algorithm is given below

f̂ (x0) = arg min
v∈V

k

∑
j=1

δ(v, f (xi)), (4)

where V = v1, v2, ..., vs represents the discrete labels, and also f : Rn → V projects the corresponding
label of xi.

Besides, we adjust the number of k from 1 to 30 to see the most appropriate result. For the reason
that the result we need from k-NN is barely the influence proportion of RGB channels instead of an
impeccable accuracy, we just need to find a certain k when their accuracies show the biggest differences.

4. Performing Experiments

4.1. Experiment Setup

In this section, we perform all the experiments described above using Keras 2.2.4 (François
Chollet, Mountain View, CA, USA) with Tensorflow 1.13 (Google Brain, Mountain View, CA,
USA) as its backend [40,41]. As we assumed that the effect of RGB-based initialization probably
has some differences in datasets with different sizes, we perform comparison experiments to observe
the difference and also propose a method to obtain the early weight proportion. All experiments are
based on the CIFAR-10 dataset [42]. In our experiments, the frog and automobile images (12,000 totally,
8000 for training, 2000 for validation, 2000 for testing) from the CIFAR-10 training dataset and testing
dataset build up the small dataset. Additionally, accuracies from the training dataset (40,000 images)
with the validation dataset (10,000 images) split from the CIFAR-10 training dataset (50,000 images)
are presented for comparison.

We carry out the training process by optimizing the cross-entropy using mini-batch gradient
descent with adaptive moment estimation (Adam) [43]. We set the batch size as 128 and train
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the models respectively for 50 epochs and 100 epochs under different datasets (50 for small one
and 100 for the whole one).

As we mentioned above, the same experiment is conducted on a fully-connected network to see
differences. Since it is proven that under the whole dataset, the proposed method is not useful as it
under the small one, we only carry out the experiment for a fully-connected network under the small
one this time.

As for the configuration for the k-NN experiment, we conduct the experiment on the same dataset
as the small one split from the whole CIFAR-10 in CNN. By separating the dataset into three datasets,
we train three k-NNs to sort out the influences of different RGB channels. In this case, their accuracy
can be deemed as their early proportion. Additionally, a grid search is applied to gain the most
proper k.

4.2. Experimental Results

4.2.1. Results of Proposed Method on CNN

We begin with the performance evaluation on a small dataset; the whole dataset was used.
The comparison of learning curves using different initialization methods and under different datasets
are respectively shown in Figures 6 and 7.

Figure 6. Learning curve of CNN under the small dataset (a) using normal initialization, and (b) using
RGB-based initialization.

Figure 7. Learning curve under the whole dataset (a) using normal initialization, and (b) using
RGB-based initialization.

Firstly, in the case of the small dataset, it is notable that even though both accuracies from
the training dataset (blue curve) show similar increasing trends, the figure from the RGB-based one
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is steeper than the other one. Additionally, the distinction of validation accuracy between both
networks (orange curve) is quite appreciable, such that accuracy of the RGB-based one is already close
to the accuracy of convergence at the very beginning, while the normal one takes epochs to reach
that value. It shows that the RGB-based initialization somehow contributes to faster convergence on
CNN. But after several epochs at the beginning, the accuracy from the RGB-based one underwent a
drop and rose again. Secondly, the validation accuracies of both networks fluctuate in the range of
approximately 0.90–0.98 after first increasing to more than 0.90. After the training process, they gain
an identical score on the test dataset. Namely, the RGB-based initialization has no influence on
the performance after convergence.

In addition, we also conduct the same experiment on the whole dataset to see whether
the initialization approach is suitable for a large dataset. However, in spite of some nuances,
the performance of the network with or without the RGB initialization sees a negligible difference.
The trends are the same and so are the prediction scores after training.

To sum up, after evaluating the performance of our initialization on CNNs under the dataset
of different sizes, we know that, to some extent, the RGB-based initialization approach does have
a positive influence on convergence during training when the proportion is appreciable, but it is
only useful in the first 5–7 epochs, and after the same process of training, models seem the same
with or without this initialization. Additionally, it turns to be insignificant in the whole dataset,
since the dataset consists of many types of images when the RGB channels show respectively similar
influences on image recognition (R : G : B = 0.98 : 1.01 : 1.01).

4.2.2. RGB-Based Initialization on a Fully-Connected Network

From the Figure 8, we can see that both curves are almost identical. Their validation accuracies
both converge to 0.92 and their train accuracies show totally the same trend. It is out of expectation
that the performances with different initialization are almost the same. We can tell that this RGB-based
method is not applicable for fully-connected networks.

Figure 8. Learning curve of fully connected neural network (a) using normal initialization, and (b) using
RGB-based initialization.

4.2.3. Evaluating the Changes of Weights

After Experiment 1, we perform an additional experiment to record the weight distribution
in order to further prove the effectiveness of our initialization. These weights are extracted from
the first layer of CNN, which is also the weights we did modifications on at first. As Figure 5 shows
the weight distribution from RGB channels in the normal distribution and the one in the RGB-based
distribution before training; it is clear that distributions from different channels are similar in the normal
distribution, while in RGB-based one, the blue channel is apparently wider and higher than others.
Figure 9 illustrates the distributions after training, in which the distribution of the blue channel is



Sensors 2020, 20, 2866 11 of 14

the widest and highest one, which is similar to the one just after RGB-based initialization. It also shows
the faster convergence might be because the initial weights are already close to the convergence values
at the beginning.

Figure 9. Example of weight distribution after CNN trained.

4.2.4. Early Proportion by k-NN

The result is shown in Figure 10, where it is clear to see that k-NN trained on the blue dataset
always has the best performance. What is more, as the number k increased, the accuracies among
three k-NN decreased, while interestingly, the difference between green and red dataset increasingly
widened, and was similar to the origin proportion in that green was marginally larger than red.

Figure 10. Results of k-NN on different k between 1 and 30.

Then we pick their accuracies when k = 25, where their distinction is seemingly more significant.
The accuracies of different datasets are respectively 0.65, 0.67, and 0.71. Thus, the early proportion we
got here is 0.96 : 0.99 : 1.04, which is quite similar to the one we detect by CNN that 0.96 : 0.98 : 1.06.
Therefore, we can tell that k-NN is useful to get the approximate early RGB proportion for initialization.

5. Discussion

From the experimental results, we can see that the effectiveness of the proposed RGB-based
initialization is limited compared to the traditional initialization methods (only influences in the first
few epochs). However, it is worth mentioning that the proposed method is the first study to apply
pre-training to extract color differences and utilize it in the initialization process. We here discuss
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the limitations of our proposal and highlight some interesting problems. We hope to attract more
researchers to notice this topic and push the boundaries forward.

(i) As far as a specific dataset is concerned, the RGB influence proportion is existed and fixed. It is not
a variable. It is supposed to be given by some other means. In this paper, we got the proportion
by ensemble learning and k-NN, while one is too intricate and another one is slightly inaccurate.
A more convenient way to compute the proportion is still in need. Besides, if the RGB proportion
can be made as a property of the dataset, whoever needs to use the proportion can make use of it
directly without measuring the proportion by himself.

(ii) The approach we use to deal with the RGB proportion is quite simple right now, as we just
apply it on the original standard normal distribution and utilize it on the first layer of the model,
even though it is proven to be useful in first epochs. Firstly, the not ideal result might be
the consequence of using a learning model with too many layers, so that the total influence is
reduced. Additionally, we can try forward propagation after generating the first layer to fully use
the color difference. These are both worth further investigation and experimentation.

(iii) The difference among three channels from the dataset we used here is not very significant in
this work. Thus, a more specific dataset which includes data with higher RGB proportions
is recommended. Additionally, it is worth mentioning that in some image recognition cases,
color difference might be much more evident. In that case, the proposed method will be
more effective.

(iv) Currently, there are different initialization methods,such as He and Xavier initialization, which
can also be applied like the proposed method but probably with better performance. A controlled
experiment with them is recommended so that the conclusion can be more trustworthy.

(v) Recently, it has been a great trend of the IoT system to include more visual sensor-based devices
and keep data security in the process of analysis. In order to realize it, the proposed method which
is used to optimize the training process can be utilized in IoT systems after some modifications
and improvements in the future.

6. Conclusions and Future Work

Motivated by the fact that color difference plays an important part in image recognition, this paper
proposed a novel solution to explicitly make use of the RGB proportion in the initialization process
for CNN. The proposed method was applied based on the traditional initialization method, which is
designed to use a pre-training method to emulate the RGB distribution after being trained. We carried
out several experiments not only find out the effectiveness of the RGB-based weight initialization,
but also to come up with a useful method to implement the initialization in order to speed up
training processes. This proposed method (i) can be utilized to optimize the convergence performance
in the cases in which the color influence difference of the dataset is obvious, (ii) and propose a
possible direction to drive the research about pre-training forward. (iii) Additionally, we proved
that k-NN can be used to compute the early proportion for initialization. Since we illustrated that
the RGB-based-initializing scheme is not valid in all cases when the color influence differences are not
obvious, the early proportion from k-NN can help to recognize whether the proposed method is useful
or not.

Although making use of RGB proportion in generating the weight distribution the first layers
is proven to be somehow useful, there is some important future work that needs to be done to push
it further. Currently, our future work will try to utilize the color influence difference in the whole
network—the most important task for our future work—to improve performance. Furthermore, how
to apply the proposed method in other advanced methods such as Xavier and He initialization is an
important task, and the comparison with different base-initialization methods will be presented to
further prove the effectiveness of the proposed method.
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