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Abstract: In this work, a smartphone-based electrochemical detection system was designed
and developed for rapid and real-time detection of dopamine (DA). The system included a
screen-printed electrode (SPE) used as a sensor, a hand-held electrochemical potentiostat and a
smart phone with a specially designed app. During the detection period, the SPEs modified with
poly(3,4-ethylenedioxythiophene) (PEDOT), chitosan (CS) and graphene (G) were used to convert
and amplify the electrochemical reaction signals. The electrochemical potentiostat was used to
generate excitation electrical signals and collect the electrical signals converted from the sensor.
The smartphone—connected to the detector via Bluetooth-was used to control the detector for tests,
further process the uploaded data, and plot graphs in real time. Experimental results showed that
the self-designed sensing system could be employed for highly selective detection of DA in the
presence of interfering substances such as ascorbic acid (AA) and uric acid (UA). CV was carried out
to characterize the electrochemical properties of the modified SPEs and the electrochemical behaviors
of DA on the modified SPEs. Finally, according to the analysis of DPV responses of DA, the system
could detect DA with a detection sensitivity of 0.52 ± 0.01 µA/µM and a limit of detection of 0.29 µM
in the linear range of DA concentrations from 0.05 to 70 µM.
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1. Introduction

Dopamine is a key neurotransmitter secreted by the hypothalamus and pituitary gland [1]. While it
directly affects people’s emotions, its secretion is also affected by mental factors. Numerous studies
have demonstrated that neurological diseases, such as schizophrenia and Parkinson’s, can occur and
develop at a low level of dopamine [2]. The traditional standard regimen for Parkinson’s disease is
to supplement dopamine or levodopa to maintain a stable concentration of dopamine in patient’s
brain [3], while it is always accompanied with a large number of side effects such as dyskinesias and
emotional uncontrollability, which may be due to the fact that the traditional therapies supplemented
patients with excessive dopamine or levodopa, resulting in the activation of non-motor neurons [4,5].
Hence, it is vital to design and develop a rapid, portable and real time biologic dopamine concentration
detection system because that it could not only provide doctors with timely data to improve the
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efficiency of diagnosis and treatment, but also reduce side effects resulted from over-supplement
of dopamine.

Various methods, such as high-performance liquid chromatography [6], surface plasmon
resonance [7], colorimetry [8], chemiluminescence [9], spectroscopy [10] and electrochemistry [11], have
been developed and utilized for dopamine detection. Among them, electrochemical methods, such as
cyclic voltammetry [12] (CV), differential pulse voltammetry [13] (DPV) and electrochemical impedance
spectroscopy [14] (EIS), etc., have been widely attention to and used due to their simple operation,
fast testing speed and other advantages. As an electroactive compound, dopamine will coexist with
chemicals in blood that possesses similar electrochemical properties with it, such as ascorbic acid and
uric acid. It will cause confusion on their electrochemical identification owing to the similarity in
their properties [15]. In order to improve the selectivity, sensitivity and detection range of dopamine,
carbon nanomaterials [16] and conductive polymers [17] have been used to modify electrodes. As a
new type of carbon-based nanomaterial, G has advantages in basic properties such as large specific
surface area, outstanding electron transport performance, high mechanical strength, good chemical
stability and exhibits good biocompatibility. Hence, G has gradually become an ideal candidate for
researchers to construct novel electrochemical biosensors with high sensitivity and low detection
limit. Conductive polymers are widely considered as an ideal coupling interface for constructing
various types of biosensing detection systems due to their advantages of intrinsic conductivity, in situ
synthesis, controllable surface properties, good biocompatibility and stability, etc. Most importantly,
the composite of graphene and conductive polymer can impart G’s optical, electrical and mechanical
properties to conductive polymers to improve their macroscopic performance, together with effectively
increasing active sites of G to improve its electrocatalytic activity and make up for its defects in
selectivity. Numerous studies have shown that PEDOT has better stability, higher conductivity and is
less susceptible to oxidation than other conductive polymers. Besides, sensors modified with it could
selectively detect DA without the interference of AA and UA [18,19]. In addition, the incorporation
of poly (styrene sulfonate) (PSS) during the polymerization of EDOT, cannot merely greatly enhance
the solubility of PEDOT in aqueous solutions, but also improve its conductivity and stability to some
extent [20]. Moreover, CS, self-charged natural polymer material, was also used in this work with the
aim to achieve layer-by-layer (LBL) self-assembly [21,22] modifications of PEDOT:PSS and CS–G on the
surface of SPEs. Compared with other methods of preparing composite film such as electrochemical
and chemical oxidation polymerization deposition, LBL has advantages of simple operation, diversified
assembly materials, controllable assembly process, mild preparation conditions, low requirements to
equipment and low costs, etc. [23]. According to the principle of LBL, CS with positive charges and
PEDOT: PSS with negative charges, deposited alternately layer by layer under electrostatic interaction
on the surface of the working electrode. Additionally, the agglomeration between G sheets can be
effectively reduced by evenly distributing G to the solution of CS. With the aim of maximizing the
performance of electrodes, the above three materials were combined to form nanocomposites.

As the most popular mobile devices in the world, smartphone has high-speed computing
capabilities and large-capacity data storage capabilities, which are comparable with those of personal
computer or laptop [24]. Moreover, it has an user-friendly interface to enable easy operation for all
ages [25]. More important, it has an open-source operating system, which allows for its combination
with different sensing systems to reduce cost and improve portability. With the help of the smartphone,
more and more researchers have combined it with electrochemistry to develop new biomedical testing
equipment for detecting biochemical substances [26,27] to support health services. Mobile health
(mHealth) came into existence, based on which, people could use the related mHealth applications
on smartphone to self-monitor their health conditions, such as blood pressure and blood glucose
concentration [28]. Traditional detection methods require large, expensive instruments and complicated
and time-consuming operations, which make it impossible to achieve rapid and real-time detection.
With the advantages of a smartphone and combination of different sensors, the above electrochemical
methods could be used for continuous monitoring of DA and other various biochemical substances.
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According to changes in response signals, variation of concentrations of biochemical substances could
be reflected in time. Thus, it is of great potential to develop a smartphone-based electrochemical system
for real-time monitoring of biochemical substances in the point-of-care testing (POCT) [29].

In this study, a set of smartphone-based electrochemical point-of-care testing potentiostat system
was structured. Through connecting different modified electrodes, this device can be used for detection
and analysis of various biomarkers. In our previous work, it was successfully applied for the detection
of α-saliva amylase which was regarded as stress biomarker [30]. In this work, the practicality of this
device was further researched by means of employing it for monitoring DA which was considered
as emotional biomarker. It was composed of a portable potentiostat, a modified screen-printed
electrode [31] as electrochemical sensor and a smartphone application (app). This detection system was
employed to measure changes in electrical signals corresponding to dopamine concentration changes
on the sensors. Porous nanocomposites consisting of G, CS and PEDOT: PSS were used to modify SPEs
and prepared for simple electrochemical biosensors, which showed high selectivity and sensitivity
to DA. The hand-held hardware device was utilized to perform electrochemical detection methods
such as CV, DPV, etc. and deliver the electrical signal data. As the core of the system, the smartphone
with a designed app was employed to send commands, perform calculations and display real-time
data. Compared with other smartphone-based electrochemical sensing POCT system [26,32,33],
the sensing detection platform designed in this work have many advantages. First, in terms of the
hardware design, the commercial Arduino board equipped with analog-to-digital converter (ADC) was
exploited as a microcontroller, which greatly simplified the design as a result of no extra layout of A/D
conversion and microcontroller module in the detection circuit. In addition, the variety of the design
for electrode interfaces allowed experimental researches via either SPE or commonly used commercial
electrodes. Second, for the modification of working electrode, LBL self-assembly technology was
employed instead of traditional electrochemical and chemical deposition methods, which significantly
reduced the difficulty in preparing sensors with excellent performances. Finally, in terms of the app
design, four detection methods were integrated and developed (square wave voltammetry (SWV)
and chronoamperometry(i–t) will be applied in subsequent researches), which greatly improved the
diversity in types of data that characterized properties.

2. Materials and Methods

2.1. Materials and Chemicals

DA (C8H11NO2), AA (C6H8O6) and UA (C5H4N4O3) were purchased from Sigma-Aldrich Co.,
LLC (Saint Louis, MO, USA). Potassium ferricyanide (K3[Fe(CN)6]), potassium phosphate (K2HPO4),
potassium hydrogen phosphate (KH2PO4), sodium hydroxide (NaOH, 25%), potassium chloride (KCl),
hydrochloric acid (HCl), acetic acid (CH3COOH), anhydrous Ethanol, ammonium persulfate (APS),
ferric sulfate (Fe2(SO4)3) and 732 sodium-type cation exchange resin were purchased from Sinopharm
Chemical Reagent Co., Ltd (Shanghai, China). All of them are analytical grade. All samples required in
experiments were prepared using Milli-Q deionized water (resistivity 18 MΩ·cm@25 ◦C). Appropriate
amounts of DA, AA and UA were dissolved in water to acquire stock solutions with a concentration
of 5 mM. Serial concentrations of experimental standard solutions were freshly prepared by diluting
the previously prepared stock solutions with deionized water. An amount of 0.1-M phosphate buffer
solutions (PBS, pH 7.4) prepared from the mixture of K2HPO4 and KH2PO4 was used to adjust the
pH balance of the electrochemical reaction system and employed with supporting electrolyte KCl
(0.1 M) as reaction bottom solution. In addition, for modification of the working electrode, G (sheet
diameter: 10 µm, >99.9%, Suzhou East Inspection), CS (deacetylation degree: 93%, Jinan Haidebei)
and EDOT (>99.8%), PSS–Na and poly (ethyleneimine) purchased from Shanghai Aladdin Biochemical
Technology Co., Ltd (Shanghai, China). were used in this work.

The SPEs used in this work, including polyethylene terephthalate (PET, with three-dimensions of
5 × 15 × 0.8 mm) and an integrated three-electrode system consisted of carbon as working, counter
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electrode and Ag/AgCl as reference electrode, were a kind of novel electro-analytical electrode
purchased from Mxense Biotechnology Co., Ltd. (Ningbo, China).

All the above operations were carried out at ambient temperature.

2.2. Instruments and Apparatus

In this work, Ultrasonic cleaner (KQ-300DE, Kunshan Ultrasonic Instrument Co., Ltd. (Kunshan,
China)) and High-speed refrigerated centrifuge (Z206, Hermle, Germany) were assisted in configuring
the modification solution. As well, deionized water used in the preparation of analytical solutions was
obtained through a pure water meter (Millipore-Q, Millipore, Burlington, MA, USA). All experiments
were performed at ambient temperature.

2.3. Design of Detection Circuit and App

The whole detection circuit is mainly composed of a microcontroller module, a D/A module,
a potentiostat circuit module, a Bluetooth module, an OLED and a power management module.
As shown in Figure 1a, the microcontroller module (Arduino Mega 2560, JKSS Co., Ltd. Rochester,
Kent, United Kingdom) controls an external digital-to-analog converter (DAC, LTC1655I, Linear) by
using a serial peripheral interface (SPI) communication to apply a specific analog potential signal
to external electronic analysis electrodes (SPEs). A potentiostat circuit module composed of three
amplifiers (MCP6072-E/SN, Microchip) is utilized to maintain a constant and stable output between the
working electrode and the reference electrode, and automatically adjusts the potential shift occurring
during the electrochemical reaction. The loop current generated by the reaction between the working
electrode and the counter electrode is converted into an analog potential signal through a microcurrent
detecting circuit including a current–voltage converting circuit and an amplifying circuit. The digital
signal that it can acquire and store is then obtained via an analog-to-digital converter (ADC) on the
microcontroller. The electrical signals collected by the microcontroller are sent to the upper smartphone
app for reception through the Bluetooth Low Energy Module (BLE, Shenzhen Keyian Microelectronics
Co., Ltd. Shenzhen, China). Smartphone app uses the Bluetooth communication method, on one hand,
to send an instruction to the detection circuit to select a detection method and set initial parameters;
on the other hand, to receive and process digital signals from the detection circuit. Furthermore,
the OLED together with buttons installed on the detection circuit can also set the detection method and
parameters through the pre-compiled code. The entire detection circuit is externally connected to a
USB power supply or a dry battery pack and uses a power management module to achieve continuous
and effective power supply.

As shown in Figure 1b, the whole self-designed detection system contains three main parts:
a modified SPE as electrochemical sensor, a hand-held detector and a smartphone with a designed
application. The detector circuit was used to generate excitation voltage, measure the consequent
current on the sensors and deliver electrical signal data via the BLE module. The designed application
can perform four detection modes: cyclic voltammetry (CV), square wave voltammetry (SWV),
chronoamperometry and differential pulse voltammetry (DPV). It was employed to send commands
with initial parameters: voltage range, scan rate, pulse width, pulse period, pulse amplitude, calculate
electrical signal based on the data and plot signal curve for real-time display on the smartphone.

As shown in Figure 1c, the potentiostat together with the I–V converter is composed of three
operational amplifiers. Among them, one serves as a control amplifier to continuously compare the
input potential with that between the working and reference electrodes and maintain its value as a
programmed value. Moreover, it can also supply unlimited output current to activate and maintain
the electrochemical reaction. The other one acts as a potential follower to reduce the potential change
resulted from the current flowing through the reference electrode. The rest one forms a resistive
feedback transimpedance amplifier (TIA) with a variable feedback resistor, in which the potential drop
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on the feedback resistor was measured to indirectly obtain the reaction current of different orders of
magnitude in the electrochemical system through the following formula:

I =
Vo −Vw

R f
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2.4. Modification of SPEs

The solution for modification included G and CS and PEDOT incorporated with PSS (PEDOT: PSS).
The solution was prepared as the following steps. (A) Preparation of G solution: 1 g G was accurately
measured and dissolved in deionized water, followed by centrifugation. Then, the supernatant of it
was removed and ultrasonically dissolved for 30 min to obtain a well-distributed graphene suspension.
(B) Preparation of CS solution: 1 g CS was accurately measured and dissolved in an appropriate
amount of CH3COOH (2%) with continuous stirring, and then diluted with deionized water to obtain
100 mL CS solution (1%). (C) Preparation of PEDOT:PSS solution: First, EDOT and PSS–Na were
accurately measured at a ratio of 1:3 [34]. Second, PSS–Na was dissolved in deionized water with
continuous stirring until a yellow transparent solution was formed. Third, EDOT was gradually
added with continuous stirring. HCl was used to maintain the pH of the solution in the range of 2–3.
Then, a mixture of APS as oxidant and Fe2(SO4)3 as catalyst was added to the above solution and
waited until it turned to dark blue. Finally, 732 sodium-type cation exchange resins were used to
purify PEDOT:PSS–Na and ultrasonically processed for 30 min to obtain a well-distributed PEDOT:PSS
suspension [35]. All the above solutions were stored without exposure to light at 4 ◦C.

Prior to the modification, the SPEs were washed with a mixture of deionized water and alcohol
and sonicated for 15 min. In addition, to make the above modification materials a better attach to the
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surface of working electrode, the SPE whose counter and reference electrode were temporarily covered
with hydrophobic double-sided tape (or waxing), was immersed in poly (ethyleneimine) (30 mg/mL) as
cationic surface finishing agent with heating at 75 ◦C in the water bath for 1 h. After that, the electrode
was positively charged. Finally, as shown in Figure 2, the pre-charged SPE was cyclically immersed
with four and a half times in PEDOT: PSS suspension and sonicated graphene/chitosan (CS–G) to
deposit them alternately layer by layer on the surface of the working electrode. According to some
related research reports [36], the conductivity of the electrode will be gradually improved through
increasing the amount of self-assembled layers within a certain range, as a consequence of which,
the current responses will be maximized as much as possible. It will hinder electronic transfer once the
self-assembled film is too thick. In the end, a simple electrochemical sensor modified with four layers
of CS–G and five layers of PEDOT: PSS for dopamine detection was successfully prepared. As well,
the above operations were repeated to prepare a plurality of modified SPEs in advance and stored
without exposure to light at 4 ◦C for subsequent experiments.
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Figure 2. The process of layer-by-layer electrostatic self-assembly.

After the modification, CV and DPV were performed to investigate the changes in the
electrochemical behavior of the SPE duo to different modification materials in the presence of
K3 [Fe(CN)6] or a mixture of DA, AA, UA in 0.1-M PBS (pH: 7.4, 0.1-M KCl). CV was carried at the rate
of 50 mV/s with a potential range varying from −500 to + 600 mV, while DPV was performed from
−100 to +560 mV (50 mV pulse amplitude, 2 mV step potential, 0.05 s pulse width).

2.5. Electrochemical Characterization of Modified SPEs

The electrochemical properties of the single/composite modified SPEs were further investigated
through CV at a range of rates (10 mV/s–100 mV/s) by dropping onto the SPEs 50 µL of 10 µM DA or a
mixture of 10 µM DA, 10 µM AA, 10 µM UA in presence of 0.1-M PBS (pH: 7.4, 0.1-M KCl), with a
potential range scanned from −500 to +600 mV. The current peak value was taken as the electrochemical
signal and plotted against the related deformation parameters of the scan rate. The obtained curve was
fitted by using Origin9 software.

2.6. Dopamine Detection

The calibration curve of dopamine was acquired by dropping various DA solutions at different
concentrations ranging from 0.05 to 70 µM in the presence of 30 µM AA and 30 µM UA in 0.1-M
PBS (pH: 7.4, 0.1-M KCl) onto the single/composite modified SPE. DA, AA and UA, as electroactive
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compounds, were oxidized and detected using DPV with a potential range varying from −100 to
+560 mV (50 mV pulse amplitude, 2 mV step potential, 0.05 s pulse width). The current peak value
was taken as the electrochemical signal and plotted against DA concentration. The obtained curve was
fitted by using Origin 9 software.

3. Results and Discussion

3.1. Electrochemical Characterization of SPEs Modified with Different Materials

First, changes of the SPE’s electrochemical behavior resulted from G were investigated by means
of CV at the rate of 50 mV/s with a potential range varying from −500 to +600 mV in presence of a
redox probe [Fe(CN)6] 3−/4− in 0.1-M PBS (pH: 7.4, 0.1-M KCl). As shown in Figure 3a, the current
response measured on the SPE was significantly enhanced after that graphene was modified onto the
working electrode. According to the Randles–Sevcik equation, under the same reaction conditions,
the redox peak current of CV depends on the electrochemically active area of the modified electrode.
It could be observed in Figure 3a that the electroactive area of bare SPE increased to some extent
after G was modified onto it. Furthermore, after PEDOT: PSS/CS was modified onto the G/SPE
(Figure 3b), the electroactive area of the electrode enlarged significantly. This phenomenon is probably
associated with the large specific surface area of graphene and conductive polymer. Meanwhile,
it also demonstrates that the conductive polymer effectively improved the surface catalytic activity of
graphene, which greatly promoted the electrocatalytic reaction of DA onto the working electrode.
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Figure 3. (a) Cyclic voltammetry (CV) of 50 µM K3 [Fe(CN)6] in 0.1-M PBS (pH: 7.4, 0.1-M KCl) at
bare and modified screen-printed electrode (SPE) (G/SPE); (b) CVs of 20 µM dopamine (DA), 20 µM
ascorbic acid (AA) and 20 µM uric acid (UA) in 0.1-M phosphate buffer solutions (PBS) (PH: 7.4,
0.1-M KCl) at poly(3,4-ethylenedioxythiophene) (PEDOT):PSS/CS–G/SPE and G/SPE; (c) differential
pulse voltammetry (DPV) responses of 30 µM DA, 30 µM AA and 30 µM UA in 0.1-M PBS (pH: 7.4,
0.1-M KCl) at PEDOT:PSS/CS–G/SPE and G/SPE. Detection parameters: CV—potential range from −500
to +600 mV, 50 mV/s scan rate; DPV—potential range from −100 to +560 mV, 50-mV pulse amplitude,
2-mV step potential, 0.05-s pulse width.

Then, electrochemical sensing properties of G/SPE and PEDOT: PSS/CS–G/SPE were investigated
through CV and DPV, respectively to detect DA in the presence of AA and UA in 0.1-M PBS (pH: 7.4,
0.1-M KCl). As shown in Figure 3b, three CV anodization peaks of DA, AA and UA were clearly
distinguished on PEDOT: PSS/CS–G/SPE. The oxidation peaks appeared at about 40 mV (AA), 320 mV
(DA) and 500 mV (UA). The peak separations of PEDOT: PSS/CS–G/SPE were 280 mV (AA and DA),
180 mV (DA and UA) and 460 mV (AA and UA). The ∆Ep (AA and DA) value was significantly larger
than that in the case of Pt/GSPE in an earlier report [37]. Correspondingly, compared with G/SPE,
the PEDOT: PSS/CS–G/SPE offers a higher anodization peak current and improved voltammetric peak
separation for the measurement of the three analytes. Hence, the PEDOT: PSS/CS–G/SPE supplies
superior performance in terms of responsiveness and selectivity. Furthermore, only a significant
reduction peak appeared on G/SPE and PEDOT: PSS/CS–G/SPE, respectively, which proved that only
the electrochemical catalysis reaction of DA was reversible. As shown in Figure 3c, three different and
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determined anodization peaks were clearly distinguished on PEDOT: PSS/CS–G/SPE at about 72 mV
(AA), 336 mV (DA) and 460 mV (UA). Peak separations were 264 mV (AA and DA), 124 mV (DA and
UA) and 388 mV (AA and UA). Similarly, the oxidation peak current at PEDOT: PSS/CS–G/SPE was
obviously higher than that obtained at G/SPE, which demonstrated higher electrocatalytic activity than
G/SPE towards the electrochemical reaction of DA. Furthermore, it is important to notice that the ∆Ep
(AA and DA) of PEDOT: PSS/CS–G/SPE is wider than that of G/SPE. The PEDOT: PSS/CS–G/SPE thus
illustrated better selectivity to DA.

3.2. Scan Rate Dependence of Peak Current on Modified SPEs

In order to further characterize the electrochemical redox of DA on G/SPE and PEDOT:
PSS/CS–G/SPE, firstly, CV was performed by dropping onto G/SPE 50 µL of 10 µM dopamine
in presence of 0.1-M PBS (pH: 7.4, 0.1-M KCl) with a scan rate varying from 10 to 100 mV/s in 10 mV/s
steps. As shown in Figure 4a, redox peak currents measured on G/SPE were positively correlated
with scan rates. Moreover, with increase in the scan rate, the anodic oxidation peak potential and
the cathodic reduction peak potential of DA slightly shifted positively and negatively, respectively.
It fully proved that the electrochemical reaction of DA on the modified SPE was reversible. As shown
in Figure 4b, oxidation and reduction peak currents of DA were almost linearly related to scan rates,
respectively during increasing the scan rate from 10 to 100 mV/s, which indicated that the reaction
of DA on G/SPE was an adsorption-controlled process. The possible reason was that the DA could
not completely diffuse in the modification film because of the fast scan rate [38]. Hence, the whole
electrochemical reaction process of DA on G/SPE was influenced by the adsorption effect.
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Then, CV was performed onto G/SPE and PEDOT: PSS/CS–G/SPE, respectively to detect dopamine
in the presence of AA and UA in 0.1-M PBS (pH: 7.4, 0.1-M KCl) with a scan rate varying from 10 to
100 mV/s in 10 mV/s steps. Comparing Figure 5a,c, redox peak currents at PEDOT:PSS/CS–G/SPE
were significantly higher than those obtained at G/SPE in the case of same scan rates. Selective and
simultaneous determination of AA, DA and UA is demonstrated by the distinct difference between the
anodic peaks of them at PEDOT: PSS/CS–G/SPE (Figure 5c), which were clearer than the oxidation peaks
of them at G/SPE (Figure 5a). Moreover, the separation between the redox peaks of ∆E for DA-AA,
UA-DA and UA-AA is improved compared with those reported for graphene-based electrodes [39].
Accordingly, it was obvious that not only PEDOT:PSS/CS–G/SPE demonstrated higher electrocatalytic
activity to the electrochemical reaction of DA and outstanding reversibility, but also it illustrated better
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selectivity to determination of DA. Specifically, the superior performance of PEDOT:PSS/CS–G/SPE for
detecting DA, on one hand, depends on the good conductivity of graphene and conductive polymers;
on the other hand, it can be attributed to the selectivity of negatively charged PEDOT:PSS for cationic
neurotransmitter–DA without interference from anionic AA/UA [40]. From Figure 5b,d, the conclusion
similar to Figure 4b could be obtained that in the case of coexistence of DA, AA and UA, the whole
electrochemical redox reaction process of DA on SPEs modified with different materials was also
influenced by the adsorption effect.
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Figure 5. CVs of 10 µM DA, 10 µM AA and 10 µM UA in 0.1-M PBS (pH: 7.4, 0.1-M KCl) at G/SPE (a)
and PEDOT:PSS/CS–G/SPE (c) with a scan rate from 10 to 100 mV/s in 10 mV/s steps; (b,d) plots of peak
currents of DA oxidation and reduction versus scan rates. Detection parameters: potential range from
−500 to +600 mV.

On behalf of reducing the background signal response and improve the signal-to-noise ratio (S/N),
50 mV/s was used as the optimal scan rate in subsequent experiments.

3.3. Dopamine Calibration Curve

To evaluate the performance of the self-designed electrochemical sensing system for selective
detection of dopamine, DPV was performed to record increases in DA oxidation peak currents due
to the increase of dopamine concentration ranging from 0.05 to 70 µM and fit two calibration curves,
by dropping onto G/SPE and PEDOT: PSS/CS–G/SPE 50 µL of different concentrations of DA in presence
of a mixture of 30 µM AA and 30 µM UA in 0.1-M PBS (pH: 7.4, 0.1-M KCl). As shown in Figure 6a,c,
as DA concentration increasing, oxidation peak currents corresponding to constant concentrations of
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AA and UA only slightly increased irregularly, suggesting that the addition of AA and UA does not
interfere with the detection of DA. The concentration range selected in this work fits well with the
normal blood concentration range for DA [41]. As a consequence, this self-designed electrochemical
potentiostat can be applied for DA detection in actual samples. As shown in Figure 6b,d, DA oxidation
peak currents measured on G/SPE and PEDOT:PSS/CS–G/SPE were linearly related to DA concentration
ranging from 0.05 to 70 µM.
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Figure 6. DPV responses of varying concentrations of DA from 0.05 to 70 µM in the presence of a mixture
of 30-µM AA and 30-µM UA in 0.1-M PBS (pH: 7.4, 0.1-M KCl) at G/SPE (a) and PEDOT:PSS/CS–G/SPE (c);
(b,d) plots of peak currents of DA oxidation versus DA concentrations. Detection parameters: potential
range from −100 to +560 mV, 50-mV pulse amplitude, 2-mV step potential, 0.05-s pulse width.

From Figure 6d, a linear relationship was obtained (y = −0.523x − 2.988) with a regression value
of 0.9942. The detection sensitivity (M) of PEDOT: PSS/CS–G/SPE was about 0.52 ± 0.01 µA/µM, which
was higher than that of G/SPE (0.21 ± 0.01 µA/µM, Figure 6b). Moreover, the PEDOT: PSS/CS–G/SPE
displayed higher sensitivity towards DA compared with AA and UA of the same concentrations as
the DA did. This can be attributed to that PEDOT: PSS with negative charge attracts the positively
charged DA and contributes to the reaction of gain and loss of electrons for it on the surface of
the electrode, while repelling AA and UA with negative charge [42]. The limit of detection (LOD),
calculated according to the formula 3 Sb/M (S/N = 3), where M is the slope of the calibration curve and
Sb is the standard deviation of the blank signal, was about 0.29 µM. The wider linear range and lower
detection limit using our PEDOT: PSS/CS–G/SPE based on self-designed detection system are acquired
as compared with some literature reports [15,17,43–46] summarized in Table 1.
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Table 1. Comparison of our PEDOT:PSS/CS–G/SPE using a self-designed detection system with other
modified electrodes using various methods reported in the literature for the determination of DA.

Modified Electrodes Linear Range (µM) Detection Limit (µM)

PEDOT:PSS/CS–G/SPE (Our work) 0.05–70 0.29
SDS/SPCE [43] 1–100 0.37

Fe3O4@Au-Gr/GCE [44] 0.05–50 0.65
Au/RGO/GCE [45] 6.8–41 1.4

RuO2/RGO/GCE [46] 3–200 875
AuNPs@PANI/GSPE [17] 1–100 0.86

PANI-rGO-NF [15] 0.05–180 0.024

4. Conclusions

In this work, we designed and developed an electrochemical sensing system for fast and real-time
detection of DA. The LBL was applied for modification of SPE used as a sensor by alternately depositing
PEDOT, CS and G onto the working electrode. By combining the prepared modified sensor with
the self-designed electrochemical potentiostat, highly selective detection of DA in the presence of
interfering substances such as AA and UA was achieved. In addition, a good linear relationship
between the DA oxidation peak current values and varying DA concentrations ranging from 0.05
to 70 µM, with a detection sensitivity of 0.52 ± 0.01 µA/µM and a limit of detection of 0.29 µM,
was obtained. Due to limited time, tests and analysis with real blood or urine samples were not
employed in this work. Hence, the practical application worth of this electrochemical sensing system
will be evaluated through following further investigations.

Considering the good selectivity, sensitivity of the modified sensor for DA, and the simplicity of its
preparation process, as well as the portability and low cost of the detection device, it is promised that
the self-designed electrochemical sensing system will be widely used for DA detection in POCT analysis
after more experimental explorations together with adjustment and optimization for architectures of
software and hardware in this system.
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