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Abstract: This paper proposes a novel three-dimensional direction-of-arrival (3D-DOA) estimation 
method for electromagnetic (EM) signals using convolutional neural networks (CNN) in a Gaussian 
or non-Gaussian noise environment. First of all, in the presence of Gaussian noise, four output 
covariance matrices of the uniform triangular array (UTA) are normalized and then fed into four 
neural networks for 1D-DOA estimation with identical parameters in parallel; then four 1D-DOA 
estimations of the UTA can be obtained, and finally, the 3D-DOA estimation could be obtained 
through post-processing. Secondly, in the presence of non-Gaussian noise, the array output 
covariance matrices are normalized by the infinity-norm and then processed in Gaussian noise 
environment; the infinity-norm normalization could effectively suppress impulsive outliers and 
then provide appropriate input features for the neural network. In addition, the outputs of the 
neural network are controlled by a signal monitoring network to avoid misjudgments. 
Comprehensive simulations demonstrate that in Gaussian or non-Gaussian noise environment, the 
proposed method is superior and effective in computation speed and accuracy in 1D-DOA and 3D-
DOA estimations, and the signal monitoring network could also effectively control the neural 
network outputs. Consequently, we can conclude that CNN has better generalization ability in DOA 
estimation. 

Keywords: direction-of-arrival (DOA); convolutional neural network (CNN); Gaussian noise; non-
Gaussian noise; uniform triangular array (UTA) 

 

1. Introduction 

Direction-of-arrival (DOA) estimation refers to a signal processing technique for processing the 
incoming wave signals received by arrays and estimating the position of the signal emitters. It has 
been widely applied in many fields in recent years, such as radar, sonar, electronic monitoring, 
mobile communication, and seismic research [1–3]. In the presence of Gaussian noise, conventional 
1D-DOA estimation methods of stationary electromagnetic (EM) signals include MUSIC [4,5], MVDR 
[6,7], TLS-ESPRIT [8–10], etc. MUSIC and MVDR require the spectral peak search and achieve high 
accuracy. However, they suffer from high computational complexity. TLS-ESPRIT avoids the spectral 
peak search and requires less computation. Also, the estimation accuracy is not high enough. As for 
3D-DOA estimation in Gaussian noise environment, the 3D-MUSIC algorithm is still the most 
popular one at present. It needs to perform a cyclic search for the three parameters of the azimuth, 
elevation, and radial distance. Therefore, its computational complexity is extremely high. In the 
presence of non-Gaussian noise, conventional 1D-DOA estimation methods of stationary EM signals 
include FLOM [11], PFOM [12], CRCO [13], COBU [14], etc. Besides the spectral peak search, they 
also need a complex preprocessing stage and require high computational complexity. So far, to the 
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best of our knowledge, there is no effective method regarding 3D-DOA estimation in non-Gaussian 
noise environment. Therefore, the high computational cost is the main problem for these 
conventional algorithms in real-time applications. 

In order to overcome the computational complexity of conventional methods, neural networks 
have been developed to DOA estimation. References [15–18] using the support vector machine (SVM) 
[19] and references [20–23] using the multi-layer perceptron (MLP) [24] formulate DOA estimation 
as a classification problem, and they lead to the discrete outputs of neural networks. References [25–
28] use a radial basis function (RBF) [29] to formulate DOA estimation as a regression problem, and 
they lead to the continuous outputs of neural networks. These DOA estimation methods based on 
neural networks effectively overcome the computational complexity of conventional methods and 
have high estimation accuracy. However, most of the existing DOA estimation methods based on 
neural networks have only focused on 1D or 2D estimation in the presence of Gaussian noise, and 
their ranges of practical applications are limited. In addition, in the presence of non-Gaussian noise, 
these neural networks fail to obtain effective input features and perform correct DOA estimation due 
to the non-convergence of the second-order moments of array outputs. Therefore, the dimension 
must be extended to 3D, and an effective solution must also be proposed in non-Gaussian noise. In 
the last few years, with the rapid development of artificial intelligence, the convolutional neural 
network (CNN) has been increasingly studied by researchers. CNN is a well-known deep learning 
architecture inspired by the natural visual perception mechanism of living creatures. The applications 
of CNN include computer vision, speech, natural language processing, etc. For details about CNN, 
see Gu et al. [30] and the references therein.  

Motivated by the aforementioned analysis, in this paper, we present a novel 3D-DOA estimation 
method for stationary EM signals using CNN in a Gaussian or non-Gaussian noise environment. To 
do this, we propose a 1D-DOA estimation neural network based on CNN and extend the dimension 
from 1D to 3D to achieve 3D-DOA estimation utilizing the proposed uniform triangular array (UTA). 
In the presence of non-Gaussian noise, we utilize the infinity-norm normalization to propose a 
solution that provides appropriate input features for the neural network. In addition, a signal 
monitoring network is also proposed to control the outputs of the neural network to avoid 
misjudgments of the neural network. Then, we propose a novel 3D-DOA estimation method of 
stationary EM signals. Finally, some numerical examples prove the superiority and effectiveness of 
the proposed method. 

The main contributions of this paper are as follows: (1) CNN is introduced into DOA estimation 
of EM signals; (2) the UTA for 3D-DOA estimation based on neural networks is proposed; (3) by 
means of the infinity-norm normalization preprocessing, the neural network can achieve DOA 
estimation in the presence of non-Gaussian noise; (4) the signal monitoring neural network of EM 
signals is proposed. 

The remainder of this paper is organized as follows: In Section 2, we review Gaussian noise and 
non-Gaussian noise, defining the problem of interest; in Section 3, we present the architecture and 
design process of the 3D-DOA estimation model in the presence of Gaussian noise, proposing a 
solution using the infinity-norm normalization for the scenario of non-Gaussian noise; finally, Section 
4 demonstrates simulation results, and Section 5 summarizes the conclusions and future work. The 
main notations used in this paper are listed in Table 1. Other terms used in this paper follows the 
general notations unless otherwise stated. 

Table 1. Mathematical notations. 

Notations Explanations 
(·)T Transpose 
(·)H Conjugate transpose 
∀  Arbitrary value 

E{·} Expectation operator 
I Identity matrix 
‖·‖∞ Infinity-norm of a vector 



Sensors 2020, 20, 2761 3 of 20 

 

2. Preliminary and Problem Formulation 

2.1. Noise Model 

At present, most of the DOA estimation algorithms based on neural networks assume that the 
noise environment is Gaussian noise, which refers to a class of noises whose probability density 
function (PDF) obeys Gaussian distribution. Common Gaussian noises include fluctuation noise, 
cosmic noise, thermal noise, shot noise, etc. Figure 1 shows the time-domain waveform of Gaussian 
distribution with a mean of 0 and a variance of 1, and Figure 2 shows its PDF. 

 

Figure 1. Time-domain waveform of Gaussian distribution. 

 

Figure 2. PDF of Gaussian distribution. 

However, many signals and noises encountered in practice are decidedly non-Gaussian, for 
example, low-frequency atmospheric noise, underwater acoustic signals, and many types of human-
made noises. An important class of impulse noise encountered in DOA estimation can be modelled 
by α-stable distribution [14], which is an extremely flexible modelling tool. It is pity that there exists 
no closed-form expression for the PDF of α-stable distribution except for Gaussian and Cauchy 
distributions. The α-stable distribution is generally defined by its characteristic function as: 
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This has four parameters: the characteristic exponent α (0 < α ≤ 2), scale parameter γ (γ > 0), 
symmetry parameter β (–1 ≤ β ≤ 1), and location parameter μ (–∞ < μ < +∞). α determines the thickness 
of the tail of the distribution. γ (γ = 1 in this paper) determines the degree of discretization of the data 
samples, and it is similar to the variance of Gaussian distribution. β (β = 0 in this paper) determines 
the sign and degree of asymmetry about μ (μ = 0 in this paper), which is similar to the mean of 
Gaussian distribution. For details about the α-stable distribution, see Tian et al. [14] and the references 
therein. As shown in Figure 3, the time-domain waveform of α-stable distribution with α = 1.0 has 
more impulsive outliers compared with that in Figure 1. The smaller α, the more impulsive outliers 
and the stronger impulses. When α takes different values, Figure 4 shows the corresponding PDF of 
α-stable distribution and has obvious tails compared with that in Figure 2. The smaller α, the thicker 
the tail. 

 
Figure 3. Time-domain waveform of α-stable distribution. 

 
Figure 4. PDF of α-stable distribution. 

2.2. Problem Formulation 

In order to achieve 3D-DOA estimation, we propose the UTA. Assume that a far-field stationary 
EM signal impings on the UTA, as shown in Figure 5. Three uniform linear arrays (ULA) AB, BC, and 
CA jointly constitute the UTA. The origin O of Cartesian coordinate locates at the midpoint of the 
altitude passing through the point A. The coordinates of the point A, B, and C are set to (Ax, Ay, 0), 
(Bx, By, 0), and (Cx, Cy, 0) respectively, and the estimated EM signal s is set to (x, y, z). The angles of s 
and CA, s and CB, s and BA, and s and BC are set as θCA, θCB, θBA, and θBC, respectively, and the values 
of the four angles are all in the range of [0°, 180°].  
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Figure 5. UTA model. 

Assume that every ULA consists of M omnidirectional undifferentiated sensors, and the distance 
between two sensors is d. The number of UTA sensors is 3 (M – 1). The single snapshot M × 1 
observation vector of every ULA can be expressed as: 

T
1( ) =[ ( ), , ( )]Mn x n x nx . (4)

The M × 1 noise vector can be expressed as: 

T
1( ) =[ ( ), , ( )]Mn e n e ne . (5)

The p × 1 signal vector can be expressed as: 

T
1( ) = [ ( ), , ( )]pn s n s ns , (6)

where p is the number of signals. In the presence of Gaussian noise, the signal-to-noise ratio (SNR) is 
defined as S 2 2NR = 10lg( / )s eσ σ , where sσ

2  denotes the signal power, and 2
eσ  signifies the noise 

power. The M × 1 steering vector can be expressed as:  

− − − 
 
 


T

j2π cos j( 1)2π cos
= 1, , ,

d dθ M θ
λ λe eA , (7)

where λ denotes the wavelength of the carrier. The single snapshot M × 1 observation vector can also 
be expressed as [14]: 

( ) = ( ) + ( )n n nx As e . (8)

The M × N observation matrix of all snapshots can be expressed as: 

= +x As e , (9)

where e and s denote the M × N noise matrix and p × N signal matrix, respectively, and N is the 
number of snapshots. The angle θ of the EM signal s and the ULA can be estimated by processing x. 
Based on the proposed UTA, we could estimate a total of four angles. 

Generally, 3D-DOA estimation is to consider the azimuth, elevation, and radial distance [31,32]. 
If the neural network is expected to estimate the three parameters directly, a large amount of training 
data must be combined from the three parameters to meet the demand of neural networks for data 
volume, but such a large amount of data is difficult to obtain. We significantly reduce the scale of the 
training set by dimension reduction. The problem addressed in this paper is to utilize a neural 

z

θCA 

θCB 
θBC y 

θBA 



Sensors 2020, 20, 2761 6 of 20 

 

network to process four observation matrices in parallel and to synchronously estimate θCA, θCB, θBA, 
and θBC, and then to estimate the 3D Cartesian coordinate (x, y, z) of the stationary EM signal s through 
a simple post-processing, i.e., 3D estimation. 

3. Proposed 3D-DOA Estimation Method in Gaussian or Non-Gaussian Noise Environment 

In this section, first of all, we propose a 3D-DOA estimation model in the presence of Gaussian 
noise. The proposed 3D-DOA estimation model consists of three modules, as shown in Figure 6. The 
preprocessing module processes the UTA output data to obtain four normalized ULA output 
covariance matrices N-RCA, N-RCB, N-RBC, and N-RBA. The neural network module consists of a signal 
monitoring network and a DOA estimation network. The DOA estimation network consists of four 
parallel 1D-DOA networks with identical parameters. The inputs of the DOA estimation network are 
four normalized covariance matrices respectively, and its outputs correspond to θCA，θCB，θBC, and 
θBA. Despite low SNR or no incoming signals, still, the existence of noises will cause the DOA 
estimation network to generate outputs. 

  

 

 

 

 

  

 

 

Figure 6. Block diagram of the 3D-DOA estimation model. 

To avoid the noticeable misjudged outputs, the outputs of the model should be controlled by the 
monitoring network. The input of the monitoring network can be any normalized covariance matrix 
from the UTA, and the output value is 1 or 0. 0 indicates invalid incoming wave signals and no model 
outputs. 1 shows effective incoming wave signals and normal model outputs. The inputs of the post-
processing module are the four output angles of the DOA estimation network, and its output is the 
EM signal position (x, y, z). In addition，if the noise environment is non-Gaussian, the array output 
data must be additionally preprocessed, as presented in Section 3.5.  

3.1. Preprocessing 

The purpose of data preprocessing is to feed appropriate input features into the neural network. 
The array model has been presented in Section 2.2, and the sample covariance matrix of any ULA 
output can be expressed as [14]: 

xxR x x APA IH H 2= { ( ) ( )} = + eE n n σ , (10)

where P = E{s(n)sH(n)}. The ideal covariance matrix is not available, but more snapshots can be used 
to estimate the ideal covariance matrix. Due to the stationarity of the signal, the sample covariance 
matrix will converge to the ideal covariance matrix with probability 1 when the number of snapshots 
tends to be infinite. That Rxx is Hermitian matrix determines that its principal diagonal contains the 
power information instead of the angle information of signals. Therefore, the principal diagonal 
entries are replaced by 0, and the imaginary part of the upper triangular is taken, and the real part of 
the lower triangular is taken. After norm normalization processing, the M × M real matrix can be 
utilized as the input of the DOA estimation network. The power information of incoming signals is 
the key to monitor the effectiveness of incoming signals, and therefore the normalized M × M real 
matrix retaining the principal diagonal can be utilized as the input of the monitoring network. 
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3.2. Neural Network Architecture 

3.2.1. Signal Monitoring Network Architecture 

The purple part of Figure 7 is the signal monitoring network, which consists of four layers. The 
first layer is the input one, and the input is an M × M real number matrix that can be from any ULA 
of the UTA.  

 
Figure 7. DOA estimation neural network architecture. 

 
The second layer is an M × 1 max pooling layer [33] with the stride of 1. The third layer is a 1 × 

M average pooling layer [33] with the stride of 1. The fourth layer is the output one with only one 
neuron, and the activation function adopts sigmoid [20]. The cost function of the network adopts 
cross-entropy, which can be expressed as: 

− − −  
m

i ii i
i

C w b y y y y
m =1

1( , ) = [ log + (1 )log(1 )] , (11)

where m denotes the total number of samples, and iy  denotes the ground truth label, and iy
denotes the network output, and w denotes the network weight, and b denotes the network bias.  

3.2.2. 1D-DOA Network Architecture 

The orange, green, blue, and grey parts of Figure 7 are four 1D-DOA networks with identical 
parameters, which constitute the DOA estimation network in parallel. In the design phase, the 1D-
DOA network architecture fails to be determined in one step. We have made the following attempts 
on the 1D-DOA network architecture: (1) the numbers of layers of the neural network are sequentially 
set from 8 to 18; (2) the numbers of filters in each CNN layer are set from 2 to 32; (3) the sizes of CNN 
filters are set to 2 × 2, 3 × 3, 4 × 4, and 5 × 5; (4) a max pooling layer or average pooling layer is 
introduced following each CNN layer; (5) Long Short-Term Memory (LSTM) layer is introduced 
before the full connection layer and the number of output units of the LSTM layer is changed; (6) the 
numbers of neurons in the fully connected layer are set to 2, 4, 8, 16, 32 and 64. On the premise of 
ensuring the estimation accuracy, we minimize the network parameters and finally determine the 
1D-DOA network architecture. 

The 1D-DOA network consists of 14 layers. The first layer is the input one, and the input is an 
M × M real matrix, which is generated by the UTA output. The second to eleventh layers are CNN 
ones, which are composed of 32, 32, 16, 16, 8, 8, 4, 4, 2, and 2 filters in turn. The size of the filters is set 
to 3 × 3. The convolution stride is all set to 1. The padding mode is all set to same. The activation 
functions adopt ReLU [34]. The twelfth and thirteenth layers, with 64 and 32 neurons, respectively, 
are fully connected ones, and the activation functions adopt ReLU. The fourteenth layer, with one 
neuron, is the output one, and the activation function adopts ReLU. The cost function of the network 
adopts the mean squared error (MSE), which can be expressed as: 
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− 
m

ii
i

C θ θ
m

2

=1

1( , ) = ( )w b , (12)

where m denotes the total number of samples, and iθ  denotes the ground truth label, and iθ  
denotes the network output, and w denotes the network weight, and b denotes the network bias. 

This study formulates DOA estimation as a regression problem. If DOA estimation is formulated 
as a classification problem, the outputs of neural networks will be discrete. Accurate results could be 
obtained in the case of high SNR and low angular resolution. However, when the SNR is low, or the 
angular resolution is high, various angles will overlap in a multi-dimensional space due to the 
presence of noises. The overlap of angles makes it difficult to get higher accuracy, and resulting in 
the inconvenience of evaluating the network architecture through the accuracy. In addition, the 
architecture of classification networks fundamentally limits the reduction of DOA estimation errors. 
Assume that there is a classification network with 181 neurons in the output layer to classify 0°–180° 
(1° resolution). When the observed angles are integers, the estimation accuracy of the classification 
network is 100%. Even so, the continuous real angles would bring about the possibility that the 
maximum angle error of the classification network reach 0.5°. The proposed 1D-DOA network maps 
the signal input features to angles and outputs continuous values, which could fundamentally reduce 
DOA estimation errors. 

3.3. Neural Network Training 

The neural network training process is conducted using simulated data created in Matlab. The 
sensor spacing of the UTA is set to 0.48 times as long as the signal wavelength. The incident angles 
of EM signals in training sets and validation sets lie between [0°, 180°] (1° resolution), and the total 
number of classes is 181. Inspired by Chakrabarty et al. [35], the signal amplitude of all data is 
randomly generated to enhance the robustness of the neural network to the signal amplitude. This 
study explores glorot uniform [36] method to initiate the weight matrix of the network, and the initial 
value of the bias matrix is 0. Furthermore, this study explores Adam [37] in the backpropagation, and 
the mini-batch size [38] is set to 1,024. 

3.3.1. Signal Monitoring Network Training 

The results of analysis depict that, on the one hand, when SNR = –15 dB, the MSE of the 1D-DOA 
network output is about 3 degree2, and we deem the error is acceptable; on the other hand, when 
SNR = –16 dB, the MSE is about 7 degree2, and the error is significant (See Figure 13a in Section 4.2.1 
for details). Therefore, when SNR = –15 dB, 10 pieces of data are generated for each angle, and the 
data label is 1, which indicates that the signal is effective; when SNR = –16 dB, 10 pieces of data are 
generated for each angle, and the data label is 0, which indicates that the signal is invalid. A total of 
3,620 pieces of data constitute the training set.  

In order to fully validate the performance of the monitoring network, the SNR ranges from –25 
dB to –16 dB (1 dB step), and 10 pieces of data, with the label of 0, are generated for each angle under 
each SNR; the SNR ranges from –15 dB to 20 dB (1 dB step), and 10 pieces of data, with the label of 1, 
are generated for each angle under each SNR. A total of 83,260 pieces of data constitute the validation 
set. The training set and validation set are generated independently to ensure no duplicate data. 

Figure 8 exhibits the training process of the monitoring network. The learning rate is set to 0.5, 
and the training epoch is set to 500. The performance of the validation set is obviously better than 
that of the training set, which is rare in general neural network training and is caused by the 
composition of the data set. The training set consists of –15 dB and –16 dB data, which are the SNR 
thresholds of the signal monitoring. Each data in the training set may contribute to the increase of the 
cost function, and the accuracy is not very high. However, data of –15 dB and –16 dB account for 
merely 1/23 of the validation set, and the data of other SNR, which deviate from the SNR thresholds, 
should make a tiny contribution to the increase of the cost function and achieve high accuracy. 
Therefore, in Figure 8, the cost of the validation set is lower than that of the training set, and the 
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accuracy of the validation set is higher than that of the training set. In addition, we should note that 
the appropriate training set can be designed for the monitoring network according to actual DOA 
estimation error requirements. 

 

(a) Training and validation cost 

 

(b) Training and validation accuracy 

  

Figure 8. Signal monitoring network training process. 

3.3.2. 1D-DOA Network Training 

Figure 9 displays the training process of the 1D-DOA network. When SNR = –15 dB and SNR = 
10 dB respectively, 20 pieces of data with the labels of ground truth are generated to fit DOA 
estimation in the scenario of low SNR and prevent over-fitting for each angle because of disturbance 
of the ULA output covariance matrices from underlying noises. A total of 7,240 pieces of data 
constitute the training set. In order to fully validate the performance of the 1D-DOA network, the 
SNR ranges from –15 dB to 20 dB (1dB step), and 10 pieces of data, with the labels of ground truth, 
are generated for each angle under each SNR. A total of 65,160 pieces of data constitute the validation 
set. The training set and validation set are generated independently to ensure no duplicate data. The 
learning rate is set to 0.001, 0.0005, 0.0001, 0.00005, and 0.00001 in turn, and the epoch for each 
learning rate is set to 600. The reason why the validation set cost in Figure 9 is lower than the training 
set cost is similar to that in Figure 8. 

 

Figure 9. 1D-DOA network training process. 

3.4. Post-Processing 

From the DOA estimation network, we could obtain θCA, θCB, θBA, and θBC. As shown in Figure 
10a, in the space, θCA can determine the cone CCA in which s locates, and θCB can determine the cone 
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CCB in which s locates. CCA and CCB can determine the line LC in which s and C locate. Similarly, θBA 
and θBC can determine the line LB in which s and B locate. As shown in Figure 10b, s, the intersection 
point of the two lines, could be estimated from the four angles.  

 
(a) LC determined by CCA and CCB.                 (b) s determined by LC and LB 

Figure 10. Schematic diagram of 3D-DOA estimation based on the UTA. 

In practical implementation, it is unnecessary for LC and LB to have the intersection point due to 
the 1D estimation errors, and therefore we estimate the target position by searching the closest point 
to the two lines. 

According to the spatial position (x, y, z) of EM signals, we derive the expression of LC from θCA 
and θCB, as depicted in Table 2. Similarly, we could obtain the expression of LB. 

Table 2. Expressions of LC. 
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3.5. Additional Preprocessing in Non-Gaussian Noise 

In the presence of non-Gaussian noise, the additional preprocessing presented in this section 
precedes the preprocessing presented in Section 3.1. The strong impulse of non-Gaussian noise at 
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some moments would prevent Rxx from converging and the neural network from obtaining 
appropriate input features. However, after normalizing the array output data with the infinity-norm, 
the amplitude of array output is limited to [0,1], which can ensure the convergence. In a snapshot, 
the infinity-norm of any ULA output is defined as: 

1 i
( ) = max ( )iM
n x n

∞ ≤ ≤
x . (13)

After normalizing the array output with the infinity-norm, the observation vector can be 
expressed as: 

1( ) = ( )
( )

n n
n∞

∞

x x
x

. (14)

The observation vector expressed by Equation (8) can be rewritten as: 

( ) = ( ) + ( )n n n∞ ∞ ∞x As e , (15)

where ( ) = ( ) / ( )n n n∞ ∞
s s x , and ( ) = ( ) / ( )n n n∞ ∞

e e x . The observation matrix expressed by Equation 
(9) can be rewritten as: 

= +∞ ∞ ∞x As e , (16)

where =∞ ∞Λx x , =∞ ∞Λs s , =∞ ∞Λe e , and = diag[1/ (1) ,1 / (2) , ,1 / ( ) ]N∞ ∞ ∞ ∞
Λ x x x . The 

sample covariance matrix expressed by Equation (10) can be rewritten as: 

∞ ∞ ∞

∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

∞ ∞

xxR x x
As e As e
As s A e s A As e e e
As s A e e

AP A I

H

H

H H H H H H

H H H

H 2

= { ( ) ( )}
= {[ ( ) + ( )][ ( ) + ( )] }
= { ( ) ( ) + ( ) ( ) + ( ) ( ) + ( ) ( )}
= { ( ) ( ) + ( ) ( )}
= + e

E n n
E n n n n
E n n n n n n n n
E n n n n

σ

, (17)

where H= { ( ) ( )}E n n∞ ∞ ∞P s s , and ∞eσ
2  can be viewed as the power of non-Gaussian noise normalized 

by infinity-norm. Note that Rxx∞ has a similar structure to Rxx. 
Normalizing with the infinity-norm is equivalent to suppressing impulsive outliers in the 

presence of non-Gaussian noise and can ensure the convergence of Rxx∞. In addition, it should be 
noted that the smaller the characteristic exponent, the stronger the impulse, and the more attenuation 
to s. That is equivalent to the decrease of the signal power. 

4. Simulation Results 

In this section, in order to better evaluate the proposed method, we not only analyze the 
performance of the signal monitoring network, but also analyze the performance of the DOA 
estimation network from the perspective of 1D and 3D. The simulation conditions are as follows: (1) 
the sensor spacing of the UTA is set to 0.48 times as long as the signal wavelength; (2) the signal 
amplitude of all test data is randomly generated to test the robustness of the neural network to the 
signal amplitude; (3) the carrier frequency is set to 100 MHz. Each simulation experiment is 
performed in the presence of Gaussian and non-Gaussian noise, respectively. In addition, due to the 
infinite variance of α-stable distribution for 0 < α < 2, an effective alternative SNR is defined in the 
presence of non-Gaussian noise, namely, the generalized signal-to-noise ratio (GSNR), which is 
utilized to evaluate the rate of the signal power over noise dispersion by GS 2NR = 10lg( / )sσ γ  [14]. 

4.1. Signal Monitoring Network Performance 

In order to evaluate the performance of the monitoring network, we define the signal detection 
rate (SDR) as NE/NT. NE denotes the number of effective signals judged by the network, and NT 
denotes the total number of signals. 
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4.1.1. Performance in Gaussian Noise 

Figure 11a reveals the relationship between the SDR and SNR of the monitoring network. The 
SNR of the test set ranges from –25 dB to 20 dB (1 dB step), and 500 pieces of data are randomly 
generated in the range of [0°, 180°] (0.01° resolution) under each SNR. In the process of designing the 
training set, the signal with the SNR of –15 dB was set to be effective, and the signal with the SNR of 
–16 dB was set to be invalid. Therefore, Figure 11a shows SDR’s noticeable jump accompanying the 
SNR of about –15 dB and validates the effectiveness of the monitoring network. 

 

(a) SDR versus SNR 

 

(b) Response of the signal monitoring network 

Figure 11. Signal monitoring network performance in Gaussian noise. 

In order to intuitively portrait the performance of the monitoring network, 200 pieces of data are 
randomly generated with the SNR ranging from –25 dB to 20 dB (0.01 dB step) and the angle ranging 
from 0° to 180° (0.01° resolution). Figure 11b displays a clear boundary between red dots and black 
dots when the SNR is about –15 dB. The red dots indicate that the test result is 1, and the signal is 
effective. The black dots indicate that the test result is 0, and the signal is invalid. 

4.1.2. Performance in Non-Gaussian Noise 

Furthermore, we perform similar experiments in the presence of non-Gaussian noise. The GSNR 
of the test set ranges from –25 dB to 20 dB (1 dB step), and 500 pieces of data are randomly generated 
in the range of [0°, 180°] (0.01° resolution) under each GSNR. Figure 12a reveals the relationship 
between the SDR and GSNR of the monitoring network under different characteristic exponent.  

 

(a) SDR versus GSNR 

 

(b) Response of the signal monitoring network 

Figure 12. Signal monitoring network performance in non-Gaussian noise. 
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The relationship suggests that as the characteristic exponent decreases, the GSNR corresponding 
to the jump increases, since the smaller the characteristic exponent, the more the number and the 
larger the amplitude of outliers. After the array output is processed with the infinity-norm, the signal 
attenuation becomes larger. The larger attenuation requires higher corresponding GSNR to ensure 
the effectiveness of the signal. 

The characteristic exponent is set to 1.0, and 200 pieces of data are randomly generated with the 
GSNR ranging from –25 dB to 20 dB (0.01 dB step) and the angle ranging from 0° to 180° (0.01° resolution). 
When GSNR is about –5 dB, the boundary in Figure 12b is consistent with the jump in Figure 12a. 

4.2. 1D-DOA Network Performance 

The accuracy of 1D-DOA estimation is the key to the proposed 3D-DOA estimation model. Thus, 
we must evaluate the performance of the 1D-DOA network, which is evaluated by the MSE and 
processing time. The MSE has been defined in Section 3.2.2. 

4.2.1. Performance in Gaussian Noise 

Some simulations are carried out to compare the performance of the 1D-DOA network with that 
of other methods, including MUSIC, MVDR, TLS-ESPRIT, and RBF. The search step of MUSIC and 
MVDR is set to 0.01°, and the point corresponding to the spectral peak is the estimated angle. The 
training set and validation set of the RBF network are the same as those of the 1D-DOA network. The 
spread of the training set is searched in the range of [0.1, 20], and the desired MSE is searched in the 
range of [0.1, 5]. Finally, the validation set performs best when the spread is set to 4.9, and the MSE 
is set to 3. At this point, the MSE of the validation set of the RBF network is about 4.5 degree2. Other 
simulation conditions of these five methods are the same. 

The SNR of the test set ranges from –15 dB to 10 dB (1 dB step), and 500 pieces of data are 
randomly generated in the range of [0°, 180°] (0.01° resolution) under each SNR. Figure 13a reveals 
the relationship between the MSE and SNR of each method. The 1D-DOA network is even better than 
the MUSIC algorithm. Although the MUSIC algorithm breaks through the Rayleigh limit and is close 
to the Cramer Rao bound, the search step still limits its accuracy. Strictly speaking, the final result of 
the MUSIC algorithm is still discrete, and therefore in order to ensure the accuracy of the MUSIC 
algorithm, the angle sampling step and search step of the test set are both set to 0.01°. However, the 
output of the proposed 1D-DOA network is continuous, so the accuracy is slightly better than that of 
the MUSIC algorithm. Figure 13a also reveals that the 1D-DOA network is superior to the RBF 
network. Although RBF can accurately fit functions, its generalization ability is not as good as that of 
CNN in terms of DOA estimation. In addition, since the angles are randomly sampled for each SNR, 
the MSE of each method in Figure 13a does not decrease monotonically with the increase of the SNR. 

 

(a) MSE versus SNR 

 

(b) Angle correlation diagram 

Figure 13. 1D-DOA network performance in Gaussian noise. 
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In order to intuitively portrait the performance of the 1D-DOA network, the SNR of the test set 
ranges from –15 dB to 10 dB (5 dB step), and 20 pieces of data are randomly generated in the range 
of [0°, 180°] (0.01° resolution) under each SNR. Figure 13b displays the correlation between observed 
angles and estimated angles. The Pearson product-moment correlation coefficient (rppm) is 0.9999. 

To highlight the superiority of the 1D-DOA network, we now compare this method with MUSIC, 
MVDR, TLS-ESPRIT, and RBF in terms of the processing time. The processing time of the 1D-DOA 
network and RBF network includes network running and data preprocessing time. The processing 
time of the 1D-DOA network is recorded as a unit time. Table 3 shows the results from 500 Monte 
Carlo run. The MUSIC algorithm and MVDR algorithm need longer processing time for the spectral 
peak search, while the TLS-ESPRIT algorithm and RBF need shorter processing time because of the 
avoidance of the spectral peak search. The estimation accuracy of the 1D-DOA network is much 
higher than that of the TLS-ESPRIT algorithm and RBF network, although the 1D-DOA network does 
not have distinct advantages in terms of processing time. 

Table 3. Comparison of methods in processing time. 

Methods Processing Time 
MUSIC [4,5] 152.89 
MVDR [6,7] 100.92 

TLS-ESPRIT [8–10] 1.82 
RBF [29] 1.44 

1D-DOA network 1 

4.2.2. Performance in Non-Gaussian Noise 

The performance of the 1D-DOA network is also tested in the presence of non-Gaussian noise. 
The GSNR of the test set ranges from –5 dB to 20 dB (1 dB step), and 500 pieces of data are randomly 
generated in the range of [0°, 180°] (0.01° resolution) under each GSNR. Figure 14a reveals the 
relationship between the MSE and GSNR of the 1D-DOA network under different characteristic 
exponent. The relationship suggests that the performance is getting better and better with the increase 
of the GSNR or characteristic exponent. Still, DOA estimation is a difficult problem for the scenario 
of α = 0.1. 

FLOM and PFOM are classic DOA estimation algorithms in the presence of non-Gaussian noise, 
but reference [13,14] has proved that CRCO and COBU are superior to FLOM and PFOM. In order to 
measure the performance of the 1D-DOA network, we utilize the corentropy-based correlation of 
CRCO and the corentropy-based operator of COBU to make a comparison with the 1D-DOA network, 
respectively. The search step of CRCO and COBU is set to 0.01°, and the point corresponding to the 
spectral peak is the estimated angle. The scale factor of CRCO is set to 1.4, and the parameter μ is set 
to 0.5. The weight factor and kernel size of COBU are set to 1. Other simulation conditions are the 
same as that of the 1D-DOA network. The GSNR ranges from –5 dB to 20 dB (1 dB step) with the 
characteristic exponent of 1.3, and 500 pieces of data are randomly generated in the range of [0°, 180°] 
(0.01° resolution) under each GSNR. Figure 14b reveals the relationship between the MSE and GSNR 
of each method, and the performance of the 1D-DOA network is significantly better than that of 
CRCO and COBU. 

Then, the GSNR ranges from –5 dB to 20 dB (5 dB step) with the characteristic exponent of 1.3, 
and 20 pieces of data are randomly generated in the range of [0°, 180°] (0.01° resolution) under each 
GSNR. After processing by the 1D-DOA network, Figure 14c displays the correlation between 
observed angles and estimated angles. The Pearson product-moment correlation coefficient (rppm) is 
0.9999. 
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(a) MSE versus GSNR 

 

(b) MSE versus GSNR 

  

 

(c) Angle correlation diagram 

Figure 14. 1D-DOA network performance in non-Gaussian noise. 

We also compare the processing time of the 1D-DOA network, CRCO, and COBU. The 
processing time of the 1D-DOA network includes network running and data preprocessing time, and 
it is recorded as a unit time. Table 4 shows the results from 500 Monte Carlo run. Because CRCO and 
COBU also need the spectral peak search, their processing time is longer than that of the 1D-DOA 
network. 

Table 4. Comparison of methods in processing time. 

Methods Processing Time 
CRCO [13] 5.18 
COBU [14] 4.80 

1D-DOA network 1 

4.3. 3D-DOA Estimation Performance 

In order to evaluate the performance of the 3D-DOA estimation, we define the MSE3D as: 
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,                   (18)

where m denotes the total number of samples, and (x, y, z) denotes the observed coordinate, and (ix , 


iy , iz ) denotes the estimated coordinate. 
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4.3.1. Performance in Gaussian Noise 

In this section, we compare the proposed method based on the UTA with the 3D-MUSIC 
algorithm based on the uniform circular array (UCA) [31,32]. In order to facilitate sampling and 
ensure the accuracy of the 3D-MUSIC algorithm, the position of EM signals is limited in the space 
200 to 300 [m] away from the origin of Cartesian coordinate system, and the coordinate z is more than 
30 [m]. Random sampling is carried out in the spherical coordinate system. Considering that the 3D-
MUSIC algorithm needs spectral peak search, too small search step will lead to an enormous amount 
of computation. In this case, the orders of magnitude of the angle sampling and angle search step are 
set to 1°, and the orders of magnitude of the radial distance sampling and radial distance search step 
are set to 1 [m]. The proposed method avoids the problem of massive computation, and the actual 
angles and radial distances are continuous. In this case, the order of magnitude of the angle sampling 
is set to 0.01°, and the order of magnitude of the radial distance sampling is 0.01 [m]. The number of 
sensors of the UCA is the same as that of the UTA, and the array radius is 4.5 times as long as the 
signal wavelength. Other simulation conditions are the same as that of the proposed method. 

The SNR ranges from –5 dB to 20 dB (1 dB step), and 500 positions are randomly sampled for 
each SNR in the space. Figure 15a reveals the relationship between the MSE3D and SNR of the 
proposed method and 3D-MUSIC algorithm. Furthermore, the radial distance ranges from 200 to 300 
[m] (10 [m] step) with the SNR of 15 dB, and 500 positions are randomly sampled for each radial 
distance in the space. Figure 15b compares the MSE3D of the proposed method and 3D-MUSIC 
algorithm versus the radial distance. The proposed method outperforms the 3D-MUSIC algorithm 
under stricter sampling conditions. In addition, the real angles and radial distances are continuous, 
but the angle search step of the 3D-MUSIC algorithm is set to 1°, and the radial distance search step 
is set to 1 [m]. The search step will be greatly limited in practical applications. Even so, the processing 
time of the 3D-MUSIC algorithm is still about 70,000 times as long as that of the proposed method, 
and such a large amount of computation is difficult to process in real time. 

In order to intuitively portrait the 3D-DOA estimation performance of the proposed method, the 
SNR is set to 20 dB, and 100 points are randomly sampled in the space. Figure 15c suggests that 
observed positions and estimated positions basically coincide. 

 

 

(a) MSE versus GSNR 

 

(b) MSE versus radial distance 
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(c) Response of the proposed method 

Figure 15. 3D-DOA estimation performance in Gaussian noise. 

4.3.2. Performance in Non-Gaussian Noise 

The space range setting has been described in Section 4.3.1. The GSNR ranges from 0 dB to 25 
dB (1 dB step), and 500 positions are randomly sampled for each GSNR in the space. Figure 16a 
reveals the relationship between the MSE3D and GSNR of the proposed method under different 
characteristic exponent. Due to the effect of the 1D-DOA estimation accuracy, the performance of the 
proposed method is getting better and better with the increase of the GSNR or characteristic exponent. 

 

(a) MSE versus GSNR 

 

(b) MSE versus GSNR 
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(d) Response of the proposed method 

Figure 16. 3D-DOA estimation performance in non-Gaussian noise. 
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To the best of our knowledge, there are no published 3D-DOA estimation algorithms in the 
presence of non-Gaussian noise. In order to validate that the proposed method is superior to 
conventional algorithms, we have modified CRCO and COBU based on the UCA. The array output 
covariance matrix of the 3D-MUSIC algorithm is replaced by the correentry-based correlation and 
correntropy-based operator, respectively. The 3D-DOA estimation using CRCO or COBU is achieved 
and compared with the proposed method. Considering the computational complexity, the data 
sampling and search step of the modified CRCO and COBU are the same as that of the 3D-MUSIC 
algorithm. The UCA setting has been described in Section 4.3.1. Other simulation conditions are the 
same as that of the proposed method. The GSNR ranges from 0 dB to 25 dB (1 dB step) with the 
characteristic exponent of 1.6, and 500 positions are randomly sampled for each GSNR in the space. 
Figure 16b reveals the relationship between the MSE3D and GSNR of each method. Furthermore, the 
radial distance ranges from 200 to 300 [m] (10 [m] step) with the GSNR of 20 dB and the characteristic 
exponent of 1.6, and 500 positions are randomly sampled for each radial distance in the space. Figure 
16c compares the MSE3D of each method versus the radial distance. Obviously, the proposed method 
outperforms the modified CRCO and COBU. In addition, the processing time of the modified CRCO 
and COBU is about 2,350 times as long as that of the proposed method. 

In order to intuitively show the 3D-DOA estimation performance of the proposed method in the 
presence of non-Gaussian noise, the GSNR is set to 25 dB, and the characteristic exponent is set to 1.6, 
and 100 points are randomly sampled in the space. Figure 16d displays the 3D-DOA estimation result. 

In addition, in order to study the generalization ability of the infinity-norm normalization to 
DOA estimation in Gaussian noise, employing the infinity-norm normalization, we preprocess the 
UTA output data, which generates Figure 11, Figure 13 and Figure 15, and then regenerate these 
figures. The shapes of these figures are basically unchanged. Moreover, in the presence of impulse 
noise, usually Gaussian noise is also present. After the verification of simulation experiments, 
infinity-norm normalization preprocessing can still be generalized to DOA estimation in this case. 

5. Conclusions  

In this paper, we presented a novel 3D-DOA estimation method of stationary EM signals using 
CNN in Gaussian or non-Gaussian noise environment. To do this, we proposed the 1D-DOA network 
using CNN in the presence of Gaussian noise. We have shown that the proposed method overcame 
the high computational cost of conventional DOA estimation methods. The signal monitoring 
network was also proposed to address the possible misjudgment problem of the network. The UTA 
was utilized to achieve 3D-DOA estimation of EM signals. In the presence of non-Gaussian noise, the 
infinity-norm was utilized to normalize the UTA output. We have shown that the infinity-norm 
normalization effectively suppressed the impulsive outliers, and the 3D-DOA estimation of EM 
signals was also achieved. Finally, we proved its superiority and effectiveness by comparing our 
proposed method with the existing methods. 

The experiments reached the following conclusions: (1) the signal monitoring network can 
effectively control the output of the 3D-DOA estimation model; (2) in the presence of Gaussian noise, 
the proposed method is superior to several existing methods in the computation speed and accuracy 
of 1D-DOA and 3D-DOA estimations; (3) in the presence of non-Gaussian noise, the infinity-norm 
normalization preprocessing can provide appropriate input features for neural networks, and neural 
networks can perform DOA estimation well. In conclusion, CNN has better generalization ability in 
DOA estimation. 

We should solve the following problems that still remain: (1) To improve the accuracy of 3D-
DOA estimation by modifying post-processing mode; (2) To carry out study on non-stationary signals; 
(3) To implement the proposed approach in the real environment. 
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