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Abstract: Existing methods in neuromorphic olfaction mainly focus on implementing the data
transformation based on the neurobiological architecture of the olfactory pathway. While the
transformation is pivotal for the sparse spike-based representation of odor data, classification
techniques based on the bio-computations of the higher brain areas, which process the spiking data
for identification of odor, remain largely unexplored. This paper argues that brain-inspired spiking
neural networks constitute a promising approach for the next generation of machine intelligence for
odor data processing. Inspired by principles of brain information processing, here we propose the
first spiking neural network method and associated deep machine learning system for classification
of odor data. The paper demonstrates that the proposed approach has several advantages when
compared to the current state-of-the-art methods. Based on results obtained using a benchmark
dataset, the model achieved a high classification accuracy for a large number of odors and has
the capacity for incremental learning on new data. The paper explores different spike encoding
algorithms and finds that the most suitable for the task is the step-wise encoding function. Further
directions in the brain-inspired study of odor machine classification include investigation of more
biologically plausible algorithms for mapping, learning, and interpretation of odor data along with
the realization of these algorithms on some highly parallel and low power consuming neuromorphic
hardware devices for real-world applications.

Keywords: biomimetic pattern-recognition; neuromorphic olfaction; electronic nose systems; spiking
neural networks (SNNs); SNN-based classification

1. Introduction

Biological sensory architectures found in nature exhibit remarkable computational abilities and
have the capacity to perform efficiently and accurately, even under noisy conditions [1]. Pursuing
the idea of replicating the same efficient style of computation, foundational research [2] by Persaud
and Dodd aimed to develop an artificial olfactory system based on the functional blocks of the
biological olfactory pathway. While this study introduced the notion of using a sensor array as the
sensing front-end and established a general architecture for electronic nose (e-nose) systems, the
implementation of conventional statistical methods to process multivariate time-series sensing data
imposed limitations due to substantial computational latency, high power requirements, and poor
classification performance and reliability [3].

The introduction of neuromorphic engineering brought a paradigm shift in the electronic sensing
domain [4]. The low-power bio-inspired approach significantly reduced the data overhead by using
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a spike-based sparse representation of information, which could be processed much faster than
traditional methods [5,6]. Promising results obtained by applying neuromorphic concepts for vision
and auditory sensing stimulated research into neuromorphic olfaction. Furthermore, the development
of bioinspired learning methods such as spike-timing-dependent plasticity (STDP) and advancements
in the utilization of spiking neural networks (SNN) for classification of odors based on temporal
spiking information, reinforced the applicability of this approach for the development of robust and
real-time electronic nose systems [3,6].

Drawing inspiration from the neurobiological architecture of the olfactory pathway, Koickal et al.
in [7] implemented the first adaptive neuromorphic olfaction chip that consisted of a chemosensor array
front-end, a signal conditioning module, and an SNN for processing and classification. While this study
mainly focused on achieving a high degree of bio-realism in emulating its biological counterparts, it did
not quantify the classification performance of the model, and its application in a real-world scenario
was not plausible due to several issues such as component mismatch inherent in analogue designs [3,8].
Following this research, a number of neuromorphic implementations, such as [9–15], emerged that
focused on detailed modelling of their biological counterparts, but their practical application was
limited due to factors such as complexity of the system (e.g., large sensing array from the NEUROCHEM
project [16]), strict operating constraints, and limited classification performance [3,6].

Recent developments in neuromorphic olfaction have focused on leveraging the inherent
advantages of the spike-based data representation to develop practical e-nose systems where key
aspects such as data-to-spike encoding techniques, utilization of SNNs for pattern-recognition, and
implementation of these models on low-power hardware are emphasized [17–22]. However, these
neuromorphic models have mainly focused on data transformation based on biological spike encoding
architectures, while overlooking the overall performance of the system to identify target odors with
minimum computational resources and latency.

While the biological olfactory pathway plays a crucial role in the generation and transformation
of odor information, biological studies have indicated that the bio-computations in higher-brain areas
of the olfactory cortex have profound implications on how odors are classified [23–25]. Hence, through
this investigation, we focus on utilizing the neuromorphic approach to develop a 3D SNN model for
pattern recognition in an e-nose system. Contrary to other studies that mainly focus on emulating
biological techniques for encoding real-valued sensor responses into spiking data [7,12,19,21,22], we
base our approach on utilizing standard encoding methods and focus on implementing a brain-inspired
SNN model for classification of spatiotemporal odor information. Given the fact that neuromorphic
models enable rapid processing [4,6,26], the development of the SNN classifier will also focus on
exploiting this inherent advantage to minimize the latency incurred during the classification task
and for better understanding of the data. Another key aspect investigated in this study includes the
classification of raw sensor responses without the requirement for pre-processing or feature extraction
to overcome any processing and latency overheads resulting from these steps.

2. Methods and Materials

2.1. System Architecture

The bio-inspired classifier model proposed in this study is designed using the NeuCube
framework [27,28], a 3D brain-inspired evolving connectionist system (ECOS) [29,30]. One of the
key features of NeuCube, crucial for this implementation, is its unified platform comprising of a
data-to-spike encoder, a spiking neural network reservoir (SNNr) for deep learning of input spike trains,
and an output/classification module which can generate/evolve new output neurons to accommodate
new input data or classes of data [31]. Taking inspiration from the biological olfactory pathway
and based on the aforementioned NeuCube modules, our model is comprised of three key stages
of electronic nose data processing: transformation, learning, and classification. Promising results
have been obtained using NeuCube models for various applications [27,30,32], providing evidence
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of the robust classification capabilities of the SNN framework, even under potentially noisy and
multidimensional spatiotemporal data. These results make NeuCube one of the ideal candidates to
explore the applicability of the brain-inspired SNN model for the classification of raw sensor responses.
A conceptual model diagram of the proposed system is shown in Figure 1.
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Figure 1. Structure of the proposed brain-inspired spiking neural network architecture for odor
classification. The responses from the 12-sensor array are encoded into spiking data and presented
to an 8 × 8 × 8 3D spiking neural networks reservoir (SNNr). The spiking patterns resulting from
the computations within the 3D SNNr are used by the output layer consisting of 200 neurons for
odor identification.

This study utilizes the benchmark e-nose dataset [33] consisting of real-valued signals recorded at
2 Hz over 300 secs using a 12-sensor array exposed to 20 different chemical compounds. Since one of
the objectives of this work is to overcome the requirement of pre-processing and feature extraction,
the raw sensor responses along with relative resistance curves and exponential moving averages are
used as an input to the data-to-spike encoder. Without any pre-conditioning, the optimal encoding
of task-relevant information from the original sensor response curves, including steady-state and
transient features, is pivotal to obtain reliable classification results. The sensor responses were encoded
into spiking data using an encoder with built-in optimization of encoding parameters based on the
error metrics between the original and reconstructed signals.

The spiking information is propagated through the 3D SNNr for deep learning and
classification [27,28,30]. The SNN is initialized as a 3D reservoir, also called the “Cube”, with
leaky integrate-and-fire (LIF) neurons connected in a recurrent structure following the principles of
a small-world network. Learning within the SNN model is implemented in two phases: In the first
phase, the input spike sequences are propagated through the network, and an unsupervised learning
method, such as STDP, is implemented resulting in modifications of the neuronal connections based on
the time that pre and postsynaptic neurons fire. Based on the neuron’s activation patterns, the SNN
learns to identify similar odor stimuli. In the next stage, the dynamic evolving SNN (deSNN) [31] and
supervised learning is implemented as the output classification module, where output neurons are
trained to classify the input spiking data that activate spatio-temporal patterns in the SNN cube based
on predefined labels for odor classification. deSNN has an evolving structure, which evolves (creates)
new output neurons for new data and classes, added incrementally to the system.

Once the training stage is completed, the connection weights are retained as long term memory,
and the trained model can be used as a back-end classifier for an electronic nose system, having in mind
that such a system is adaptive to learn and classify new data in an incremental way by generating new
output neurons in the deSNN classifier. The SNN model developed using the NeuCube framework
can be deployed on a cloud or hardware platform, such as the SpiNNaker [27], which is one of the
crucial aspects for the development of a standalone electronic nose system.
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2.2. Sensing System and Dataset Description

The benchmark electronic nose dataset, extracted from the CSIRO Data Access Portal [33], was
used as an input dataset for the training and testing of the proposed SNN classifier. The measurements
in the dataset were performed under laboratory conditions using the FOX 3000 electronic nose (Alpha
M.O.S., Toulouse, France). The e-nose system, originally equipped with a 12-sensor array, comprises of
six standard doped tin dioxide (SnO2) and six chromium titanium oxide (CTO) sensors and tungsten
oxide (WO3) sensors. However, during the experiments (detailed in [34]) the CTO and WO3 sensors
were replaced with six novel CTO based sensor arrays [35] that include five zeolite-coated and one
uncoated CTO sensor. The modified array implements an additional transformation layer comprising
of acid (or sodium) forms of zeolites over the porous CTO sensing element that enables the size and
shape of odor molecules interacting with the sensor to be limited through pore size control and selective
permeability [36].

During the measurements, the two arrays were housed in different chambers due to their different
physical properties. The 12-sensor array was exposed to 20 different chemical compounds taken from
four chemical groups: aldehydes, alcohols, ketones, and esters with five chemicals per group. Overall,
the dataset consists of 200 data samples with 10 replicates for each sample recorded for a total of 300 s
at a frequency of 2 Hz. A delay of 240 s was imposed between the samples for a cleaning procedure
where dry zero grade air was used to remove any residual odor sample from the sensor chambers
and the sensors were allowed to return to baseline. Additional details regarding the sensing system,
laboratory conditions, the concentration of odors, and the measurements are described in [34].

2.3. Data-to-Spike Encoding

A Java-based data encoding tool included within the NeuCube framework is used to encode the
temporal odor information into spike trains. The spike encoding stage is critical for this application
because the original sensor responses consist of both useful information and noise, and without
any pre-processing or feature extraction, the encoding logic needs to be able to preserve the critical
discriminative information along with a sparse representation of the sensor response curves. The
effectiveness of the spike encoding method for classifiers, especially for olfactory systems, is generally
evaluated based on a comparison between the original and the reconstructed signals using the error
metrics and the overall SNN output, which in this case is the classification accuracy.

Among the different encoding schemes based on either rate or temporal coding, the encoder
within the NeuCube framework uses temporal coding to represent the input information. The spike
encoding algorithms integrated within the encoder are based on two different approaches:

1. Temporal contrast, where the temporal changes in the signal are encoded in the form of
spike timing.

2. Stimulus estimation, a bio-inspired encoding method that generates unipolar spike trains to
represent the original signal.

The temporal contrast-based encoding methods supported by the encoder include threshold-based
representation (TBR), step-forward (SF) encoding, and moving-window (MW) encoding. Ben’s spiker
algorithm (BSA) is the only stimulus estimation-based encoding method included in the NeuCube
framework [27,30,37].

Based on the analysis and evaluation of different encoding methods presented in [37], SF encoding
was chosen for this implementation because of its versatility and robustness. This approach is based
on encoding the input signal within an interval around a moving baseline with a set threshold. Once
the initial baseline is set to the initial signal value, a positive or a negative spike is generated when
the subsequent signal value is either above or below the baseline and the threshold value. Along
with the spiking output, the baseline is adjusted to the upper or lower limit of the threshold interval.
Reconstruction of the signal from the spike-encoded data is derived by multiplying the encoding
threshold by the summation of positive and negative spikes. The algorithmic approach for decoding is
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further explained in [37]. Features such as robust optimization and a straightforward decoding process
make SF encoding an ideal candidate for this application.

Along with SF encoding, the SNN classifier was also tested for unipolar spike trains encoded
using the BSA encoding method. The implementation of BSA encoding is abstracted from the response
function of biological neurons and, hence, is the most biologically plausible encoding technique among
those included within the NeuCube framework. This method utilizes a finite-impulse response (FIR)
filter to encode analogue signals into spike trains. BSA encoding was developed with a primary aim of
simplifying the decoding process, which is implemented by the convolution of spike trains with the
filter coefficients. Based on the analysis provided in [37], BSA encoding may not be the ideal candidate
for encoding rapidly changing signals, which is the case for electronic nose systems. However, we
utilize this method in order to analyze the SNN-based classifier’s output for unipolar spike trains.

2.4. Learning and Odor Recognition in the Proposed SNN Architecture

The SNN architecture proposed in this research for deep learning and odor classification is based
on the NeuCube framework. The NeuCube framework is a spatio-temporal data machine mainly
developed to model and process spatio-and spectro-temporal brain data [27,28]. The framework
principally consists of three main functional components: a data encoding module, a 3D SNNr module
for deep learning, and an output/classification module.

The process of creating a NeuCube model for a given multivariable dataset takes the following
steps:

1. Encode the multivariate input data into spike sequences: continuous value input information is
encoded into trains of spikes.

2. Construct and train in an unsupervised mode a recurrent 3D SNNr, to learn the spike sequences
that represent individual input patterns.

3. Construct and train in a supervised mode an evolving SNN classifier to learn to classify different
dynamic patterns of the SNNr activities that represent different input patterns from the multivariate
data that belongs to different classes.

4. Optimize the model through several iterations of steps (1)–(3) above for different parameter
values until maximum accuracy is achieved.

5. Recall the model on new data.

2.5. Experimental Framework

In this research, we utilized the JNeuCube for the classification experiments and the NeuCubeFX
for visualization and analysis of the results. Both tools are Java implementations of the NeuCube
architecture developed at KEDRI (http://kedri.aut.ac.nz) and now available on the cloud (www.neucube.
io).

Similar to other machine learning techniques, the accuracy of the NeuCube models depends
on the correct selection of the parameters for the methods and algorithms implemented. A major
issue with NeuCube models is the optimization of the numerous parameters, which could be over
20 depending on the methods and algorithms selected. Besides the optimization of the encoding
process, we optimized seven of the most important parameters related to the neuron model, the
unsupervised and supervised learning, and the classifier. Since testing for different values for all
possible combinations was impractical, we implemented a differential evolution-based (DE) [38]
optimization process. Table 1 describes the DE and NeuCube parameters used in the optimization
process, along with their boundary values.

http://kedri.aut.ac.nz
www.neucube.io
www.neucube.io
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Table 1. Differential evolution (DE) and NeuCube parameters involved in the optimization process.

Method Parameter Description Limits

DE

Population size Number of candidate solutions (agents),
usually 10 times the dimension of the agents 70

Max generations Maximum number of generations 100

Crossover probability A rate that increases the diversity of the
agents 0.7

Weighting factor The differential weight between two agents
to a third agent 0.1

LIF Neuron
Threshold Threshold voltage value to emit a spike 0.01–0.5

Refractory time The time period during which a neuron
rests after firing 2–10

STDP
A+ Determines positive synaptic modifications 0.001–0.05
A− Determines negative synaptic modifications 0.001–0.05

deSNN
Drift+ Determines positive synaptic modifications 0.001–0.05
Drift− Determines negative synaptic modifications 0.001–0.05

K-Nearest
Neighbor (KNN) k The number of nearest neighbors 3–10

The objective function was maximizing the average classification accuracy of 10 NeuCube models
produced with the same set of parameters. For each candidate solution (set of 7 NeuCube parameters),
the algorithm created 10 NeuCube models with random connection weights (uniformly distributed in
a range [−0.1, 0.1]) and random location (uniformly distributed in the range [1, number of neurons
in the hidden layer]) for the inputs. For each model, the algorithm randomly splits 70% of the data
for training and 30% for testing, ensuring the same number of samples for each class of the dataset
are selected. In the subsequent stage, each model was assessed using K-fold cross-validation on the
training set (training accuracy), later fitted using the training set again, and finally evaluated for
generalization using the testing set (testing accuracy).

The quality (fitness) of a model was assessed by calculating the average of the training and testing
accuracy. The aim, by using such an approach, is to produce SNN models that are unbiased while
tuning their hyperparameters using a 5-fold cross-validation scheme on the dataset for training and
models that have high generalization using the dataset for testing (unseen dataset). Using only the
classification performance of the SNN model for the testing set would produce models with high
predictive skills but poor generalization skills, or models that can only predict the dataset for testing
(30% of the data). The step-by-step algorithmic implementation for validating each candidate solution
is shown in Algorithm 1. The validation process ensures that each NeuCube model produced has
similar accuracy using the same set of parameters.



Sensors 2020, 20, 2756 7 of 17

Algorithm 1 Differential Evolution

1: data = read(data)
2: #tune model hyperparameters
3: parameters = . . . {parameters refer to a population of the DE}
4: numNeuCubeModels = . . .

5: k = . . .

6: for params in parameters do
7: paramSkills = list()
8: for n in numNeuCubeModels do
9: train, test = split(data)
10: skills = list()
11: for i in k do
12: fold_train, fold_val = cross_validation_split(i, k, train)
13: model = fit(fold_train, params)
14: skill_estimate = evaluate(model, fold_val)
15: skills.append(skill_estimate)
16: end for
17: skill_train = summarise(skills)
18: model = fit(train)
19: skill_test = evaluate(model, test)
20: paramSkills.append((skill_train + skill_test)/2)
21: end for
22: paramSkill = average(paramSkills)
23: end for

3. Results

3.1. Input Data Encoding and Optimization

While, based on the objectives of this study, we primarily used raw sensor responses as input to
the spike encoder, we also utilized feature-extracted data for spike encoding to compare the overall
performance of the SNN model. In this case, we used the two most commonly used features mentioned
in the e-nose literature:

• Normalized relative resistance features based on the following mathematical model:

Rnorm(x) =
Ri −R0

Rmax −R0

where, Rnorm(x) is the normalized relative resistance for sensor x, Ri is the measured resistance of
sensor x at instance i, and R0 and Rmax are the baseline and maximum resistances.

• Exponential moving average, a smoothing technique based on the mathematical model defined
in [39] and a smoothing factor α = 0.5 selected based on the sampling frequency and its
implementation shown in [34]. An example of the feature-extracted curves for a 2-Butanone
sample is shown in Figure 2.
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relative resistance.

These signals are provided as input to the Java-based data-encoding module within the NeuCube
framework. As discussed in Section 2.3, the continuous time-series input signals are encoded into spike
trains using the SF and BSA algorithms. A detailed description of the algorithmic implementation of
these encoding techniques is provided in [37]. The SF encoding utilizes a fixed parameter, the threshold
value, along with a moving baseline to generate positive or negative spikes. The implementation of
the BSA algorithm uses a much more complex logic using finite impulse filters resulting in three key
parameters, the order of the filter, its cut-off value, and the threshold, to generate a unipolar spiking
output. In order to retain task-relevant information from the original sensor responses, it is vital to use
the optimum values of these parameters while encoding the sensor response signals into spike trains.

The efficacy of data-to-spike encoding is determined by reconstructing the signal using decoding
algorithms corresponding to the encoding technique and comparing the recovered responses with the
original signal. An optimization process is implemented to determine the best-fit values of encoding
parameters that maximize the accuracy of signal recovery. This is established by calculating the error
metrics between the original and the reconstructed signals.

Among the various candidate error metrics, this implementation uses root-mean-square error
(RMSE) for parameter optimization. RMSE is defined in [37] as

RMSE =

√∑N
t=1(rt − st)

2

N
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where a summation of modelling errors between the original signal, s, and reconstructed signal, r,
for a total of N time points is calculated and minimized. For SF encoding, an optimum value of the
threshold parameter is determined using a grid search approach. As the BSA technique depends on
multiple encoding parameters, a differential evolution (DE) process is implemented for parameter
optimization. The optimization process is applied on each sensor channel in the 12-element array
response and for each odor sample. Figure 3 illustrates the spike-encoded data using both SF and BSA
algorithms for sensor 10 when exposed to a 2-Butanone odor sample.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 17 

 

where a summation of modelling errors between the original signal, s, and reconstructed signal, 𝑟, 

for a total of 𝑁 time points is calculated and minimized. For SF encoding, an optimum value of the 

threshold parameter is determined using a grid search approach. As the BSA technique depends on 

multiple encoding parameters, a differential evolution (DE) process is implemented for parameter 

optimization. The optimization process is applied on each sensor channel in the 12-element array 

response and for each odor sample. Figure 3 illustrates the spike-encoded data using both SF and 

BSA algorithms for sensor 10 when exposed to a 2-Butanone odor sample. 

 

Figure 3. Spike-encoded data for sensor ten responses when exposed to 2-Butanone. (a) BSA encoding, 

(b) SF encoding. 

3.2. NeuCube Model Optimization 

The DE approach was found to be the most efficient (in terms of the number of iterations and 

accuracy of the solutions) optimization tool for finding the best NeuCube parameters. The models 

implemented using these optimum parameters enable the classification of 20 chemical compounds 

with an overall accuracy greater than 90%. The analysis presented in this section is based on the 

highest overall accuracy result, which was obtained for the classification of the 20-class dataset while 

operating on the SF encoded original sensor responses. 

The optimization process rapidly started producing agents with an overall accuracy greater than 

90% after the 10th iteration. However, the whole population reached that percentage after the 31st 

iteration with a standard deviation of ± 0.6%, which is a good indicator of the stability of the 

optimization process. The algorithm found the best solution (set of parameters) with a 94% overall 

accuracy in the 49th iteration; after that, the population’s overall accuracy average improved very 

little from 93% to 94%. Figure 4 shows the overall accuracy metrics at each iteration of the DE, and 

the summary of the parameters in the last iteration is listed in Table 2. 
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(b) SF encoding.

3.2. NeuCube Model Optimization

The DE approach was found to be the most efficient (in terms of the number of iterations and
accuracy of the solutions) optimization tool for finding the best NeuCube parameters. The models
implemented using these optimum parameters enable the classification of 20 chemical compounds
with an overall accuracy greater than 90%. The analysis presented in this section is based on the highest
overall accuracy result, which was obtained for the classification of the 20-class dataset while operating
on the SF encoded original sensor responses.

The optimization process rapidly started producing agents with an overall accuracy greater
than 90% after the 10th iteration. However, the whole population reached that percentage after the
31st iteration with a standard deviation of ± 0.6%, which is a good indicator of the stability of the
optimization process. The algorithm found the best solution (set of parameters) with a 94% overall
accuracy in the 49th iteration; after that, the population’s overall accuracy average improved very little
from 93% to 94%. Figure 4 shows the overall accuracy metrics at each iteration of the DE, and the
summary of the parameters in the last iteration is listed in Table 2.
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Figure 4. The optimization process of the parameters of the SNN model showing the accuracy obtained
over 80 iterations.

Table 2. The values of the seven SNN parameters and their corresponding classification performance
obtained as a result of the DE optimization process.

LIF STDP deSNN KNN

Threshold Refractory Time A+ A− Drift+ Drift− K Accuracy

best 0.03614 6 −0.00072 0.00369 −0.00051 0.01543 1 0.94
min 0.02836 3 −0.00076 0.00313 −0.00103 0.01056 1 0.92
max 0.03799 7 0.00123 0.00554 0.00964 0.03389 1 0.94

average 0.03248 5 0.00054 0.00442 0.00470 0.01764 1 0.93
std 0.00274 0.95 0.00049 0.00070 0.00255 0.00628 0 0.00

We can observe that the DE approach generated candidate solutions in which parameter A− of
the STDP was eight times higher than the parameter A+, thus producing SNNs that could exhibit
inhibitory behavior, i.e., more negative than positive weights. In the best solution, we can observe
that it showed a negative value for the parameter A+. Although negative values of A+ or A− have
no biological meaning in the STDP; in this particular case, a negative A+ and the higher value of A−
regulated the firing activity preventing saturation and lack of temporal patterns.

3.3. SNN Modelling

Similar to any commonly used artificial neural network (ANN) architecture, the NeuCube model
is arranged in layers. However, some specific properties of the NeuCube suit the processing of spatial
and temporal data. In this research, the set of 12 sensor signals encoded into spike trains (predictor
temporal variables) is presented to the input layer. The selection of the input neurons can be either
done using a brain template, such as for electroencephalogram (EEG), functional magnetic resonance
imaging (fMRI), and other data [27,28,30], or can be done by a preliminary analysis of the dynamics
of the input variables so that variables with similar dynamics can be located closer in the 3D SNN
architecture [40]. Each neuron in the defined input layer of neurons distributes a spike train to the
neurons in the middle layer of recurrently connected neurons.

The middle layer is a set of 8 × 8 × 8 leaky integrate-and-fire neuron models (3D SNN) [41] that
capture deep spatio-temporal relationships among the temporal variables. The connections among the
neurons follow the principle of small-world networks [42], forming recurrent connections that process
streams of data and learn temporal patterns as a result of the network’s firing activity. In the NeuCube
architecture, every neuron in the middle layer is also connected to a neuron in the output layer. Every
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output neuron and its connections coming from the middle layer represent the spatio-temporal activity
in the SNNr corresponding to a single sample. In this particular case, 200 neurons, corresponding to
the number of samples in the dataset, formed the output layer. Merging of output neurons based on
their connection similarity can be applied so that a single output neuron can represent not just a single
sample but a whole cluster of similar (in space and time) samples [30,31].

3.4. Deep, Unsupervised Learning in the NeuCube Model

After the optimization process, we generated a new SNN model applying the parameters of
the best solution. The NeuCube has two features for analysis, the firing activity and the recurrent
connection neurons, which describe temporal and spatial patterns, respectively. In this section, we
analyze both features before and after the unsupervised training.

Additionally, we implemented a novel pruning method that removed neurons and their
connections and did not emit any spike while feeding the SNN with the whole dataset. Removing
useless elements improved the SNN performance in terms of processing time and memory and allowed
better visualization of the information trajectories formed during unsupervised learning. Samples
belonging to the same class shared similar trajectories that were different enough from those formed
with samples belonging to other classes for classification. Figure 5 shows the complete and pruned
best NeuCube model before and after training.
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Figure 5. NeuCube model (a) before and (b) after training. Functional neurons and connections (c)
before and (d) after training. Green dots indicate the input nodes, and brighter green dots indicate
that the node fired a spike at the particular time of the snapshot. Blue and red lines indicate positive
and negative connections, respectively. Each input odor sample is learned as a deep spatio-temporal
pattern of connections.

After the unsupervised training, we observed an expected inhibitory behavior of the SNN because
the value of A+ was lower than A− even though it was negative. Indeed, on average, the DE produced
lower values for A+ than A−. Inhibition reduced the firing activity of the reservoir neurons. Before
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training, the 97,902 spikes coming from the input data (200 samples) produced 216,397 spikes (average
firing rate = 0.0035), and after training, the same data produced 207,439 spikes (average firing rate =

0.0034).
The firing activity is relevant to the supervised training because it forms the values of the

connections between the reservoir and the output layer. After feeding the SNN and applying the
deSNN, the KNN uses those weights for classification. We can assume that most of the weights reached
negative values due to the low firing rate and a higher value of the Drift− parameter.

Inactive neurons in the SNNr, which did not have active connections with other neurons, were
suspended from further use (temporarily pruned), which reduced the size of the reservoir from 512 to
223 neurons and the number of connections from 10,940 to 2881. This accelerated the processing time
and reduced the memory use, especially during the supervised training and classification stages. As
mentioned in Section 3.3, all neurons in the middle layer (reservoir) were connected to every neuron
(sample) in the output layer. Therefore, the pruned SNN formed 223 instead of 512 output connections
per sample, a significant reduction of the dimensionality of the space for classification. Figure 6 shows
the number of positive and negative connections and their distributions before and after training. The
number of connections that changed after training is listed in Table 3.
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Figure 6. NeuCube weights (a) and firing activity (b) before training. Subsections (c) and (d) show
changes in the weights and firing activity after training.

Table 3. Weights before and after training.

Model Total Training Positive Negative

Complete 10,940 Before
After

7646
6228

3294
4712

Pruned 2881 Before
After

1960
747

921
2134

3.5. Classification Performance and Analysis

Once the optimized parameters were calculated, the SNN-based classifier was tested using a
balanced 5-fold cross-validation strategy for both cases: the 20-class dataset (identification of individual
odors) and 4-class dataset (classification based on chemical groups), which enables the model to test
for generalization and to determine its performance for larger datasets with limited class labels. For
each scenario, a total of 140 observations were used for training, and the model was tested based on
the remaining 60 samples. The overall latency observed for training the NeuCube model, including
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supervised and unsupervised training, was between 3.5 and 4 s. The classification performance of the
SNN model for each scenario is listed in Table 4.

Table 4. Classification performance of the 3D SNN classifier.

No. of Classes. Feature Set Accuracy (SF Encoding) Accuracy (BSA Encoding)

20
Original Signals 94.5% 79%

Exponential Moving Averages 93% 80%
Normalized Relative

Resistance 87.5% 77%

4
Original Signals 80% 66%

Exponential Moving Averages 84% 68%
Normalized Relative

Resistance 74% 60%

In general, the highest overall accuracy was achieved using SF encoding and for the classification
of the 20-class dataset. The classifier was able to identify 20 individual odors based on the original
sensor responses encoded using the SF algorithm with 94.5% accuracy and the highest candidate
accuracy of 96% during the 5-fold cross-validation. Under similar conditions, the classification rate
for feature sets, including exponential moving averages and normalized relative resistance, was 93%
and 87.5%, respectively. The classification results for the 20-class dataset using BSA encoding were
mostly in the range 77% to 80%, with the best candidate solution of 83% for the exponential moving
averages feature set. Misclassifications were typically observed for odors that belong to the same
chemical group involving overlapping or closely positioned features (e.g., acetone and 2-heptanone).
A maximum processing latency of 950 ms was recorded for a trained NeuCube model to provide an
identification result.

Considering these results, we can infer that:

• The classification results obtained using SF encoding were significantly higher than the results
obtained using BSA encoding. The bipolar spike trains generated by SF encoding represented the
signal changes more accurately and enabled the implementation of inhibition within the network.
Moreover, lower AFR and RMSE resulting from SF encoding ensured that any existing noise was
suppressed and saturation of the SNN due to excess spikes was avoided. Comparatively, BSA
encoding resulted in higher RMSE and average firing rate (AFR), thus resulting in errors for rapidly
changing and plateau characteristics in sensor signals. Additionally, BSA encoding generates
unipolar spike trains, hence, restricting the use of negative connectivity weights (inhibition).

• One of the aims of this study, to implement classification on the raw sensor responses without any
pre-processing or feature extraction, was achieved. The SNN model, in fact, obtained the highest
classification result of 94.5% for the original sensor data in comparison to other feature sets. These
results indicate that the pattern-recognition performance of the SNN model is robust to noise.
While feature extraction is useful in representing signal characteristics such as the maximum
and relative resistance values, they often represent piecemeal information of the entire dynamic
process that can be crucial for bioinspired classification approaches like the one presented in
this study.

Secondary experiments were based on the 4-class dataset for the identification of the chemical
group of compounds. In this case, a maximum classification accuracy of 84% was achieved using the SF
encoding for the exponential moving averages feature set. Classification accuracy for other feature sets
using SF encoding was recorded as between 74% and 80%, whereas feature sets encoded using BSA
achieved accuracies between 60% and 68%. One of the main reasons for the lower classification rates is
the lack of differentiating features between the classes. For example, the response characteristics of
sensor 1 to 6 among all four classes were almost similar. These results indicate that the SNN-based
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classifier is functional, but the classification of the 4-class dataset is a non-trivial problem and would
require an alternate strategy or enhanced dataset to achieve highly accurate results.

Although studies based on traditional machine learning methods for odor classification of the
same dataset have claimed to have achieved high accuracy [19,34], these methods impose substantial
computational and power requirements. Moreover, these techniques often require complex processing
constructs and iterative training, resulting in considerable latency to provide recognition results, and
the generalization capacity may also be limited [3,18]. Other neuromorphic approaches based on
the same datasets have either focused on implementing data transformation based on the biological
olfactory pathway or hardware-friendly application. Hence, these approaches differ vastly in terms
of encoding techniques and application of SNN for classification, thus making a direct comparison
impractical. However, when evaluated against the spike-based approach described in [17–19], the 3D
SNN model produces comparable results even when applied on original sensor responses without
using any pre-processing or feature extraction. Moreover, a trained NeuCube model was able to provide
a recognition result within a maximum processing latency of 950 ms on a medium specification desktop
computer, inclusive of latencies resulting from software-based input/output and other programming
constructs. A hardware implementation would almost certainly result in a reduction in latency to the
sub 100 ms range, enabling true real-time response.

4. Conclusions and Discussion

In this study, we present a neuromorphic classifier based on brain-like information processing
principles for implementation in electronic nose systems. This research investigates two critical aspects
of olfactory data classification: (1) implementation of an SNN model based on the computing principles
in higher brain areas responsible for the identification of odors and (2) utilizing the raw sensor responses
for classification without any pre-processing or feature extraction. We demonstrate the classification
capabilities of a 3D-SNN model implemented using the Java-based NeuCube framework by achieving
an overall accuracy of 94.5% for the identification of 20 different odor compounds from the benchmark
FOX e-nose dataset.

Feature sets, including the original sensor responses, exponential moving averages, and the relative
resistance curves were encoded into spike trains using the data-to-spike encoding module within the
NeuCube framework. The SF and BSA encoding techniques were used and parameter optimization
based on minimizing the RMSE error metric was implemented to ensure that the discriminatory
odor information was preserved. A differential evolution-based optimization was also implemented
to obtain optimal NeuCube model parameters that can provide stable and maximum classification
accuracy with minimum neural resources (number of neurons).

The classification performance of the SNN model was analyzed under different scenarios, including
20-class and 4-class datasets, spiking data encoded using either SF or BSA, and three feature sets. In
general, the results obtained through this study indicate that the SNN model produced better results for
SF encoded spiking data while operating on the original sensor responses. Along with encoding and
neural network parameters, factors such as inhibitory behavior of the neural network and exposure to
the entire dynamic process of the sensor responses have a direct impact on the pattern recognition
capabilities of the model. The classification performance of the SNN model, when applied to the
4-class dataset, was limited to a maximum of 84%. In this case, the bioinspired classification logic
could benefit from dimensionality reduction and other feature extraction strategies to further improve
its performance.

An important feature of the proposed approach is that the developed system is evolving and can
be further trained incrementally on new data, including new classes, without using old data. It can
also be used to apply transfer learning, where a system trained on one set of odor data can be further
trained on a new set of odor data that contains new information. A further study could explore these
characteristics of the proposed approach along with exploring different mappings of the input data
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into the 3D SNN architecture for a better interpretation of the model and a better understanding of the
spatio-temporal patterns captured in the data with reference to human odor perception.

The spiking models developed using the NeuCube framework can be deployed on
SpiNNaker [32,43], a neuromorphic hardware platform. Future research based on this study can
take advantage of the hardware compatibility to further reduce the processing latency, and hence,
a real-time low-power classification back-end for an artificial olfactory system can be envisaged.
Moreover, the SNN model can be also be deployed on the cloud-based platform for applications related
to distributed e-nose sensing systems. Implementation of the SNN-based classifier for a real-world
application and studying the model when deployed on a neuromorphic hardware platform are charted
for future research.
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